JPS6318064B2 - - Google Patents

Info

Publication number
JPS6318064B2
JPS6318064B2 JP21216283A JP21216283A JPS6318064B2 JP S6318064 B2 JPS6318064 B2 JP S6318064B2 JP 21216283 A JP21216283 A JP 21216283A JP 21216283 A JP21216283 A JP 21216283A JP S6318064 B2 JPS6318064 B2 JP S6318064B2
Authority
JP
Japan
Prior art keywords
flow path
body member
switching valve
main body
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21216283A
Other languages
Japanese (ja)
Other versions
JPS60104880A (en
Inventor
Yoshihiko Kimura
Hiroyuki Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP21216283A priority Critical patent/JPS60104880A/en
Publication of JPS60104880A publication Critical patent/JPS60104880A/en
Publication of JPS6318064B2 publication Critical patent/JPS6318064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/42Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)

Description

【発明の詳細な説明】 本発明はパイロツト電磁弁により作動自在に設
けた切換弁体を2個各別に有し流体の流れ方向を
切換制御する複合電磁切換弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite electromagnetic switching valve that has two separate switching valve bodies operable by a pilot electromagnetic valve and switches and controls the flow direction of fluid.

従来、この種の複合電磁切換弁は、特公昭56―
42799号公報に示されるように、2個の切換弁体
の供給流路と負荷流路とを並列に連通したり、ま
た特公昭52―15129号公報に示されるように、供
給流路と負荷流路とを直列に連通したりして、2
個の切換弁体が不整合作動すると、2個の切換弁
体で供給流路と負荷流路および排出流路間を互い
に連通せしめ負荷流路側に接続する流体アクチユ
エータの誤作動を阻止するようにしている。とこ
ろが、前者は整合作動時に大流量の流体を切換制
御できるが、不整合作動時に供給流路の圧力流体
が排出流路へ流れてしまい、不整合作動後の整合
作動初期、供給流路側に圧力上昇遅れを生じやす
く小容量の圧力源を有する流体装置への使用に適
さなく、後者は2個の切換弁体の不整合作動時に
供給流路を遮断しており供給流路側の圧力流体の
消費を阻止できるが、2個の切換弁体の供給流路
と負荷流路とを直列に連通しているため弁内部の
流体の流れ路が長くなり流れ抵抗の増大で大流量
制御の流体装置への使用に適さない等の欠点があ
つた。
Conventionally, this type of compound electromagnetic switching valve
As shown in Japanese Patent Publication No. 42799, the supply flow path and the load flow path of two switching valve bodies are connected in parallel, and as shown in Japanese Patent Publication No. 15129-1983, the supply flow path and the load flow path are connected in parallel. By connecting the flow path in series,
If the two switching valve bodies operate inconsistently, the two switching valve bodies connect the supply flow path, the load flow path, and the discharge flow path to each other to prevent malfunction of the fluid actuator connected to the load flow path. ing. However, although the former can switch and control a large flow rate of fluid during matching operation, the pressure fluid in the supply channel flows to the discharge channel during mismatching operation, and at the beginning of matching operation after mismatching operation, pressure increases on the supply channel side. It is not suitable for use in fluid equipment that has a small capacity pressure source as it tends to cause a rise delay, and the latter shuts off the supply flow path when the two switching valve bodies operate mismatched, resulting in consumption of pressure fluid on the supply flow path side. However, because the supply flow path and load flow path of the two switching valve bodies are connected in series, the fluid flow path inside the valve becomes longer and flow resistance increases, making it difficult for fluid systems to control large flow rates. It had drawbacks such as being unsuitable for use.

本発明は、かかる欠点に鑑みなされたもので、
2個の切換弁体の供給流路と負荷流路との連通を
並列又は直列に変更自在にして用途に応じた最適
弁が得られるようにした複合電磁切換弁を提供す
るものである。
The present invention was made in view of these drawbacks,
The present invention provides a composite electromagnetic switching valve in which the communication between the supply flow path and the load flow path of two switching valve bodies can be freely changed to parallel or series, so that an optimum valve depending on the application can be obtained.

このため本発明は、供給流路と負荷流路および
排出流路間を連通遮断する切換弁体をパイロツト
電磁弁により作動自在に各別に2個設けた主本体
部材と、主本体部材の外面へ着脱自在に接合配置
するよう設けた副本体部材とから成り、主本体部
材の副本体部材を接合配置する外面には少なくと
も前記2個の切換弁体により連通遮断される供給
流路と負荷流路とをそれぞれ各別に開口形成し、
副本体部材の取り換え接合配置により前記2個の
切換弁体の供給流路と負荷流路とを並列又は直列
に連通するようにし、主本体部材の外面へ接合配
置する副本体部材を取り換えることで主本体部材
に設けた2個の切換弁体の供給流路と負荷流路と
の連通を並列又は直列に変更でき、用途に応じた
最適弁が容易に得られるようにしている。
For this reason, the present invention has a main body member in which two switching valve bodies for disconnecting communication between a supply flow path, a load flow path, and a discharge flow path are respectively provided, each of which is operable by a pilot solenoid valve, and and a sub-body member provided to be removably connected, and the outer surface of the main body member to which the sub-body member is connected has a supply flow path and a load flow path that are communicated with and interrupted by at least the two switching valve bodies. Separate openings are formed for each of the
By replacing and arranging the sub-body member so that the supply flow path and the load flow path of the two switching valve bodies are communicated in parallel or in series, and by replacing the sub-body member that is bonded to the outer surface of the main body member. Communication between the supply flow path and the load flow path of the two switching valve bodies provided in the main body member can be changed to parallel or series, making it possible to easily obtain the optimum valve according to the application.

以下、本発明の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図ないし第4図において、1は複合電磁切
換弁の本体部材で、主本体部材2と副本体部材3
とから構成されている。主本体部材2は圧力流体
を供給する供給ポートPと流体アクチユエータ側
へ接続する負荷ポートAとを有し、内部には軸方
向へ間隔を有して供給流路4A,4Bと負荷流路
5A,5Bおよび排出流路6A,6Bを形成した
2個の嵌合孔7A,7Bを平行に設けており、2
個の嵌合孔7A,7Bの各流路4A,5A,6
A,4B,5B,6Bは主本体部材2の副本体部
材3を接合配置する外面に各別に開口形成してい
ると共に、嵌合孔7Aの負荷流路5Aを負荷ポー
トAにまた嵌合孔7Bの供給流路4Bを供給ポー
トPにそれぞれ連通して設けている。副本体部材
3は低圧側へ接続する排出ポートEを有し主本体
部材2の外面へ着脱自在に接合配置できるよう設
けており、内部には主本体部材2との接合面に開
口して前記2個の嵌合孔7A,7Bの供給流路4
Aと4B間、負荷流路5Aと5B間、排出流路6
Aと6B間をそれぞれ連通する連通路8,9,1
0を設けている。そして連通部10は排出ポート
Eに連通している。11A,11Bは切換弁体
で、嵌合孔7A,7Bへ嵌装し軸方向への作動に
より各流路間を連通遮断できるよう設けている。
12A,12Bは切換弁体11A,11Bを上昇
作動端に付勢するばね、13は主本体部材2の嵌
合孔7A,7Bが開口されている上部外面へ着脱
自在に接合配置したパイロツト電磁弁本体部材
で、切換弁体11A,11Bを作動操作するため
の2個のパイロツト電磁弁14A,14Bを備え
ている。(なお、主本体部材2とパイロツト電磁
弁本体部材13とを一体形成して該主本体部材に
直接2個のパイロツト電磁弁14A,14Bを備
えるようにしても良い。)2個のパイロツト電磁
弁14A,14Bは同一構成から成り、供給ポー
トPからの分岐路15に連通する圧力路16A,
16Bと切換弁体11A,11Bの上端に形成の
作用室17A,17Bに連通するパイロツト路1
8A,18Bおよび低圧側である外部に開放する
排出路19A,19Bを有し、ばね20A,20
Bにより可動鉄心21A,21Bが下降作動され
ると圧力路16A,16Bを遮断してパイロツト
路18A,18Bと排出路19A,19Bとを連
通し、またコイル22A,22Bの通電により可
動鉄心21A,21Bが吸引作動されると圧力路
16A,16Bとパイロツト路18A,18Bと
を連通して排出路19A,19Bを遮断するよう
に設けている。
1 to 4, 1 is a main body member of a composite electromagnetic switching valve, a main body member 2 and a sub-main body member 3.
It is composed of. The main body member 2 has a supply port P that supplies pressure fluid and a load port A that connects to the fluid actuator side. , 5B and two fitting holes 7A, 7B in which discharge channels 6A, 6B are formed are provided in parallel.
Each flow path 4A, 5A, 6 of the fitting hole 7A, 7B
A, 4B, 5B, and 6B have separate openings formed on the outer surface of the main body member 2 where the sub-body member 3 is to be joined, and the load passage 5A of the fitting hole 7A is connected to the load port A of the fitting hole. 7B supply channels 4B are provided to communicate with the supply ports P, respectively. The sub body member 3 has a discharge port E connected to the low pressure side, and is provided so that it can be detachably joined to the outer surface of the main body member 2. Supply channel 4 of two fitting holes 7A, 7B
Between A and 4B, between load flow path 5A and 5B, discharge flow path 6
Communication paths 8, 9, 1 that communicate between A and 6B, respectively
0 is set. The communication portion 10 communicates with the discharge port E. Reference numerals 11A and 11B are switching valve bodies, which are fitted into the fitting holes 7A and 7B and are provided so as to be able to cut off communication between the respective flow paths by operating in the axial direction.
12A and 12B are springs that urge the switching valve bodies 11A and 11B to the upward operating end; 13 is a pilot solenoid valve that is detachably connected to the upper outer surface of the main body member 2 where the fitting holes 7A and 7B are opened; The main body member includes two pilot solenoid valves 14A and 14B for operating switching valve bodies 11A and 11B. (The main body member 2 and the pilot solenoid valve body member 13 may be integrally formed, and the two pilot solenoid valves 14A, 14B may be provided directly on the main body member.) Two pilot solenoid valves 14A and 14B have the same configuration, and a pressure path 16A, which communicates with the branch path 15 from the supply port P,
16B and the pilot passage 1 communicating with the action chambers 17A, 17B formed at the upper ends of the switching valve bodies 11A, 11B.
8A, 18B and discharge passages 19A, 19B that open to the outside on the low pressure side, and have springs 20A, 20
When the movable cores 21A, 21B are lowered by B, the pressure paths 16A, 16B are shut off, and the pilot paths 18A, 18B are connected to the discharge paths 19A, 19B. When 21B is operated for suction, the pressure passages 16A, 16B and the pilot passages 18A, 18B are communicated with each other, and the discharge passages 19A, 19B are cut off.

次に、かかる構成の作動を説明する。 Next, the operation of this configuration will be explained.

図面は2個のパイロツト電磁弁14A,14B
の非通電状態を示し、2個の切換弁体11A,1
1Bは副本体部材3の各連通路8,9,10によ
り回路的に並列連通されている。いま2個のパイ
ロツト電磁弁14A,14Bを通電して同時作動
すると、分岐路15のパイロツト流体が各作用室
17A,17Bへ同時に導入され2個の切換弁体
11A,11Bはパイロツト流体の作用力により
ばね12A,12Bに抗し下降作動され各別に供
給流路4A,4Bと負荷流路5A,5Bとを連通
して排出流路6A,6Bを遮断する。よつて供給
ポートPの圧力流体は副本体部材3の連通路8お
よび9を介し負荷ポートAへ流れて流体アクチユ
エータを作動する。また、2個のパイロツト電磁
弁14A,14Bを通電状態から非通電して同時
作動すると、各作用室17A,17B内のパイロ
ツト流体が外部へ同時に導出される2個の切換弁
体11A,11Bはばね12A,12Bにより上
昇作動され各別に供給流路4A,4Bを遮断して
負荷流路5A,5Bと排出流路6A,6Bとを連
通する。よつて負荷ポートAの流体は副本体部材
3の連通路9および10を介し排出ポートEへ流
れて流体アクチユエータを戻し作動する。
The drawing shows two pilot solenoid valves 14A and 14B.
shows the de-energized state, and the two switching valve bodies 11A, 1
1B are connected in parallel in a circuit manner through communication passages 8, 9, and 10 of the sub-main body member 3. When the two pilot solenoid valves 14A and 14B are energized and operated simultaneously, the pilot fluid in the branch passage 15 is simultaneously introduced into each of the action chambers 17A and 17B, and the two switching valve bodies 11A and 11B respond to the action force of the pilot fluid. They are moved downwardly against the springs 12A, 12B, thereby respectively communicating the supply channels 4A, 4B and the load channels 5A, 5B and blocking the discharge channels 6A, 6B. The pressure fluid in the supply port P thus flows to the load port A through the communication passages 8 and 9 of the sub-body member 3 to actuate the fluid actuator. Furthermore, when the two pilot solenoid valves 14A, 14B are activated simultaneously from a energized state to a de-energized state, the two switching valve bodies 11A, 11B simultaneously lead out the pilot fluid in each of the working chambers 17A, 17B to the outside. The springs 12A and 12B actuate the upward movement to separately block the supply channels 4A and 4B, thereby communicating the load channels 5A and 5B with the discharge channels 6A and 6B. The fluid in the load port A thus flows through the communication passages 9 and 10 of the sub-body member 3 to the discharge port E to return and actuate the fluid actuator.

次に、2個のパイロツト電磁弁14A,14B
のいずれか一方のコイル22A,22Bが焼損等
で故障して2個の切換弁体11A,11Bが不整
合作動した場合において、いま2個のパイロツト
電磁弁14A,14Bを非通電の図示状態から通
電して右側のパイロツト電磁弁14Bのみが作動
すると、切換弁体11Bが下降作動され供給流路
4Bと負荷流路5Bとを連通して排出流路6Bを
遮断し、切換弁体11Aは作動しないで図示位置
にあつて負荷流路5Aと排出流路6Aとを連通し
て供給流路4Aを遮断しており、供給ポートPの
圧力流体は供給流路4B、負荷流路5B、副本体
部材3の連通路9、負荷流路5A、排出流路6
A、副本体部材3の連通路10を介し排出ポート
Eへ流れるため、負荷流路5Aに連通の負荷ポー
トAの圧力が流体アクチユエータを作動するに必
要な圧力まで上昇せず流体アクチユエータは停止
状態のままである。また2個のパイロツト電磁弁
14A,14Bの非通電の図示状態から通電して
左側のパイロツト電磁弁14Aのみが作動する
と、切換弁体11Aが下降作動され供給流路4A
と負荷流路5Aとを連通して排出流路6Aを遮断
し、切換弁体11Bは作動しないで図示位置にあ
つて負荷流路5Bと排出流路6Bとを連通して供
給流路4Bを遮断しており、供給ポートPの圧力
流体は供給流路4B、副本体部材3の連通路8、
供給流路4A、負荷流路5A、副本体部材3の連
通路9、負荷流路5B、排出流路6B、副本体部
材3の連通路10を介し排出ポートEへ流れるた
め、負荷流路5Aに連通の負荷ポートAの圧力が
流体アクチユエータを作動するに必要な圧力まで
上昇せず流体アクチユエータは停止状態のままで
ある。さらに、2個のパイロツト電磁弁14A,
14Bを通電状態から非通電し右側のパイロツト
電磁弁14Bのみが作動すると、切換弁体11B
がばね12Bにより上昇作動され供給流路4Bを
遮断して負荷流路5Bと排出流路6Bとを連通
し、切換弁体11Aは下降作動のままであるが、
切換弁体11Bにより負荷ポートAの流体が排出
ポートEへ流れて流体アクチユエータは整合作動
時と同様に戻り作動する。また2個のパイロツト
電磁弁14A,14Bを通電状態から非通電し左
側のパイロツト電磁弁14Aのみが作動すると、
切換弁体11Aがばね12Aにより上昇作動され
供給流路4Aを遮断して負荷流路5Aと排出流路
6Aとを連通し、切換弁体11Bは下降作動のま
まであるが、切換弁体11Aにより負荷ポートA
の流体が排出ポートEへ流れて流体アクチユエー
タは整合作動時と同様に戻り作動し、液体アクチ
ユエータの誤作動を阻止することができる。
Next, the two pilot solenoid valves 14A, 14B
If one of the coils 22A, 22B breaks down due to burnout or the like and the two switching valve bodies 11A, 11B operate inconsistently, the two pilot solenoid valves 14A, 14B should be changed from the non-energized state shown in the figure. When electricity is applied and only the right pilot solenoid valve 14B operates, the switching valve body 11B is operated downward, communicating the supply flow path 4B and the load flow path 5B, and blocking the discharge flow path 6B, and the switching valve body 11A is activated. The load flow path 5A and the discharge flow path 6A are connected to each other in the illustrated position, and the supply flow path 4A is blocked. Communication path 9, load flow path 5A, and discharge flow path 6 of member 3
A. Since the flow flows to the discharge port E through the communication path 10 of the sub-body member 3, the pressure at the load port A communicating with the load flow path 5A does not rise to the pressure required to operate the fluid actuator, and the fluid actuator is in a stopped state. It remains as it is. Further, when the two pilot solenoid valves 14A and 14B are energized from the non-energized state shown in the figure and only the left pilot solenoid valve 14A is activated, the switching valve body 11A is operated downward and the supply flow path 4A is activated.
The switching valve body 11B is in the illustrated position without operating, and the load flow path 5B and the discharge flow path 6B are connected, and the supply flow path 4B is opened. The pressure fluid in the supply port P is blocked through the supply flow path 4B, the communication path 8 of the sub-body member 3,
The load flow path 5A flows to the discharge port E via the supply flow path 4A, the load flow path 5A, the communication path 9 of the sub-body member 3, the load flow path 5B, the discharge flow path 6B, and the communication path 10 of the sub-main body member 3. The pressure at the load port A communicating with the fluid does not rise to the pressure required to operate the fluid actuator, and the fluid actuator remains in a stopped state. Furthermore, two pilot solenoid valves 14A,
When 14B is de-energized from the energized state and only the right pilot solenoid valve 14B operates, the switching valve body 11B
is actuated upward by the spring 12B to shut off the supply flow path 4B and connect the load flow path 5B and the discharge flow path 6B, and the switching valve body 11A remains in the downward operation.
The fluid in the load port A flows to the discharge port E by the switching valve body 11B, and the fluid actuator returns to operation in the same manner as during the matching operation. Also, when the two pilot solenoid valves 14A and 14B are de-energized from the energized state and only the left pilot solenoid valve 14A operates,
The switching valve body 11A is moved upward by the spring 12A to block the supply flow path 4A and connect the load flow path 5A and the discharge flow path 6A, and the switching valve body 11B remains in the downward movement, but the switching valve body 11A is moved upwardly by the spring 12A. Load port A
The fluid flows to the discharge port E, and the fluid actuator returns to operation in the same manner as during the matching operation, thereby preventing malfunction of the liquid actuator.

次に、2個の切換弁体11A,11Bの供給流
路4A,4Bと負荷流路5A,5Bとを直列連通
に変更するには、副本体部材3を第5図に示す如
き主本体部材2の外面に開口形成した嵌合孔7A
の供給流路4Aと嵌合孔7Bの負荷流路5Bとを
連通する連通路23および排出流路6Aと6B間
を連通する連通路24を設けた副本体部材25に
取り換え接合配置することによつて変更できる。
かかる構成によれば、いま2個のパイロツト電磁
弁14A,14Bを非通電状態から通電して2個
の切換弁体11A,11Bの整合作動時、供給ポ
ートPの圧力流体は嵌合孔7Bの供給流路4Bか
ら負荷流路5B、副本体部材25の連通路23、
嵌合孔7Aの供給流路4A、負荷流路5Aを介し
負荷ポートAへ流れる。またこの状態から、2個
のパイロツト電磁弁14A,14Bを非通電して
2個の切換弁体11A,11Bの整合作動時、負
荷ポートAの流体は嵌合孔7Aの負荷流路5Aか
ら排出流路6A、副本体部材25の連通路24を
介し排出ポートEへ流れて切換制御される。そし
て、2個のパイロツト電磁弁14A,14Bを非
通電状態から通電してパイロツト電磁弁14Bの
みが作動された不整合作動時、供給ポートPの圧
力流体は嵌合孔7Bの供給流路4Bから負荷流路
5B、副本体部材25の連通路23を介し嵌合孔
7Aの供給流路4Aへ流れ切換弁体11Aにより
負荷流路5Aへの流れが遮断される。また2個の
パイロツト電磁弁14A,14Bを非通電状態か
ら通電してパイロツト電磁弁14Aのみが作動さ
れた不整合作動時、供給ポートPの圧力流体は嵌
合孔7Bの供給流路4Bへ流れ切換弁体11Bに
より負荷流路5Bへの流れが遮断されて、流体ア
クチユエータは停止状態のままである。次に、2
個のパイロツト電磁弁14A,14Bを通電状態
から非通電してパイロツト電磁弁14Bのみが作
動された場合、負荷ポートAの流体は嵌合孔7A
の負荷流路5Aから供給流路4A、連通路23、
嵌合孔7Bの負荷流路5B、排出流路6B、連通
路24を介し排出ポートEへ流れる。また2個の
パイロツト電磁弁14A,14Bを通電状態から
非通電してパイロツト電磁弁14Aのみが作動さ
れた場合、負荷ポートAの流体は嵌合孔7Aの負
荷流路5Aから排出流路6A連通路24を介し排
出ポートEへそれぞれ流れて負荷ポートAに接続
の流体アクチユエータの誤作動を阻止することが
できる。
Next, in order to change the supply passages 4A, 4B and the load passages 5A, 5B of the two switching valve bodies 11A, 11B into series communication, the sub body member 3 is replaced with the main body member as shown in FIG. Fitting hole 7A formed on the outer surface of 2
The main body member 25 is replaced with a sub-main body member 25 provided with a communication passage 23 that communicates the supply passage 4A with the load passage 5B of the fitting hole 7B and a communication passage 24 that communicates between the discharge passages 6A and 6B. You can change it accordingly.
According to this configuration, when the two pilot solenoid valves 14A, 14B are energized from a non-energized state and the two switching valve bodies 11A, 11B are aligned, the pressure fluid in the supply port P is transferred to the fitting hole 7B. From the supply flow path 4B to the load flow path 5B, the communication path 23 of the sub-body member 25,
It flows to the load port A via the supply flow path 4A and the load flow path 5A of the fitting hole 7A. In addition, from this state, when the two pilot solenoid valves 14A and 14B are de-energized and the two switching valve bodies 11A and 11B are aligned, the fluid in the load port A is discharged from the load flow path 5A of the fitting hole 7A. It flows to the discharge port E via the flow path 6A and the communication path 24 of the sub-main body member 25, and is switched and controlled. Then, when the two pilot solenoid valves 14A and 14B are energized from the de-energized state and only the pilot solenoid valve 14B is operated in a mismatched operation, the pressure fluid in the supply port P is transferred from the supply flow path 4B of the fitting hole 7B. The flow passes through the load flow path 5B and the communication path 23 of the sub-body member 25 to the supply flow path 4A of the fitting hole 7A, and the flow to the load flow path 5A is blocked by the switching valve body 11A. In addition, when the two pilot solenoid valves 14A and 14B are energized from a non-energized state and only the pilot solenoid valve 14A is activated, the pressure fluid in the supply port P flows to the supply flow path 4B of the fitting hole 7B. The flow to the load flow path 5B is blocked by the switching valve body 11B, and the fluid actuator remains in a stopped state. Next, 2
When the pilot solenoid valves 14A and 14B are de-energized from the energized state and only the pilot solenoid valve 14B is operated, the fluid in the load port A is transferred to the fitting hole 7A.
from the load flow path 5A to the supply flow path 4A, the communication path 23,
It flows to the discharge port E via the load flow path 5B, the discharge flow path 6B, and the communication path 24 of the fitting hole 7B. Furthermore, when the two pilot solenoid valves 14A and 14B are de-energized from the energized state and only the pilot solenoid valve 14A is operated, the fluid in the load port A is transferred from the load flow path 5A of the fitting hole 7A to the discharge flow path 6A. The fluid can flow through the passages 24 to the discharge ports E to prevent the fluid actuators connected to the load ports A from malfunctioning.

第6図は他実施例を示し、本体部材1を三分割
しており、嵌合孔に有する各流路26A,26B
を主本体部材27の対向する二つの外面に貫通し
て開口形成し、各流路26A,26Bが開口する
外面の一方に閉塞用の副本体部材28を他方に排
出ポートEおよび各連通路29を設けた副本体部
材30をそれぞれ接合配置して一実施例と同様の
作動を奏し得るようにしたものである。そして、
かかる構成によれば、主本体部材27への二つの
副本体部材28,30の接合配置を変えることに
よつて、排出ポートEに対して供給ポートPと負
荷ポートAの方向を容易に変更することができ
る。
FIG. 6 shows another embodiment, in which the main body member 1 is divided into three parts, each of which has channels 26A and 26B in the fitting hole.
are formed as openings through the two opposing outer surfaces of the main body member 27, and a sub-body member 28 for closing is formed on one of the outer surfaces where the flow paths 26A and 26B are opened, and a discharge port E and each communication path 29 are formed on the other side. The sub-main body members 30 provided with the above are respectively connected and arranged so that the same operation as in the first embodiment can be performed. and,
According to this configuration, the directions of the supply port P and the load port A with respect to the discharge port E can be easily changed by changing the joint arrangement of the two sub-body members 28 and 30 to the main body member 27. be able to.

このように本発明は、供給流路と負荷流路およ
び排出流路間を連通遮断する切換弁体をパイロツ
ト電磁弁により作動自在に各別に2個設けた主本
体部材と、主本体部材の外面へ着脱自在に接合配
置するよう設けた副本体部材とから成り、主本体
部材の副本体部材を接合配置する外面には少なく
とも前記2個の切換弁体により連通遮断される供
給流路と負荷流路とをそれぞれ各別に開口形成
し、副本体部材の取り換え接合配置により前記2
個の切換弁体の供給流路と負荷流路とを並列又は
直列に連通するようにしたことにより、主本体部
材の外面へ接合配置する副本体部材を取り換える
ことで主本体部材に設けた2個の切換弁体の供給
流路と負荷流路との連通を並列又は直列に変更で
き、用途に応じた最適の複合電磁切換弁を容易に
得ることができる等実用上優れた特長を有する。
As described above, the present invention includes a main body member in which two switching valve bodies for disconnecting communication between a supply flow path, a load flow path, and a discharge flow path are provided, each of which can be operated freely by a pilot solenoid valve, and an outer surface of the main body member. and a sub-body member provided to be removably connected to the main body member, and the outer surface of the main body member to which the sub-body member is connected has a supply flow path and a load flow whose communication is interrupted by at least the two switching valve bodies. By forming openings for each of the channels and replacing the sub-main body members and arranging the joints, the above-mentioned two
By communicating the supply flow path and the load flow path of each switching valve element in parallel or in series, the secondary body member provided on the main body member can be replaced by replacing the sub body member that is joined to the outer surface of the main body member. It has excellent practical features such as being able to change the communication between the supply flow path and the load flow path of each switching valve body to parallel or series, and easily obtaining the optimum composite electromagnetic switching valve according to the application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す複合電磁切換
弁の縦断面図、第2図および第3図は第1図の線
―、線―に沿つた各断面図、第4図は第
3図の線―に沿つた方向から見た副本体部材
の側面図、第5図は第4図と同方向から見た他実
施例の副本体部材の側面図、第6図は本発明の他
実施例を示す断面図である。 2,27…主本体部材、3,25,28,30
…副本体部材、4A,4B…供給流路、5A,5
B…負荷流路、6A,6B…排出流路、11A,
11B…切換弁体、14A,14B…パイロツト
電磁弁。
FIG. 1 is a longitudinal cross-sectional view of a composite electromagnetic switching valve showing an embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views taken along lines - and - in FIG. 1, and FIG. 3. FIG. 5 is a side view of the sub-body member of another embodiment as seen from the same direction as FIG. 4. FIG. 6 is a side view of the sub-body member of the present invention. FIG. 7 is a sectional view showing another embodiment. 2, 27...Main body member, 3, 25, 28, 30
... Sub-body member, 4A, 4B... Supply channel, 5A, 5
B...Load flow path, 6A, 6B...Discharge flow path, 11A,
11B...Switching valve body, 14A, 14B...Pilot solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 供給流路と負荷流路および排出流路間を連通
遮断する切換弁体をパイロツト電磁弁により作動
自在に各別に2個設けた主本体部材と、主本体部
材の外面へ着脱自在に接合配置するよう設けた副
本体部材とから成り、主本体部材の副本体部材を
接合配置する外面には少なくとも前記2個の切換
弁体により連通遮断される供給流路と負荷流路と
をそれぞれ各別に開口形成し、副本体部材の取り
換え接合配置により前記2個の切換弁体の供給流
路と負荷流路とを並列又は直列に連通するように
したことを特徴とする複合電磁切換弁。
1. A main body member in which two switching valve bodies for disconnecting communication between the supply flow path, load flow path, and discharge flow path can be freely operated by pilot solenoid valves, and are arranged to be removably attached to the outer surface of the main body member. and a sub-body member provided so as to be connected to the main body member, and the outer surface of the main body member to which the sub-body member is joined is provided with a supply flow path and a load flow path, respectively, which are communicated with and interrupted by at least the two switching valve bodies. 1. A composite electromagnetic switching valve, characterized in that an opening is formed and the supply flow path and the load flow path of the two switching valve bodies are communicated in parallel or in series by replacing and connecting the sub-main body members.
JP21216283A 1983-11-10 1983-11-10 Compound solenoid selector valve Granted JPS60104880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21216283A JPS60104880A (en) 1983-11-10 1983-11-10 Compound solenoid selector valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21216283A JPS60104880A (en) 1983-11-10 1983-11-10 Compound solenoid selector valve

Publications (2)

Publication Number Publication Date
JPS60104880A JPS60104880A (en) 1985-06-10
JPS6318064B2 true JPS6318064B2 (en) 1988-04-16

Family

ID=16617926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21216283A Granted JPS60104880A (en) 1983-11-10 1983-11-10 Compound solenoid selector valve

Country Status (1)

Country Link
JP (1) JPS60104880A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562885B2 (en) 2000-09-01 2010-10-13 愛三工業株式会社 Bidirectional pilot type electromagnetic flow path on-off valve and bidirectional piping
WO2019224426A1 (en) * 2018-05-21 2019-11-28 Aalto University Foundation Sr On/off hydraulic valve
FI128357B (en) * 2018-05-21 2020-04-15 Aalto Korkeakoulusaeaetioe Sr On/off hydraulic valve

Also Published As

Publication number Publication date
JPS60104880A (en) 1985-06-10

Similar Documents

Publication Publication Date Title
EP2545286B1 (en) Double valve constructed from unitary single valves
JPS6318064B2 (en)
JPH07198054A (en) Solenoid valve
JP2881015B2 (en) Valve device
JP3686128B2 (en) Pilot operated 2-position switching valve
JPH0544625Y2 (en)
JPH0442563Y2 (en)
JPH10205503A (en) Valve and operating device therefor
JPS6123985Y2 (en)
JPH0650302A (en) Controlling valve device
US20240044421A1 (en) Residual pressure exhaust air circuit and residual pressure exhaust valve
JP3333566B2 (en) Composite solenoid switching valve
JPH0214563B2 (en)
JP3373923B2 (en) Composite solenoid switching valve
JPS6338703A (en) Electropneumatic ratio valve
JP3141054B2 (en) Valve device
JPS6250682B2 (en)
JPS6229732Y2 (en)
JPS646455Y2 (en)
JPS6238585B2 (en)
JP3574171B2 (en) Valve device
KR0120951Y1 (en) Double solenoid type electromagnetic valve
JPH09196206A (en) Composite solenoid switch valve
JPS62468Y2 (en)
JPS6315660Y2 (en)