JPS6317803B2 - - Google Patents

Info

Publication number
JPS6317803B2
JPS6317803B2 JP56211926A JP21192681A JPS6317803B2 JP S6317803 B2 JPS6317803 B2 JP S6317803B2 JP 56211926 A JP56211926 A JP 56211926A JP 21192681 A JP21192681 A JP 21192681A JP S6317803 B2 JPS6317803 B2 JP S6317803B2
Authority
JP
Japan
Prior art keywords
control value
concentration
test
test example
alone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56211926A
Other languages
Japanese (ja)
Other versions
JPS57131708A (en
Inventor
Yasuo Honma
Yutaka Arimoto
Asatada Misato
Tomoyoshi Toryama
Kotaro Tomono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP56211926A priority Critical patent/JPS57131708A/en
Publication of JPS57131708A publication Critical patent/JPS57131708A/en
Publication of JPS6317803B2 publication Critical patent/JPS6317803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水酸化第二銅、塩基性塩化銅、塩基
性炭酸銅、塩基性硫酸銅及び8−オキシキノリン
銅からなる群から選ばれる1種の化合物と、クエ
ン酸とを有効成分として含有することを特徴とす
る農園芸用殺菌剤組成物に関する。 最近、農薬の使用による土壌汚染や作物残留毒
性がいわゆる農薬公害として社会問題となつて以
来、とくに安全性の高い農薬の開発が望まれてい
る。また、殺菌剤については、種々の薬剤に対す
る耐性菌の発生がその効果を阻害する結果とな
り、その対策が切望されている。 本発明者らは、上記の点にかんがみ、古来、農
園芸用殺菌剤として重要な役割を果たして来た石
灰ボルドーに着目し、各種無機、有機の銅化合物
の殺菌作用について研究の結果、水酸化第二銅
を、はじめとする上記銅化合物とクエン酸とを混
合して用いることにより、各種植物病害菌に対し
て極めて高い相乗的防除効果が得られ、かつその
適用に際してのPHを調節することによつてその効
果の持続性をコントロールし得ることを見出し、
本発明を完成した。 本発明の一方の有効成分である水酸化第二銅を
はじめとする各種銅化合物は、酸性溶液中ではイ
オンが解離し易く、従つてもう一方の有効成分で
あるクエン酸と混合したものは、速効的相乗効果
による防除作用を発揮する。この混合組成物は、
主に種子消毒用殺菌剤として使用することがで
き、又は地上散布用殺菌剤として、例えばイネご
ま葉枯病、イネいもち病、イネ紋枯病、ミカン黒
点病、キユウリ斑点性細菌病等の病害の防除に有
効に使用することができる。 一方、土壌処理剤としても、例えばキユウリ苗
立枯病、キユウリ疫病、トマト青枯病、ハクサイ
しり腐れ病等の土壌病害の防除に有効に使用する
ことができる。 本発明の組成物は、後述の試験例から明らかな
如く、両成分の単独成分を用いた防除効果からは
予想もできない効果を示すものである。 本発明組成物は、上記のように酸性及び塩基性
の両サイドで極めて顕著な殺菌力を示し、単なる
相乗効果のみでは予測し得ない強力な病害抑制作
用を有するとともに、その適用時のPHを調節する
ことによりその効果の持続性を容易にコントロー
ルすることができる。従つて、本発明組成物はそ
の対象病害や施用形態、施用条件の汎用性におい
てすぐれ、土壌処理用、種子消毒用、或いは地上
散布用等各種用途に適した農園芸用殺菌剤ならび
に抗植物ウイルス剤として使用し得る。 さらに本発明組成物は、前記のようにその薬効
が大であるため、その使用量や使用濃度を少なく
することができるので、成分中に金属分が存在す
るにもかかわらず、これによる薬害は極めて僅少
であるばかりでなく、むしろこれらの金属は植物
体にこれが欠乏した場合に惹起される各種金属欠
乏症を予防し、イネ、ミカン、キユウリ等の微量
要素としてその生長促進に効果がある。 更に、クエン酸は、果汁、清涼飲料などに添加
されている物質であり、全く無害で薬害もしくは
毒性の極めて少ない殺菌剤が得られる。 本発明組成物は、農薬製剤の慣例に従い、不活
性な固体担体、および湿展剤、界面活性剤等を用
いて、水和剤、粉剤、粒剤等の任意の剤型にして
使用することができる。これらの不活性な担体と
して、例えばタルク、クレー、カオリン、ケイソ
ウ土、ホワイト・カーボン等を挙げることができ
る。とくに液体の組成物の場合は、ホワイト・カ
ーボンを適宜使用することにより、粉体化あるい
は固形化することができる。湿展剤としては、例
えばリグニンスルホン酸ソーダ、アルキルベンゼ
ンスルホン酸ソーダ、ジナフチルメタンスルホン
酸ソーダ、ラウリルアルコール硫酸ソーダ、ポリ
オキシエチレンアルキルアリルエーテル等を挙げ
ることができる。また、界面活性剤として、とく
に食品添加物、例えばレシチン、シヨ糖脂肪酸エ
ステル、ソルビタン脂肪酸エステル、モノグリセ
ライド、ポリプロピレングリコール脂肪酸エステ
ル等を用いることは、本発明組成物の無公害化に
有用である。 本発明組成物中の有効成分の含有率は、粉剤、
粒剤で1〜10%、水和剤で40〜80%、また、前記
銅化合物とクエン酸の混合重量比は1:0.2〜4
が好ましい。 以下実施例により本発明組成物の組成例を示
す。なお実施例中、「部」は「重量部」を示す。 実施例 1 (水和剤) 8−オキシキノリン銅40部、クエン酸20部、ホ
ワイトカーボン20部、アルキルベンゼンスルホン
酸ソーダ10部、及び硅藻土10部をよく混合、粉砕
して水和剤とする。使用に際しては、水で所定濃
度に稀釈して散布する。 実施例 2 (粉剤) 塩基性硫酸銅3部、クエン酸6部、及びクレー
91部をよく混合粉砕して粉剤とする。使用に際し
ては、所定量をそのまま散布する。 実施例 3 (粒剤) 塩基性炭酸銅10部、クエン酸10部、ベントナイ
ト50部、クレー28.5部、アルキルベンゼンスルホ
ン酸ソーダ1部、及びPVA0.5部を均一に混合粉
剤して水適量を加えてねり合わせ、造粒機で造粒
後、乾燥、篩別して粒剤とする。使用に際しては
所定量をそのまま散布する。 実施例 4 (水和剤) グリセリンモノステアレート6部とソルビタン
モノラウレート4部とをグリセリン10部に溶解
し、クエン酸と8−オキシキノリン銅(2:1)
の混合物80部に、撹拌しながら添加吸着させて水
和剤とする。使用に際しては、水で所定濃度に稀
釈して散布する。 次に試験例により本発明組成物の各種植物病害
に対する防除効果を説明する。 その概略は次のとおりである。
The present invention contains as active ingredients one type of compound selected from the group consisting of cupric hydroxide, basic copper chloride, basic copper carbonate, basic copper sulfate, and 8-oxyquinoline copper, and citric acid. The present invention relates to a fungicide composition for agricultural and horticultural use. Recently, since soil contamination and residual toxicity in crops due to the use of pesticides have become social problems as so-called pesticide pollution, the development of particularly safe pesticides has been desired. Furthermore, with regard to disinfectants, the development of resistant bacteria to various drugs has resulted in inhibiting their effectiveness, and countermeasures are desperately needed. In view of the above points, the present inventors focused on lime Bordeaux, which has played an important role as an agricultural and horticultural fungicide since ancient times, and as a result of research on the bactericidal effects of various inorganic and organic copper compounds, hydroxide By using cupric, a mixture of the above-mentioned copper compounds and citric acid, an extremely high synergistic control effect can be obtained against various plant pathogens, and the pH can be adjusted during its application. found that the sustainability of the effect could be controlled by
The invention has been completed. Various copper compounds, including cupric hydroxide, which is one of the active ingredients of the present invention, tend to dissociate ions in acidic solutions, so when mixed with citric acid, which is the other active ingredient, It exhibits a fast-acting synergistic pest control effect. This mixed composition is
It can be mainly used as a fungicide for seed disinfection, or as a fungicide for ground spraying, for example, for diseases such as rice sesame leaf blight, rice blast, rice sheath blight, citrus black spot, cucumber spot bacterial disease, etc. It can be effectively used for the control of. On the other hand, it can also be effectively used as a soil treatment agent to control soil diseases such as cucumber seedling blight, cucumber late blight, tomato bacterial wilt, and Chinese cabbage rot. As is clear from the test examples described below, the composition of the present invention exhibits effects that could not be expected from the control effects obtained using both components alone. As mentioned above, the composition of the present invention exhibits extremely remarkable bactericidal activity under both acidic and basic conditions, and has a strong disease-inhibiting effect that cannot be expected from a mere synergistic effect, and also has a pH level at the time of application. The sustainability of the effect can be easily controlled by adjustment. Therefore, the composition of the present invention has excellent versatility in target diseases, application forms, and application conditions, and is suitable as an agricultural and horticultural fungicide and as an anti-plant virus for various uses such as soil treatment, seed disinfection, and ground spraying. It can be used as an agent. Furthermore, since the composition of the present invention has high medicinal efficacy as described above, the amount and concentration used can be reduced, so that even though metal components are present in the ingredients, chemical damage caused by this can be prevented. Not only are these metals in extremely small amounts, but they are also effective in preventing various metal deficiency diseases caused when plants are deficient in these metals, and as trace elements in rice, mandarin oranges, cucumbers, etc., in promoting their growth. Furthermore, citric acid is a substance that is added to fruit juices, soft drinks, etc., and can be used as a fungicide that is completely harmless and has very little phytotoxicity or toxicity. The composition of the present invention can be used in any dosage form such as a wettable powder, powder, or granule using an inert solid carrier, a wetting agent, a surfactant, etc., in accordance with the customary practice of agrochemical formulations. Can be done. Examples of these inert carriers include talc, clay, kaolin, diatomaceous earth, and white carbon. In particular, in the case of a liquid composition, it can be pulverized or solidified by appropriately using white carbon. Examples of wetting agents include sodium ligninsulfonate, sodium alkylbenzenesulfonate, sodium dinaphthylmethanesulfonate, sodium lauryl alcohol sulfate, and polyoxyethylene alkyl allyl ether. Furthermore, the use of food additives such as lecithin, sucrose fatty acid ester, sorbitan fatty acid ester, monoglyceride, polypropylene glycol fatty acid ester, etc. as a surfactant is useful for making the composition of the present invention pollution-free. The content of the active ingredient in the composition of the present invention is powder,
1 to 10% for granules, 40 to 80% for wettable powders, and the mixing weight ratio of the copper compound and citric acid is 1:0.2 to 4.
is preferred. Examples of compositions of the compositions of the present invention are shown below in Examples. In the examples, "parts" indicate "parts by weight." Example 1 (Wettable powder) 40 parts of copper 8-oxyquinoline, 20 parts of citric acid, 20 parts of white carbon, 10 parts of sodium alkylbenzenesulfonate, and 10 parts of diatomaceous earth were mixed well and ground to form a wettable powder. do. When using, dilute with water to a specified concentration and spray. Example 2 (Powder) 3 parts of basic copper sulfate, 6 parts of citric acid, and clay
Thoroughly mix and grind 91 parts to make a powder. When using, just spray the prescribed amount. Example 3 (Granule) 10 parts of basic copper carbonate, 10 parts of citric acid, 50 parts of bentonite, 28.5 parts of clay, 1 part of sodium alkylbenzenesulfonate, and 0.5 part of PVA were uniformly mixed into a powder, and an appropriate amount of water was added. The mixture is kneaded, granulated using a granulator, dried, and sieved to form granules. When using, just spray the prescribed amount. Example 4 (Wettable powder) 6 parts of glycerin monostearate and 4 parts of sorbitan monolaurate were dissolved in 10 parts of glycerin, and citric acid and 8-oxyquinoline copper (2:1) were dissolved.
Add and adsorb it to 80 parts of the mixture with stirring to prepare a wettable powder. When using, dilute with water to a specified concentration and spray. Next, the control effects of the composition of the present invention on various plant diseases will be explained using test examples. The outline is as follows.

【表】 ウリ
[Table] Uri

【表】 本試験例で用いる化合物は、それぞれ以下の略
記号で表すこととする。 Cu−1:水酸化第二銅 Cu−2:塩基性塩化銅 Cu−3:塩基性炭酸銅 Cu−4:塩基性硫酸銅 Cu−5:8−オキシキノリン銅 CA:クエン酸 以下、本発明組成物と、それぞれの成分単独使
用の場合の効果を比較し、その差を明らかにする
ために以下の試験を行つた。なお、本発明の組成
物を以下、「CA製剤」と総称し、Cu−1、−2、
−3、−4、−5を「Cu化合物」と総称する。 試験例 1 土壌処理によるキユウリ苗立枯病防除試験 CA製剤、CA及びCu−1、−2、−3、−4、−
5単独の防除効果を比較するために、接種源とし
て用いる病原菌の量を変えて、少〜多〜激発時
(無処理区の立ち枯れ率(立ち枯れ苗数/供試苗
数)で判断した)の防除価を求めた。 すなわち、キユウリ苗立枯れ病菌
(Pellicularia filamentosa)を培養したフスマ培
地(重量%土2/フスマ培地1)と土との混合比
が0.5:10、2.5:10、および5.0:10となるように
汚染土壌を調製した。 これらの汚染土壌に各CA製剤(900ppm、
CA:Cu化合物=2:1)およびCA単独
(900ppm)を流しこんだ。また、比較のために、
蒸留水を流しこんだ区(無処理区)をもうけた。
薬剤または蒸留水を処理したのち、あらかじめ催
芽したキユウリ苗(品種:四葉)を各区50本づつ
移植し、温室で栽培し、10日後に立ち枯れた苗の
本数を調査し、次式に従つて防除価を算出した。 防除価(%)=(1 −処理区の立ち枯れ苗数/無処理区の立ち枯れ苗数)
×100 結果を第1図に示す。この結果から明らかなよ
うに、CA製剤処理区では、汚染土壌の混合比が
0.5:10(無処理区の立ち枯れ率36%、中発時)の
低濃度の場合は100%の防除価が得られ、5.0:10
(無処理区の立ち枯れ率98%、激発時)の高濃度
においても、ほぼ95%以上の高い防除価が得ら
れ、キユウリ苗の立ち枯れはかなり抑制された。 一方、CA単独およびCu化合物単独の場合、汚
染土壌の混合比が低濃度(0.5:10)、すなわち、
無処理区の立ち枯れ率36%というような中少発生
時にも、それぞれ0%(CA)および6%(CA+
Cu−4)の防除価であり、混合比が1.0:10〜
5.0:10の場合、すなわち、無処理区の立ち枯れ
率が54〜98%の多〜激発時にはCA単独およびCu
化合物単独では無処理区と同等か、それ以上の立
ち枯れ率を示し、防除効果は全く認められなかつ
た(防除価0%) 薬剤の効果の判定は、処理区の立ち枯れ苗数を
無処理区の立ち枯れ苗数と比較して行う。この場
合、その実験における無処理区の立ち枯れ率は効
果の判定上極めて重要である。これは、一般に無
処理区の立ち枯れ率が低い時(少発時)には薬剤
の効果(防除価)が高く出てしまうためにこの結
果をそのまま、その薬剤が実際に農薬として使用
に耐えうるかいなかの判断を下す際の基準とする
ことができないからである。したがつて、薬剤の
効果を判定するには無処理区の立ち枯れ率が高い
試験条件下(多〜激発時)で試験を行う必要があ
る。 ところで、上述の結果から、CA単独およびCu
化合物単独では、無処理区の立ち枯れ率が36%と
いうような中発生時においても防除価はそれぞれ
0%および6%にすぎなかつた。中少発時におけ
る防除効果がこのように低いことから、CAおよ
びCu化合物はそれぞれを単独に用いた場合、本
病害に防除効果を有さないことを意味している。 このように、CA製剤はその構成成分であるCA
およびCu化合物単独の効果から予想されない顕
著な防除効果を有することが判つた。そこで次に
キユウリ苗立枯れ病の防除に最適なCAとCu化合
物の混合比を知るために、両者の混合比を種々に
変えてその防除効果を検討した。 試験例 2 試験方法は試験例1に準じ、キユウリ立枯れ病
菌の汚染土壌を調製した(混合比2.5:10)(無処
理区の立ち枯れ率68%:多発生)。試験例1と同
様に200mlの汚染土壌に対し、第2図に示した割
合となるようにCAとCu化合物を混合し、それぞ
れ所定の濃度に稀釈後、薬液および蒸留水(100
ml)流しこんだ。 試験結果は第2図に示した。無処理区の立ち枯
れ率は68%で多〜激発条件下での試験である。
CAの濃度が100ppmに対し、Cu化合物の濃度が
400および500ppmの区では苗の立ち枯れはほとん
ど認められず、立ち枯れ病の発生は完全に抑制さ
れた(防除価100%)。CA/Cu化合物が
1000ppm/300ppmの区では、防除価は90〜100%
であり、CA/Cu化合物が1000ppm/200ppmの
区では防除価は61〜83%であり、両区ともに前2
区(1000/400、1000/500CA/Cu化合物)に比
べて劣つている。また、Cu化合物の濃度を
500ppmとし、CAの濃度を0〜1000ppmまで変化
させた場合、CAの濃度が低下するに従つて防除
効果が低下した。 以上の結果から、CA製剤はその構成成分であ
るCAとCu化合物の割合が1000:400(2.5:1)〜
400:500(4:5)の場合に最も高い防除効果が
得られることが判つた。 CA製剤はCAおよびCu化合物単剤の防除効果
から予想されない顕著な防除効果を有すること、
および、CAとCu化合物の割合が2.5:1〜4:5
の範囲で最も高い防除効果が得られことが判つ
た。 試験例 3 試験方法は試験例2に準じて行い、CAとCu−
5の割合を2:1、1:1および1:2とした
CA製剤を調製し、立ち枯れ病の防除に最適な混
合比を検討した。 結果は第3図に示した。その結果、CA/Cu−
5が2:1の場合、もつとも薬量が少なくて高い
防除効果を示した。そこで、CA/Cu−5の割合
を2:1としたCA製剤を調整し、立ち枯れ病の
防除に最適な濃度を検討した。 試験例 4 汚染土壌は試験例1に準じて調製した(混合比
2.5:10)。付傷後、所定濃度に調製したCA製剤、
CA単剤およびCu−5単剤の水溶液を流し込み、
試験例1と同様にキユウリ苗を移植して発病さ
せ、10日後に発病苗数を調査し、防除価を求め
た。 試験結果を第4図に示した。無処理区の立ち枯
れ率は66%で多発生条件下での試験であつた。 CA製剤は250ppmでも81%の防除価を示し、そ
の後、濃度が高くなるに従つて防除価は高くな
り、500ppmで99%、1000ppmでは立ち枯れの発
生を完全に抑制した(防除価100%)。 一方、CA製剤を構成するCAおよびCu−5を
それぞれ単独で用いた場合、防除価は最高でも5
%にすぎなかつた。 以上の結果からも明らかなように、CA製剤は
その構成成分であるCAおよびCu−5単独の防除
効果から予想されない顕著な防除効果を示す。ま
たCA製剤の防除効果は500〜2000ppmの範囲で高
かつた。 試験例 5 キユウリ苗立枯病菌(Pellicularia
filamentosa)を培養したフスマ培地(重量%土
2/フスマ培地1)を重量で10倍量の土に混合し
て汚染土を作つた。この汚染土250mlに供試薬剤
の所定濃度稀釈液100mlを流し込み、これにあら
かじめ催芽したキユウリ苗(品種:四葉)を各区
25本ずつ移植して、10日後に移植苗の立枯状況を
測定した。 結果を第1表に示す。 また本明細書の表中、薬害程度の欄は、薬害の
全くないものを「−」、わずかにあるものを
「±」、少しあるものを「+」、かなりあるものを
「++」、はなはだしいものを「+++」と表記し
た。 無処理区の立ち枯れ率は75%であり、激発条件
下での試験である。本試験では、Cu化合物は、
激発条件下でも若干の防除効果を示したが、これ
は濃度が高いためである。しかしながら、そのた
めにキユウリ苗に薬害が生じた。 一方、CA製剤は薬害も示さず、且つ立ち枯れ
病の発生を完全に抑制した。
[Table] The compounds used in this test example will be represented by the following abbreviations. Cu-1: Cupric hydroxide Cu-2: Basic copper chloride Cu-3: Basic copper carbonate Cu-4: Basic copper sulfate Cu-5: 8-oxyquinoline copper CA: Citric acid The following describes the present invention The following tests were conducted to compare the effects of the composition and when each component was used alone, and to clarify the differences. The compositions of the present invention are hereinafter collectively referred to as "CA formulations", and include Cu-1, -2,
-3, -4, and -5 are collectively referred to as "Cu compound." Test Example 1 Test for controlling cucumber seedling blight disease by soil treatment CA formulation, CA and Cu-1, -2, -3, -4, -
5. In order to compare the control effect of each individual, the amount of pathogenic bacteria used as an inoculum source was varied, and the results were shown in Table 1. The control value was determined. That is, the soil was contaminated so that the mixing ratio of the bran medium (wt% soil 2/bran medium 1) in which the cucumber seedling damping-off fungus (Pellicularia filamentosa) was cultured was 0.5:10, 2.5:10, and 5.0:10. Soil was prepared. Each CA formulation (900ppm,
CA:Cu compound=2:1) and CA alone (900 ppm) were poured. Also, for comparison,
An area was created in which distilled water was poured (untreated area).
After treatment with chemicals or distilled water, 50 pre-germinated cucumber seedlings (variety: Yotsuba) are transplanted in each area and cultivated in a greenhouse. After 10 days, the number of withered seedlings is counted and pest control is carried out according to the following formula. The value was calculated. Control value (%) = (1 - number of dead seedlings in treated area / number of dead seedlings in non-treated area)
×100 The results are shown in Figure 1. As is clear from these results, in the CA formulation treatment area, the mixing ratio of contaminated soil was
At a concentration as low as 0.5:10 (withering rate of 36% in untreated area, during moderate outbreak), a control value of 100% can be obtained, and 5.0:10.
Even at high concentrations (with a damping-off rate of 98% in the untreated area, during severe outbreaks), a high control value of almost 95% or more was obtained, and damping-off of cucumber seedlings was considerably suppressed. On the other hand, in the case of CA alone and Cu compound alone, the mixed ratio of contaminated soil is low concentration (0.5:10), i.e.
Even when the dieback rate is 36% in the untreated area, the percentage of dieback is 0% (CA) and 6% (CA +
Control value of Cu-4), with a mixing ratio of 1.0:10~
When the ratio is 5.0:10, that is, when the dieback rate in the untreated area is 54 to 98%, CA alone and Cu are used.
The compound alone showed a damping-off rate equal to or higher than that of the untreated plot, and no control effect was observed at all (control value 0%). This is done by comparing with the number of dead seedlings. In this case, the dieback rate of the untreated plot in the experiment is extremely important in determining the effectiveness. This is because, in general, the effect (control value) of a chemical is high when the dieback rate in the untreated area is low (when there are few occurrences), so it is difficult to judge whether the chemical can actually be used as an agricultural chemical or not, based on this result. This is because it cannot be used as a standard when making decisions about the country. Therefore, in order to judge the effectiveness of the drug, it is necessary to conduct the test under test conditions where the dieback rate is high in the untreated area (during heavy to severe outbreaks). By the way, from the above results, CA alone and Cu
When using the compound alone, the control value was only 0% and 6%, respectively, even during moderate outbreaks when the dieback rate in the untreated area was 36%. This low control effect during medium to small outbreaks means that CA and Cu compounds have no control effect on this disease when used alone. In this way, CA preparations contain their constituent CA
It was also found that Cu compounds have a remarkable control effect that was unexpected from the effect of Cu compounds alone. Next, in order to find out the optimal mixing ratio of CA and Cu compounds for controlling cucumber seedling damping-off, we varied the mixing ratio of both and examined their control effects. Test Example 2 The test method was as in Test Example 1, and soil contaminated with cucumber damping-off fungi was prepared (mixing ratio 2.5:10) (damping-off rate in untreated area: 68%: frequent occurrence). As in Test Example 1, CA and Cu compounds were mixed with 200 ml of contaminated soil in the proportions shown in Figure 2, diluted to the specified concentrations, and then mixed with the chemical solution and distilled water (100 ml).
ml) I poured it. The test results are shown in Figure 2. The dieback rate in the untreated area was 68%, which was tested under heavy to severe conditions.
While the concentration of CA is 100ppm, the concentration of Cu compound is
At 400 and 500 ppm, almost no damping off of seedlings was observed, and the occurrence of damping off disease was completely suppressed (control value 100%). CA/Cu compound
In areas with 1000ppm/300ppm, the control value is 90-100%
In the areas where CA/Cu compounds are 1000ppm/200ppm, the control value is 61 to 83%, and both areas are higher than the previous two.
(1000/400, 1000/500CA/Cu compounds). In addition, the concentration of Cu compounds
When the concentration of CA was set at 500 ppm and varied from 0 to 1000 ppm, the control effect decreased as the concentration of CA decreased. From the above results, the ratio of CA and Cu compounds, which are the constituent components, of CA preparations is 1000:400 (2.5:1) ~
It was found that the highest control effect was obtained when the ratio was 400:500 (4:5). The CA preparation has a remarkable control effect that is not expected from the control effect of single CA and Cu compounds;
And the ratio of CA and Cu compound is 2.5:1 to 4:5
It was found that the highest control effect was obtained within the range of . Test Example 3 The test method was conducted according to Test Example 2, and the test method was as follows: CA and Cu-
The ratio of 5 was 2:1, 1:1 and 1:2.
We prepared a CA formulation and investigated the optimal mixing ratio for controlling damping-off. The results are shown in Figure 3. As a result, CA/Cu−
When the ratio of 5 to 2:1, a high pesticidal effect was exhibited even though the amount of the drug was small. Therefore, we prepared a CA formulation with a CA/Cu-5 ratio of 2:1 and investigated the optimal concentration for controlling damping-off. Test Example 4 Contaminated soil was prepared according to Test Example 1 (mixing ratio
2.5:10). After injury, CA preparation prepared to a specified concentration,
Pour an aqueous solution of CA single agent and Cu-5 single agent,
Similar to Test Example 1, cucumber seedlings were transplanted and infected, and 10 days later, the number of infected seedlings was investigated to determine the control value. The test results are shown in Figure 4. The dieback rate in the untreated area was 66%, which was a test under conditions of high incidence. The CA formulation showed a control value of 81% even at 250 ppm, and thereafter the control value increased as the concentration increased, and at 500 ppm it suppressed the occurrence of damping off by 99% and at 1000 ppm it completely suppressed the occurrence of damping off (control value 100%). On the other hand, when CA and Cu-5, which make up the CA formulation, are used alone, the control value is at most 5.
It was only %. As is clear from the above results, the CA preparation exhibits a remarkable control effect that was not expected from the control effect of its constituent components CA and Cu-5 alone. Furthermore, the control effect of CA preparations was high in the range of 500 to 2000 ppm. Test Example 5 Pellularia blight disease fungus
Contaminated soil was prepared by mixing 10 times the amount of soil by weight with a wheat bran medium (wt% soil 2/bran medium 1) in which A. filamentosa was cultured. Pour 100 ml of a diluted solution of the test chemical into 250 ml of this contaminated soil, and add pre-germinated cucumber seedlings (variety: four-leaf) to each area.
Twenty-five plants were transplanted at a time, and 10 days later, the condition of the transplanted seedlings was measured for withering. The results are shown in Table 1. In addition, in the table of this specification, in the column for the degree of chemical damage, there is no chemical damage at all with "-", slight damage with "±", slight damage with "+", and considerable damage with "++". Things were written as "+++". The dieback rate in the untreated area was 75%, and the test was conducted under severe conditions. In this study, the Cu compound was
It showed some control effect even under severe conditions, but this was due to the high concentration. However, this caused chemical damage to cucumber seedlings. On the other hand, the CA preparation did not cause any phytotoxicity and completely suppressed the occurrence of damping-off.

【表】 試験例 6 土壌処理によるキユウリ疫病防除試験 あらかじめキユウリ疫病菌(Phytophthora
capsici)を培養したジヤガイモ寒天平板培地を
コルクボーラー(直径:5mm)で打ち抜いて接種
源とした。供試薬剤の所定濃度稀釈液200mlに、
キユウリ苗(品種:相模半白、本葉2葉)をポツ
トごと浸漬し、上記接種源3片をキユウリ苗の地
際部に接種した。接種10日後にキユウリ本葉の萎
凋状況を測定した。 発病程度は、次のように算出した。 0:萎凋なし 1:わずかに萎凋あり 2:1/3〜1/2の萎凋あり 3:1/2以上の萎凋あり 発病程度=1×n0+1×n1+2×n2+3×n3/3N ただし、N=n0+n1+n2+n3 n0:0の苗数 n1:1の苗数 n2:2の苗数 n3:3の苗数 この試験例では、接種菌量を3、5、7、10
個/本と変化させ、無処理区の発病程度を、それ
ぞれ18、33、62、88と変化させた。結果を第5図
に示す。CA製剤(CA/Cu化合物=1/2、
900ppm)では、無処理区の発病程度が88という
激発時においても94〜96%の防除価が得られた
が、無処理の発病程度が18という少発生時でも
CA単剤(900ppm)では、全く防除効果がなく、
Cu化合物単剤も少発時でも防除価は、最高でわ
ずか20%にすぎなかつた(第5図のe参照)。こ
の結果は、CAおよびCu化合物それぞれ単独で
は、本病に対する防除効果は有しないことを示し
ている。 試験例 7 この試験例では、接種菌量を3個/本とし、各
薬剤の濃度を変化させてその最適濃度を調べた。
結果を第6図に示す。無処理区の発病程度は28の
中発条件下であつた。CA製剤(CA/Cu−5=
1/2)は、250ppmで79%、500ppm以上では100%
の防除価を示すのに対し、CA及びCu−5単剤で
は0〜2000ppmの各濃度ともに全く効果がなくま
た、2000ppm以上では薬害が発生した。 試験例 8 試験例6と同様に試験を行つた。結果を第2表
に示す。
[Table] Test Example 6 Test for controlling Phytophthora Phytophthora Phytophthora Phytophthora Phytophthora Phytophthora Phytophthora
The inoculum was prepared by punching out a potato agar plate cultured with a cork borer (diameter: 5 mm). Add 200 ml of diluted solution of the test drug to the specified concentration.
A cucumber seedling (variety: Sagami Hanshiro, 2 true leaves) was soaked in a pot, and three pieces of the above-mentioned inoculum were inoculated at the ground level of the cucumber seedling. Ten days after inoculation, the wilting status of cucumber true leaves was measured. The degree of disease onset was calculated as follows. 0: No wilting 1: Slight wilting 2: 1/3 to 1/2 wilting 3: 1/2 or more wilting Disease severity = 1×n 0 +1×n 1 +2×n 2 +3×n 3 /3N However, N=n 0 +n 1 +n 2 +n 3 n 0 : Number of seedlings at 0 n 1 : Number of seedlings at 1 n 2 : Number of seedlings at 2 n 3 : Number of seedlings at 3 In this test example, the amount of inoculated bacteria is 3, 5, 7, 10
The degree of disease onset in the untreated plot was varied to 18, 33, 62, and 88, respectively. The results are shown in Figure 5. CA preparation (CA/Cu compound = 1/2,
900ppm), a control value of 94-96% was obtained even in severe outbreaks when the disease severity was 88 in the untreated area, but even in small outbreaks when the disease severity was 18 in the untreated area.
CA alone (900ppm) has no control effect at all,
Even in the case of a single Cu compound, the maximum control value was only 20% (see e in Figure 5). This result indicates that CA and Cu compounds alone do not have a controlling effect on this disease. Test Example 7 In this test example, the amount of inoculated bacteria was 3/bottle, and the concentration of each drug was varied to investigate its optimal concentration.
The results are shown in Figure 6. The degree of disease onset in the untreated plot was under 28 moderate onset conditions. CA preparation (CA/Cu-5=
1/2) is 79% at 250ppm and 100% at 500ppm or more
In contrast, CA and Cu-5 alone had no effect at all concentrations from 0 to 2000 ppm, and phytotoxicity occurred at concentrations above 2000 ppm. Test Example 8 A test was conducted in the same manner as Test Example 6. The results are shown in Table 2.

【表】【table】

【表】 接種菌量を3個/分として行つた。無処理区の
発病程度は12であつた。尚、本病においては、接
種菌量によつて無処理区の発病程度を制御するの
に困難があつた。 CA製剤処理区では、キユウリ疫病の防除効果
は高く、防除価は90〜100%であつた。一方、CA
単独区の発病程度は無処理区と同程度であり、防
除効果は認められなかつた。Cu化合物単独では、
最高で防除価は20%であり、若干の防除効果は認
められたが、キユウリ苗に薬害が発生し、実用は
困難と思われた。 試験例 9 土壌処理によるトマト青枯病防除試験 供試薬剤の所定濃度稀釈液200mlに、各区5本
ずつのトマト苗をポツトごと浸漬したのち、ブイ
ヨン培地にあらかじめ培養したトマト青枯病菌
(Pseudomonas solanacearum)の一定量を、ト
マト苗の地際部に流し込み、10日後にトマト本葉
の萎凋状況を測定した。 この試験例では、接種菌量を3、5、10、15
ml/ポツトと変化させ、無処理区の発病程度を
22、47、58、76と変化させた。結果を第7図に示
す。CA製剤(CA/Cu化合物=1/2、1200ppm)
では激発時(発病程度76)においても93〜99%の
防除価が得られたが、CA単剤(1500ppm)では
全く防除効果がなく、Cu化合物単剤では少発時
(発病程度22)においても防除価は最高でわずか
19%にすぎなかつた。この結果から、CAおよび
Cu化合物単独では本病に対する防除効果を有し
ないが、CA製剤では顕著な防除効果を示すこと
がわかる。 試験例 10 この試験例では、接種菌量を10ml/ポツトと
し、各薬剤の濃度を変化させてその最適濃度を調
べた。無処理区の発病程度は68(激発)であつた。
結果を第8図に示す。CA製剤(CA/Cu−5=
1/2)は、250ppmで56%、500ppmで90%、
1000ppm以上では100%の防除価を示すのに対し、
CA単剤では全く効果がなく、Cu−5単剤では
1000ppmにおいて5%の防除価を示すにすぎず、
また、2000ppm、以上では薬害が発生した。 試験例 11 試験例9と同様に試験を行つた。結果を第3表
に示す。
[Table] The inoculation amount was set at 3 bacteria/min. The degree of disease onset in the untreated plot was 12. It should be noted that with this disease, it was difficult to control the severity of the disease in untreated plots by adjusting the amount of inoculated bacteria. In the area treated with the CA formulation, the control effect on cucumber late blight was high, with a control value of 90-100%. On the other hand, CA
The degree of disease onset in the single plot was the same as that in the untreated plot, and no control effect was observed. Cu compound alone
The maximum control value was 20%, and a slight control effect was observed, but cucumber seedlings suffered chemical damage, making it difficult to put it into practical use. Test Example 9 Tomato bacterial wilt control test by soil treatment Five tomato seedlings in each pot were immersed in 200 ml of a diluted solution of a specified concentration of the test chemical, and then the tomato bacterial wilt fungus (Pseudomonas solanacearum, which had been cultured in advance in a bouillon medium) ) was poured into the ground of tomato seedlings, and the wilting status of tomato true leaves was measured 10 days later. In this test example, the inoculum amount was 3, 5, 10, 15.
ml/pot to determine the degree of disease onset in the untreated area.
It was changed to 22, 47, 58, and 76. The results are shown in FIG. CA formulation (CA/Cu compound = 1/2, 1200ppm)
A control value of 93 to 99% was obtained even during severe outbreaks (onset level: 76), but CA alone (1500 ppm) had no control effect at all, and Cu compound alone had no control effect during mild outbreaks (onset level: 22). The maximum control value is only a little.
It was only 19%. From this result, CA and
It can be seen that the Cu compound alone does not have a controlling effect on this disease, but the CA preparation shows a remarkable controlling effect. Test Example 10 In this test example, the amount of inoculated bacteria was 10 ml/pot, and the concentration of each drug was varied to investigate its optimal concentration. The degree of disease onset in the untreated plot was 68 (severe disease onset).
The results are shown in FIG. CA preparation (CA/Cu-5=
1/2) is 56% at 250ppm, 90% at 500ppm,
At 1000ppm or higher, it shows 100% control value, whereas
CA alone has no effect, and Cu-5 alone has no effect.
It only shows a control value of 5% at 1000ppm,
In addition, drug damage occurred at 2000 ppm or higher. Test Example 11 A test was conducted in the same manner as Test Example 9. The results are shown in Table 3.

【表】 試験例 12 ハクサイしり腐れ病菌(Pelliculara
filamentosa)を培養したフスマ培地(重量%土
2/フスマ培地1)と土との混合比が、0.5:10、
1.0:10、2.5:10、および5.0:10となるように汚
染土壌を調製した。この汚染土250mlに供試薬剤
の所定濃度稀釈液100mlを流し込み、これらにあ
らかじめ催芽したハクサイ苗を各区25本ずつ移植
した。移植2週間後にハクサイの地際部の腐敗状
況を測定した。 この試験例では、CA製剤、CAおよびCu化合
物の防除効果を比較するために、接種源として用
いる病原菌の量を変えて、少〜激発時の防除価を
求めた。 無処理区の腐敗率はそれぞれ28、51、77および
100%であつた。 腐敗率は次のように算出した。 0:腐敗なし 1:0〜10%腐敗 2:10〜60%腐敗 3:60〜100%腐敗 腐敗率=0×n0+1×n1+2×n2+3×n3/3N ただし、N=n0+n1+n2+n3 n0:0の苗数 n1:1の苗数 n2:2の苗数 n3:3の苗数 結果を第9図に示す。 CA製剤(CA/Cu化合物=1/2;900ppm)で
は激発時においても92〜97%の防除価が得られた
が、CA単剤(900ppm)では全く防除効果がな
く、Cu化合物単剤では少発時においても防除価
はわずか13%にすぎなかつた(第9図のc参照)。
すなわち、CAおよびCu化合物は実質的にハクサ
イしり腐病に対し防除効果を示さない。 試験例 13 この試験例では、接種菌量をフスマ培地/土=
2.5/10とし、各薬剤の濃度を変化させてその最
適濃度を調べた。無処理区の腐敗率は72%(激
発)であつた。結果を第10図に示す。CA製剤
(CA/Cu−5=1/2)は、250ppmで70%、
500ppmでは95%、1000ppm以上では100%の防除
価を示すのに対し、CA単剤およびCu−5単剤で
はほとんど効果がなく、また、Cu−5単剤
2000ppm以上では薬害が発生した。 試験例 14 試験例12と同様に試験を行つた。結果を第4表
に示す。
[Table] Test example 12 Chinese cabbage end rot fungus (Pelliculara
The mixing ratio of soil and bran medium (wt% soil 2/bran medium 1) in which the fertilized filamentosa) was cultured was 0.5:10,
Contaminated soil was prepared to have a ratio of 1.0:10, 2.5:10, and 5.0:10. 100 ml of a diluted solution of the test chemical at a predetermined concentration was poured into 250 ml of this contaminated soil, and 25 pre-germinated Chinese cabbage seedlings were transplanted into each area. Two weeks after transplantation, the state of rot in the underground part of the Chinese cabbage was measured. In this test example, in order to compare the control effects of CA preparations, CA and Cu compounds, the amount of pathogenic bacteria used as an inoculum was varied to determine the control value at low to severe outbreaks. The spoilage rates in the untreated area were 28, 51, 77 and
It was 100%. The corruption rate was calculated as follows. 0: No corruption 1: 0-10% corruption 2: 10-60% corruption 3: 60-100% corruption Corruption rate = 0 × n 0 + 1 × n 1 + 2 × n 2 + 3 × n 3 /3N However, N = n 0 + n 1 + n 2 + n 3 n 0 : Number of seedlings at 0 n 1 : Number of seedlings at 1 n 2 : Number of seedlings at 2 n 3 : Number of seedlings at 3 The results are shown in FIG. CA formulation (CA/Cu compound = 1/2; 900ppm) gave a control value of 92-97% even in severe outbreaks, but CA single agent (900ppm) had no control effect at all, and Cu compound alone had no control effect. Even when there were few outbreaks, the control value was only 13% (see c in Figure 9).
That is, CA and Cu compounds do not substantially show any control effect on Chinese cabbage rot. Test Example 13 In this test example, the amount of inoculum was calculated as bran medium/soil =
2.5/10, and the optimal concentration was investigated by varying the concentration of each drug. The decay rate in the untreated area was 72% (high incidence). The results are shown in FIG. CA formulation (CA/Cu-5=1/2) is 70% at 250ppm,
The control value is 95% at 500ppm and 100% at 1000ppm or more, whereas CA and Cu-5 alone have almost no effect, and Cu-5 alone has no effect.
At 2000ppm or higher, drug damage occurred. Test Example 14 The test was conducted in the same manner as Test Example 12. The results are shown in Table 4.

【表】 汚染土壌の混合比は1.0:10であり、無処理区
の腐敗率は66%(多発生)であつた。CA製剤は
多発生条件下においても顕著な防除効果を示した
(特にCA+Cu−4)。一方、CAおよびCu化合物
は単独では本病に対し防除効果を有さない。すな
わち防除価は10%以下であつた。 試験例 15 地上散布によるイネごま葉枯病防除試験 本葉3葉期の合成樹脂製ポツト植えイネ(品
種;十石)1ポツト10本、各区10ポツトに、供試
薬剤の所定濃度稀釈液を散布して屋外に1時間放
置し、ついでこれに、イネごま葉枯病菌の胞子懸
濁液を噴霧接種し、湿室(R.H.100%、25℃)内
に3日間保持したのち、その病斑数を測定した。 この試験例では、接種菌量を103、104、105
106、107個/mlと変化させた。無処理区の病班数
は、21、83、121、185、252個/葉であつた。結
果を第11図に示す。CA製剤(CA/Cu化合物
=1/2、1200ppm)では激発時(252個/葉)にお
いても90〜95%の防除価が得られたがCA単剤
(1200ppm)では少発時(21個/葉)でも最高で
27%であり、Cu化合物単剤では少発時において
も防除価は46%にすぎなかつた(第11図のa参
照)。 試験例 16 この試験例では、接種菌量を3×105個/mlと
し、CAとCu−5の混合比を1:1、2:1:
1:2と変え、かつ濃度を変化させて最適混合比
および最適濃度を調べた。無処理区の病班数は52
個/葉で中発生条件下での試験である。結果を第
12図に示す。CA/Cu−5比が1:1では
1200ppm、2:1および1:2では900ppm以上
で防除価は100%となつた。 試験例 17 この試験例では、接種胞子濃度を105個/mlと
し、各薬剤の濃度を変化させてCA製剤の最適濃
度を調べ、また、CAおよびCu−2の濃度を高く
すればその防除価が高くなるかどうかを調べた。
無処理区の病班数は118個/葉で多発条件下の試
験であつた。 結果を第13図に示す。CA製剤(CA/Cu化
合物=1/2)は、250ppmで61%、500ppmで97%、
1000ppm以上では100%の防除価を示すのに対し、
CA単剤では2000ppmにおいてもほとんど防除効
果を示さず、又、Cu−2単剤では2000ppmにお
いて14%の防除価を示すにすぎず、また、Cu−
2単剤3000ppmでは薬害が発生した。 すなわち、CAおよびCu−2の単独使用ではそ
の濃度を単に高くしても防除価は高くならず、逆
に散布薬量が多くなりすぎ、イネのダメージは増
加した。 試験例 18 試験例15と同様に試験を行つた。結果は第5表
に示す。
[Table] The mixing ratio of contaminated soil was 1.0:10, and the decay rate in the untreated area was 66% (high occurrence). CA preparations showed remarkable control effects even under high-infestation conditions (especially CA+Cu-4). On the other hand, CA and Cu compounds alone have no control effect against this disease. In other words, the control value was 10% or less. Test Example 15 Rice sesame leaf blight control test by ground spraying A diluted solution of the test chemical at a specified concentration was applied to 1 pot of 10 rice plants (cultivar: Jukoku) planted in synthetic resin pots at the 3rd true leaf stage and 10 pots in each area. Sprayed and left outdoors for 1 hour, then spray inoculated with a spore suspension of rice sesame leaf blight fungus, kept in a humid room (RH 100%, 25℃) for 3 days, and then counted the number of lesions. was measured. In this test example, the amounts of inoculated bacteria were 10 3 , 10 4 , 10 5 ,
The concentration was varied to 10 6 and 10 7 cells/ml. The number of diseased spots in the untreated plots was 21, 83, 121, 185, and 252 per leaf. The results are shown in FIG. The CA preparation (CA/Cu compound = 1/2, 1200ppm) gave a control value of 90-95% even in heavy outbreaks (252 pieces/leaf), but the CA preparation (1200ppm) had a control value of 90-95% even in the case of small outbreaks (21 pieces/leaf). / leaf) but the best
27%, and the control value of Cu compound alone was only 46% even in small outbreaks (see a in Figure 11). Test Example 16 In this test example, the amount of inoculated bacteria was 3 x 10 5 cells/ml, and the mixing ratio of CA and Cu-5 was 1:1, 2:1:
The optimum mixing ratio and optimum concentration were investigated by changing the ratio to 1:2 and changing the concentration. The number of disease groups in the untreated area is 52.
This is a test under medium developmental conditions with individual plants/leaves. The results are shown in FIG. When the CA/Cu-5 ratio is 1:1
At 1200ppm, 2:1 and 1:2, the control value was 100% at 900ppm or higher. Test Example 17 In this test example, the inoculated spore concentration was set at 10 5 spores/ml, and the optimal concentration of the CA preparation was investigated by changing the concentration of each drug. We investigated whether the price would increase.
The number of diseased spots in the untreated plot was 118 per leaf, indicating that the test was conducted under multiple disease conditions. The results are shown in FIG. CA preparation (CA/Cu compound = 1/2) was 61% at 250ppm, 97% at 500ppm,
At 1000ppm or higher, it shows 100% control value, whereas
CA alone shows almost no control effect even at 2000 ppm, and Cu-2 alone shows only 14% control value at 2000 ppm;
Drug damage occurred at 3000 ppm of 2 single agent. That is, when CA and Cu-2 were used alone, the control value did not increase even if the concentration was simply increased, but on the contrary, the amount of sprayed chemicals became too large and damage to rice increased. Test Example 18 A test was conducted in the same manner as Test Example 15. The results are shown in Table 5.

【表】 接種胞子濃度は3×102個/mlであり、無処理
区の病班数は43個/葉で、少発生条件下の試験で
ある。CA製剤の防除価は88〜100%であつた。一
方、CAおよびCu化合物単独では、防除価はそれ
ぞれ5%および5〜35%であり、少発生時におけ
る防除価がこのように低い場合、その薬剤は実際
に農薬として使用することはできない。また、
CAとCu化合物の相加(35%+5%)から予想さ
れる防除価は40%であり、CA製剤の防除価100%
に比べ著しく劣つている。このようにCA製剤は、
その構成成分であるCAおよびCu化合物単独の効
果から予想される防除効果をはるかに超える顕著
な防除効果を有することがわかつた。 試験例 19 地上散布によるイネいもち病防除試験 あらかじめ、直径6cmの合成樹脂製ポツト(1
ポツト10本、各区10ポツト)に植えて室温内で育
成した第4葉期のイネ(品種:十石)に、供試薬
剤の所定濃度稀釈液の1ポツト当たり40mlをスプ
レーガンで散布した。散布薬液が乾いたのち、別
にモミガラ培地(粉末酵素、エキス、可溶性デン
プン、シヨ糖、モミガラを含む)で培養したイネ
いもち病菌(Pyricularia oryzae)の胞子を水で
懸濁して、これを均一にイネに噴霧接種し温度27
℃、湿度95%以上の恒温恒湿槽中に保持した。接
種4日後にイネ1葉当たりの発病病班数を測定し
た。 この試験例では、接種胞子濃度を103、104
105、106、107個/mlと変化させた。無処理区の
病班数はそれぞれ3、7、38、72、88個/葉であ
つた。結果を第14図に示す。CA製剤(CA/
Cu化合物=1/2、900ppm)では激発時(88個/
葉)においても84%以上の防除価が得られたが、
CAの単剤(900ppm)では少発時(3個/葉)で
も最高で22%の防除価を示すにすぎず、Cu化合
物単剤では少発時においても防除価は最高で54%
にすぎなかつた。少発時における防除価が、この
ように低い場合、その薬剤を実際に農薬として使
用することはできない。又、CAとCu化合物の相
加(22%+54%)から予想される防除価は76%で
あり、CA製剤の防除価84%に比べて劣つている。
このように、CA製剤は、その構成成分である各
単剤のそれぞれの効果からは予想され得ない顕著
な防除効果を有することが分かつた。 試験例 20 この試験例では、接種胞子濃度を106個/mlと
し、各薬剤の濃度を変化させてその最適濃度を調
べた。無処理区の病班数は、68個/葉(多発生)
であつた。結果を第15図に示す。CA製剤
(CA/Cu−5=1/2)は、250ppmで80%、
500ppm以上では100%の防除価を示すのに対し、
CA単剤ではほとんど効果がなく、Cu−5単剤で
は2000ppmにおいて14%の防除価を示すにすぎ
ず、また、3000ppmでは薬害が発生した。 試験例 21 試験例19と同様に試験を行つた。結果を第6表
に示す。
[Table] The inoculated spore concentration was 3 x 102 /ml, and the number of diseased lesions in the untreated plot was 43/leaf, indicating that the test was conducted under low incidence conditions. The control value of the CA preparation was 88-100%. On the other hand, the control value of CA and Cu compounds alone is 5% and 5 to 35%, respectively, and if the control value at the time of small occurrence is this low, the drug cannot actually be used as a pesticide. Also,
The expected control value from the addition of CA and Cu compounds (35% + 5%) is 40%, and the control value of the CA formulation is 100%.
is significantly inferior to. In this way, CA formulations
It was found that it has a remarkable control effect that far exceeds the control effect expected from the effects of its constituent components, CA and Cu compounds alone. Test example 19 Rice blast control test by ground spraying In advance, synthetic resin pots (1
A spray gun was used to spray 40 ml of a diluted solution of the test chemical at a predetermined concentration onto fourth-leaf stage rice (variety: Jukoku) grown at room temperature (10 pots, 10 pots in each area) and grown at room temperature. After the sprayed chemical solution has dried, spores of the rice blast fungus (Pyricularia oryzae), which were separately cultured in a rice hull medium (containing powdered enzymes, extracts, soluble starch, sucrose, and rice hulls), are suspended in water and uniformly spread over rice. Inoculate by spraying at a temperature of 27
It was kept in a constant temperature and humidity chamber at a temperature of 95% or higher. Four days after inoculation, the number of diseased spots per rice leaf was measured. In this test example, the inoculated spore concentration was 10 3 , 10 4 ,
The concentration was changed to 10 5 , 10 6 , and 10 7 cells/ml. The number of diseased spots in the untreated plots was 3, 7, 38, 72, and 88 per leaf, respectively. The results are shown in FIG. CA preparation (CA/
Cu compound = 1/2, 900ppm), at the time of severe explosion (88 pieces/
A control value of more than 84% was also obtained for leaves), but
CA alone (900ppm) shows a maximum control value of only 22% even in small numbers (3 pieces/leaf), and Cu compound alone shows a maximum control value of 54% even in small numbers.
It was nothing more than a simple thing. If the control value during small outbreaks is so low, the drug cannot actually be used as an agricultural chemical. Furthermore, the control value expected from the addition of CA and Cu compounds (22% + 54%) is 76%, which is inferior to the control value of the CA preparation, which is 84%.
Thus, it was found that the CA preparation has a remarkable pesticidal effect that could not be expected from the individual effects of each of its constituent ingredients. Test Example 20 In this test example, the concentration of inoculated spores was set at 10 6 spores/ml, and the concentration of each drug was varied to investigate its optimal concentration. The number of diseased spots in the untreated plot was 68/leaf (high occurrence)
It was hot. The results are shown in FIG. CA formulation (CA/Cu-5=1/2) is 80% at 250ppm,
At 500ppm or higher, it shows 100% control value, whereas
CA alone had almost no effect, and Cu-5 alone showed a control value of only 14% at 2000 ppm, and chemical damage occurred at 3000 ppm. Test Example 21 A test was conducted in the same manner as Test Example 19. The results are shown in Table 6.

【表】【table】

【表】 接種胞子濃度は、5×103個/mlであり、無処
理区の病班数は4個/葉で少発生条件下の試験で
ある。CA製剤の防除価は80%以上、ほとんどが
90%〜100%であつた。一方、CAおよびCu化合
物単独では、それぞれ5%および45%であり、少
発生時における防除価がこのように低いと、その
薬剤は、実際に農薬として使用することができな
い。又、CAとCu化合物の相加(5%+45%)か
ら予想される防除価は、50%であり、CA製剤の
防除価80%〜100%に比べて著しく劣つている。
このようにCA製剤は、その構成成分であるCAお
よびCu化合物単独の効果からは予想され得ない
顕著な防除効果を有することが分かつた。 試験例 22 地上散布によるイネ紋枯病防除試験 あらかじめ、ポツトに植えて(1ポツト7本、
各区10ポツト)温室内で育成した第5葉期のイネ
(品種:十石)に、供試薬剤を常法に従つて散布
し、ついで2時間後に、イネ紋枯病菌
(Pellicularia sasakii)の菌叢(直径8mmに打ち
抜いたもの)をイネの新稍間にそう入して上記菌
を接種した。基葉部をビニールシートで覆い、温
室内に7日間保持したのち、各イネの病班長を測
定しその平均を求め、防除価を算出した。 菌の接種量によつて無処理区の各発病度を制御
するのが困難である。従つて菌の新−旧、病原性
の強弱等が種々のものを接種したり、あるいは、
湿度等を変化させて無処理区の発病度を変化させ
て、各薬剤の効果を比較した。なお、無処理区の
発病度を完全に制御することはできなかつた。 この試験例では、無処理区の病班長を3(少発
生)、7(中発生)、12(多発生)、18(激発)cm/茎
の条件下においておのおのの薬剤の効果を判定し
た。結果を第16図に示す。CA製剤(CA/Cu
化合物=1/2、1200ppm)では激発時においても
90〜98%の防除価が得られたがCA単剤
(1200ppm)では全く防除効果がなく、Cu化合物
単剤では少発時においても最高64%であつた。 試験例 23 この試験例では、無処理区の病班長は、12cm/
茎(多発生)であつた。各薬剤の濃度を変化させ
てその最適濃度を調べた。結果を第17図に示
す。CA製剤(CA/Cu−4=1/2)は、250ppm
で45%、500ppmで78%、1000ppm以上では、100
%の防除価を示すのに対し、CA単剤では最高で
も10%(1000ppm)であり、Cu−4単剤では、
2000ppmにおいても、22%の防除価を示すにすぎ
なかつた。また2000ppm以上では薬害が発生し
た。 試験例 24 試験例22と同様に試験を行つた。結果を第7表
に示す。 なお、無処理区の病班長は6cm/茎であり少〜
中発生であつた。
[Table] The inoculated spore concentration was 5 x 103 /ml, and the number of diseased lesions in the untreated plot was 4/leaf, indicating that the test was conducted under low incidence conditions. The control value of CA preparations is over 80%, and most
It was 90% to 100%. On the other hand, CA and Cu compounds alone have a control value of 5% and 45%, respectively, and when the control value is so low in small outbreaks, the drugs cannot actually be used as agricultural chemicals. Furthermore, the control value expected from the addition of CA and Cu compounds (5%+45%) is 50%, which is significantly inferior to the control value of CA preparations, which is 80% to 100%.
Thus, it was found that the CA preparation has a remarkable pesticidal effect that could not be expected from the effects of its constituent components, CA and Cu compounds alone. Test example 22 Rice sheath blight control test by ground spraying Rice was planted in pots in advance (7 plants per pot,
(10 pots in each area) The test chemicals were sprayed according to a conventional method on rice plants (cultivar: Jukoku) at the 5th leaf stage grown in a greenhouse, and then after 2 hours, the rice sheath blight fungus (Pellicularia sasakii) was infected. A bacterial flora (punched to a diameter of 8 mm) was placed between the new shoots of rice plants and inoculated with the above bacteria. After covering the basal leaf part with a vinyl sheet and keeping it in a greenhouse for 7 days, the diseased patch length of each rice plant was measured and the average was calculated to calculate the control value. It is difficult to control the severity of disease in untreated plots by adjusting the amount of inoculated bacteria. Therefore, it is necessary to inoculate bacteria with various types of new and old bacteria, pathogenic strength, etc., or
The effectiveness of each drug was compared by changing the humidity and other conditions to change the severity of disease in untreated plots. It should be noted that it was not possible to completely control the disease severity in the untreated plot. In this test example, the effectiveness of each drug was determined under conditions where the diseased patch length in the untreated area was 3 (slightly occurring), 7 (moderately occurring), 12 (multiplely occurring), and 18 (severely occurring) cm/stem. The results are shown in FIG. CA preparation (CA/Cu
Compound = 1/2, 1200ppm) even in severe cases
A control value of 90 to 98% was obtained, but CA alone (1200 ppm) had no control effect at all, and Cu compound alone had a maximum control effect of 64% even in small outbreaks. Test Example 23 In this test example, the unit length in the untreated area was 12cm/
It was a stem (multi-occurrence). The optimal concentration of each drug was investigated by varying the concentration. The results are shown in FIG. CA formulation (CA/Cu-4=1/2) is 250ppm
45% at 500ppm, 78% at 1000ppm or more, 100
% control value, whereas with CA single agent, the maximum is 10% (1000 ppm), and with Cu-4 alone,
Even at 2000 ppm, the control value was only 22%. In addition, drug damage occurred at concentrations above 2000 ppm. Test Example 24 The test was conducted in the same manner as Test Example 22. The results are shown in Table 7. In addition, the diseased patch length in the untreated area was 6 cm/stem, which was small.
The outbreak was moderate.

【表】 CA製剤の防除価は85〜100%であり一方CAお
よびCu化合物単独ではそれぞれ5%および25%
であつた。少〜中発生時における防除価がこのよ
うに低いと、その薬剤は実際には農薬として使用
できない。又CAとCu化合物の相加(5%+25
%)から予想される防除価は30%であり、CA製
剤と比べて著しく劣つている。このようにCA製
剤は、各単剤から予想され得ない顕著な防除効果
を有することが分つた。 試験例 25 地上散布によるミカン黒点病防除試験 温州ミカンの約3年生実生苗(6寸鉢に2〜4
本植)の新稍に、供試薬剤の所定濃度稀釈液を2
鉢当り40mlずつ均一に噴霧散布した。ついで、ミ
カン黒点病原菌培養液に殺菌水を加え、胞子濃度
が5×104、9×105、1×107および3×108/ml
となるように柄胞子懸濁液を調製し、これを上記
被験植物に噴霧して接種した。無処理区の病班数
はそれぞれ、122(少発)、858(中発)、1235(多
発)、1860(激発)個/葉であつた。これを接種箱
に入れたまま約2日間温室内に保持したのち、温
室に移し、接種約2〜3週間後の新稍の全葉につ
いて、病班数を調査した。結果を第18図に示
す。CA製剤(CA/Cu化合物=1/2、900ppm)
では激発時においても88〜99%の防除価が得られ
たが、CA単剤(900ppm)では少発時でも9%、
Cu化合物単剤では少発時においても防除価はわ
ずか39%にすぎなかつた。 このように、少発時において防除価が低いと、
実際上農薬としては利用できない。一方CA製剤
は、激発時においても88%と高い防除価を示して
おり、各単剤からは、全く予想し得ない顕著な防
除効果を有することが分る。 試験例 26 この試験例では、接種胞子濃度を7×107個/
mlとし、各薬剤の濃度を変化させてその最適濃度
を調べた。無処理区の病班数は1188個/葉で多発
条件下であつた。結果を第19図に示す。CA製
剤(CA/Cu−1=1/2)は、250ppmで22%、
500ppmで63%、1000ppm以上では100%の防除価
を示すのに対しCA単剤では2000ppmで9%、Cu
−1単剤では2000ppmで22%の防除価を示すにす
ぎなかつた。 試験例 27 試験例25と同様に試験を行つた。結果を第8表
に示す。
[Table] The control value of CA preparations is 85-100%, while that of CA and Cu compounds alone is 5% and 25%, respectively.
It was hot. If the control value at low to medium outbreaks is so low, the drug cannot actually be used as an agricultural chemical. Also, addition of CA and Cu compounds (5% + 25
%), the expected control value is 30%, which is significantly inferior to the CA preparation. Thus, it was found that the CA preparation had a remarkable control effect that could not be expected from each single agent. Test example 25 Orange black spot control test by ground spraying Approximately 3-year-old unshiu orange seedlings (2 to 4 seedlings per 6-inch pot)
A diluted solution of a specified concentration of the test drug was applied to the new growth of the main plant (main plant).
A uniform spray of 40 ml per pot was applied. Next, sterilized water was added to the tangerine blackspot pathogen culture solution, and the spore concentrations were 5 x 10 4 , 9 x 10 5 , 1 x 10 7 and 3 x 10 8 /ml.
A stalk spore suspension was prepared, and the above test plants were inoculated with this by spraying. The number of diseased spots in the untreated plots was 122 (few), 858 (medium), 1235 (frequent), and 1860 (severe) per leaf. The seedlings were kept in the greenhouse for about 2 days in the inoculation box, and then transferred to the greenhouse, and the number of diseased spots was investigated on all the new leaves about 2 to 3 weeks after the inoculation. The results are shown in FIG. CA formulation (CA/Cu compound = 1/2, 900ppm)
, a control value of 88-99% was obtained even in severe outbreaks, but with CA single agent (900ppm), even in small outbreaks, control value was 9%,
The control value of the Cu compound alone was only 39% even in small cases. In this way, if the control value is low when there are few outbreaks,
It cannot actually be used as a pesticide. On the other hand, the CA preparation showed a high control value of 88% even in severe outbreaks, indicating that each single agent has a remarkable control effect that could not be predicted at all. Test Example 26 In this test example, the inoculated spore concentration was set to 7×10 7 spores/
ml, and the optimal concentration was investigated by varying the concentration of each drug. The number of diseased spots in the untreated plot was 1188 per leaf, indicating a high incidence of disease. The results are shown in FIG. CA formulation (CA/Cu-1=1/2) is 22% at 250ppm,
Control value is 63% at 500ppm and 100% at 1000ppm or more, while CA alone shows 9% control at 2000ppm and Cu
-1 alone showed a control value of only 22% at 2000 ppm. Test Example 27 The test was conducted in the same manner as Test Example 25. The results are shown in Table 8.

【表】【table】

【表】 接種胞子濃度は4×105個/mlであり、無処理
区の病班数は638個で中〜多発条件下の試験であ
つた。CA製剤の防除価は80〜100%であり、CA
およびCu化合物単独では、それぞれ0%および
15〜25%と全く問題にならない。このようにCA
製剤は、CAおよびCu化合物単独の効果からは全
く予想できない顕著な防除効果を有することが分
つた。 試験例 28 地上散布による細菌病防除試験 直径6.5cmの穴あきコツプにクレハソイルを詰
め、これに芽出しをしたキユウリ種子を1個ずつ
播種し、約2週間空調温室内で栽培した。ついで
これに試供薬剤の所定濃度稀釈液をスプレーガン
で噴霧散布した。風乾後、PDA培地でしんとう
培養したキユウリ斑点細菌病菌を接種後、キユウ
リ苗を湿室(R.H.100%、25℃)にて生育させ、
3〜5日後に病班数を測定した。その菌量を調整
したのちスプレーガンで噴霧接種した。尚本病菌
はキユウリ葉の気孔から侵入し感染、発病にいた
るものであるから、薬剤の散布および菌の接種は
葉の裏側にほどこした。 この試験例では、接種菌濃度を1×106、2×
107、3×108、5×109個/mlと変化させ、無処
理区の発病程度を変化させることによつて供試薬
剤の効果を比較試験した。無処理区の病班数はそ
れぞれ21、58、103、242個/葉であつた。結果を
第20図に示す。CA製剤(CA/Cu化合物=1/
2、900ppm)では激発時(242個/葉)において
も84〜98の防除価が得られたが、CA単剤
(900ppm)では全く防除効果がなく、Cu化合物
単剤では少発時においても防除価は最高でもわず
か22%にすぎなかつた。 このように、少発時においても両単剤の防除価
は問題にならず、一方CA製剤は激発時において
も84%以上と高い防除価を示しており、各単剤か
ら全く予想し得ない防除効果を有することが分か
る。 試験例 29 この試験例では、接種菌濃度を3×106個/ml
とし、各薬剤の濃度を変化させてその最適濃度を
調べた。無処理区の病班数は37個/葉で少発生で
あつた。結果を第21図に示す。CA製剤(CA/
Cu−2=1/2)は、250ppmで83%、500ppm以上
では100%の防除価を示すのに対し、CA単剤では
2000ppmでも全く防除効果を示さず、Cu−2単
剤では2000ppmにおいて18%の防除価を示すにす
ぎず、また、Cu−2単剤3000ppmでは薬害が発
生した。すなわち、CAおよびCu−2単独使用で
は、その濃度を単に高くしても防除価は高くなら
ず、逆に薬量が多くなりすぎキユウリのダメージ
は増加した。 試験例 30 試験例28と同様に試験を行つた。結果を第9表
に示す。
[Table] The inoculated spore concentration was 4×10 5 cells/ml, and the number of diseased lesions in the untreated plot was 638, indicating that the test was conducted under medium to high incidence conditions. The control value of CA preparations is 80-100%, and CA
and Cu compound alone, 0% and
15-25% is not a problem at all. Like this CA
It was found that the formulation had a remarkable control effect that could not be expected from the effects of CA and Cu compounds alone. Test Example 28 Bacterial disease control test by ground spraying A hole pot with a diameter of 6.5 cm was filled with Kureha soil, and budded cucumber seeds were sown one by one in each pot and cultivated in an air-conditioned greenhouse for about two weeks. Then, a diluted solution of the sample drug at a predetermined concentration was sprayed onto the sample using a spray gun. After air-drying, the cucumber seedlings were grown in a humid room (RH 100%, 25°C) after being inoculated with cucumber spot bacterial pathogens that had been cultured on PDA medium.
The number of diseased lesions was measured 3 to 5 days later. After adjusting the amount of bacteria, the cells were inoculated by spraying with a spray gun. Since the fungus invades through the stomata of cucumber leaves, causing infection and disease, the chemical was sprayed and the fungus was inoculated on the underside of the leaves. In this test example, the inoculum concentration was 1×10 6 and 2×
The effects of the test drugs were compared and tested by changing the number of cells/ml to 10 7 , 3 x 10 8 , and 5 x 10 9 cells/ml, and varying the degree of disease onset in the untreated plot. The number of diseased spots in the untreated plots was 21, 58, 103, and 242 per leaf, respectively. The results are shown in Figure 20. CA preparation (CA/Cu compound = 1/
2, 900ppm), a control value of 84 to 98 was obtained even in heavy infestation (242 pieces/leaf), but CA alone (900ppm) had no control effect at all, and Cu compound alone had no control effect even in small infestation. The maximum control value was only 22%. In this way, the control value of both single agents is not a problem even during small outbreaks, while the CA preparation shows a high control value of 84% or more even during severe outbreaks, which is completely unpredictable from each single agent. It can be seen that it has a pest control effect. Test Example 29 In this test example, the inoculum concentration was 3 x 106 cells/ml.
The optimal concentration was investigated by varying the concentration of each drug. The number of diseased spots in the untreated plot was 37 per leaf, which was a small number. The results are shown in FIG. CA preparation (CA/
Cu-2=1/2) shows a control value of 83% at 250ppm and 100% at 500ppm or more, whereas CA alone shows a control value of 83% at 250ppm and 100% at 500ppm or more
Even at 2000 ppm, no control effect was shown, Cu-2 alone showed a control value of only 18% at 2000 ppm, and chemical damage occurred when Cu-2 alone was used at 3000 ppm. That is, when CA and Cu-2 were used alone, the control value did not increase even if the concentration was simply increased, and on the contrary, the amount of the agent was too high and the damage to cucumbers increased. Test Example 30 The test was conducted in the same manner as Test Example 28. The results are shown in Table 9.

【表】 接種胞子濃度は、4×106個/mlであり、無処
理区の病班数は41個/葉で少〜中発生条件下の試
験であつた。CA製剤の防除価は75〜100%であつ
た。一方、CAおよびCu化合物単剤の防除価は、
それぞれ、0%および20〜30%と全く問題になら
ず、CA製剤は各単剤の効果からは全く予想し得
ない顕著な防除効果を示すことが分かつた。 試験例 31 地上散布によるイネごま葉枯病に対する残効性
試験 試験例15において、供試薬剤の所定濃度稀釈液
を、病原菌を接種する11日前、9日前、7日前、
5日前、3日前、当日2時間前、及び病原菌を接
種した1日後、2日後にそれぞれイネ苗に、40ml
づつ散布した。以後試験例15の方法と同様にして
病班数を測定し、防除価を算出した。その結果を
第10表に示す。
[Table] The inoculated spore concentration was 4 x 106 /ml, and the number of diseased lesions in the untreated plot was 41/leaf, indicating that the test was conducted under low to medium incidence conditions. The control value of the CA preparation was 75-100%. On the other hand, the control value of single CA and Cu compounds is
At 0% and 20-30%, respectively, there was no problem at all, and it was found that the CA preparation exhibited a remarkable control effect that could not be predicted from the effect of each single agent. Test Example 31 Residual efficacy test against rice sesame leaf blight by ground spraying In Test Example 15, a diluted solution of the test chemical at a specified concentration was applied 11 days, 9 days before, and 7 days before inoculation of the pathogen.
40 ml to rice seedlings 5 days ago, 3 days ago, 2 hours before the day of the inoculation, and 1 day and 2 days after inoculating the pathogen.
It was sprayed one by one. Thereafter, the number of diseased plaques was measured in the same manner as in Test Example 15, and the control value was calculated. The results are shown in Table 10.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、キユウリ苗立枯れ病菌の菌量(フス
マ培地量)と各薬剤のキユウリ苗立枯れ病に対す
る防除価との関係、第2図は、本発明CA製剤中
のCAとCu化合物との混合比と、キユウリ苗立枯
れ病に対する防除価との関係、第3図は、各薬剤
の濃度及び混合比と、キユウリ苗立枯れ病に対す
る防除価との関係、第4図は、本発明CA製剤、
CA単剤、Cu化合物単剤の濃度変化と、キユウリ
苗立枯れ病に対する防除価との関係、第5図は、
キユウリ疫病菌の菌量(コルクボーラーでうち抜
いたデイスク量)との各薬剤のキユウリ疫病に対
する防除価との関係、第6図は、本発明CA製剤、
CA単剤、Cu化合物単剤の濃度変化と、キユウリ
疫病に対する防除価との関係、第7図は、トマト
青枯病菌の菌量(培養液量)と各薬剤のトマト青
枯病に対する防除価との関係、第8図は、本発明
CA製剤、CA単剤、Cu化合物単剤の濃度変化と
トマト青枯病に対する防除価との関係、第9図
は、ハクサイしり腐れ病菌の菌量(フスマ培地
量)との各薬剤のハクサイしり腐れ病に対する防
除価との関係、第10図は、本発明CA製剤、CA
単剤、Cu化合物単剤の濃度変化とハクサイしり
腐れ病に対する防除価との関係、第11図は、イ
ネごま葉枯れ病菌の接種液中の胞子濃度と各薬剤
のイネごま葉枯れ病に対する防除価との関係、第
12図は、本発明CA製剤中のCAとCu化合物の
混合比と、イネごま葉枯れ病に対する防除価との
関係、第13図は、本発明CA製剤、CA単剤、
Cu化合物単剤の濃度変化とイネごま葉枯れ病に
対する防除価との関係、第14図は、イネいもち
病菌の接種液中の胞子濃度と各薬剤のイネいもち
病に対する防除価との関係、第15図は、本発明
CA製剤、CA単剤、Cu化合物単剤の濃度変化と
イネいもち病に対する防除価との関係、第16図
は、イネ絞枯れ病の発病度と各薬剤のイネ紋枯病
に対する防除価との関係、第17図は、本発明
CA製剤、CA単剤、Cu化合物単剤の濃度変化と
イネ紋枯病に対する防除価との関係、第18図
は、ミカン黒点病菌の接種液中の胞子濃度と各薬
剤のミカン黒点病に対する防除価との関係、第1
9図は、本発明CA製剤、CA単剤、Cu化合物単
剤の濃度変化とミカン黒点病に対する防除価との
関係、第20図は、キユウリ斑点性細菌病防除試
験における接種菌濃度と防除価との関係、第21
図は、キユウリ斑点性細菌病防除試験における各
薬剤濃度と防除価との関係をそれぞれ示すグラフ
である。
Figure 1 shows the relationship between the amount of bacteria causing damping-off of cucumber seedlings (amount of bran medium) and the control value of each drug against damping-off of cucumber seedlings, and Figure 2 shows the relationship between CA and Cu compounds in the CA preparation of the present invention. Fig. 3 shows the relationship between the mixing ratio of each chemical and the control value against cucumber seedling damping-off, and Fig. 4 shows the relationship between the concentration and mixing ratio of each chemical and the controlling value against cucumber seedling damping-off. CA formulation,
Figure 5 shows the relationship between the concentration changes of CA single agent and Cu compound single agent and the control value against cucumber seedling damping-off disease.
Figure 6 shows the relationship between the amount of Phytophthora blight (the amount of disks removed with a cork borer) and the control value of each drug against Phytophthora blight.
Figure 7 shows the relationship between the concentration changes of single CA agents and single Cu compounds and the control value against Phytophthora blight. The relationship between the present invention and FIG.
The relationship between the concentration changes of CA preparations, CA single agent, and Cu compound single agent and the control value against tomato bacterial wilt, Figure 9 shows the relationship between the amount of Chinese cabbage rot disease bacteria (the amount of bran medium) and the Chinese cabbage rot of each agent. Figure 10 shows the relationship between the control value against rot diseases and the CA formulation of the present invention, CA
Figure 11 shows the relationship between the concentration change of a single agent and a single Cu compound and the control value against Chinese cabbage blight. Figure 12 shows the relationship between the mixing ratio of CA and Cu compounds in the CA formulation of the present invention and the control value against rice sesame leaf blight, and Figure 13 shows the relationship between the CA formulation of the present invention and the CA single agent. ,
Figure 14 shows the relationship between the concentration change of a single Cu compound and the control value against rice blast blight. Figure 15 shows the present invention
Figure 16 shows the relationship between the concentration changes of CA preparations, CA single agents, and Cu compound single agents and the control value against rice blast. Relationship, Figure 17 shows the present invention
Figure 18 shows the relationship between the concentration changes of CA preparations, CA single agents, and Cu compound single agents and the control value against rice sheath blight. Relationship with value, 1st
Figure 9 shows the relationship between the concentration changes of the CA preparation of the present invention, CA single agent, and Cu compound single agent and the control value against citrus black spot, and Figure 20 shows the relationship between the inoculum concentration and the control value in the cucumber spot bacterial disease control test. Relationship with, No. 21
The figure is a graph showing the relationship between the concentration of each drug and the control value in the cucumber spot bacterial disease control test.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化第二銅、塩基性塩化銅、塩基性炭酸
銅、塩基性硫酸銅及び8−オキシキノリン銅から
なる群から選ばれる1種の化合物と、クエン酸と
を有効成分として含有することを特徴とする農園
芸用殺菌剤組成物。
1 Containing one type of compound selected from the group consisting of cupric hydroxide, basic copper chloride, basic copper carbonate, basic copper sulfate, and 8-oxyquinoline copper, and citric acid as active ingredients. A fungicide composition for agricultural and horticultural use.
JP56211926A 1981-12-28 1981-12-28 Agricultural and horticultural fungicide composition Granted JPS57131708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211926A JPS57131708A (en) 1981-12-28 1981-12-28 Agricultural and horticultural fungicide composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211926A JPS57131708A (en) 1981-12-28 1981-12-28 Agricultural and horticultural fungicide composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53100504A Division JPS5822084B2 (en) 1978-08-18 1978-08-18 Fungicide composition for agriculture and horticulture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59076336A Division JPS59231006A (en) 1984-04-16 1984-04-16 Agricultural and horticultural fungicide composition

Publications (2)

Publication Number Publication Date
JPS57131708A JPS57131708A (en) 1982-08-14
JPS6317803B2 true JPS6317803B2 (en) 1988-04-15

Family

ID=16613955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211926A Granted JPS57131708A (en) 1981-12-28 1981-12-28 Agricultural and horticultural fungicide composition

Country Status (1)

Country Link
JP (1) JPS57131708A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708176B1 (en) * 1993-06-30 1997-12-12 Lacaussade Andre New processes and selective phyto-sanitary products for the preventive treatment of construction wood and soil remediation before or after construction.
NZ295084A (en) * 1994-10-27 1999-10-28 Stoller Ets Inhibiting growth of disease organisms on or in plants by applying urea and a divalent cation (ca, cu , mg) to form a urea chelate
US20140356461A1 (en) * 2011-12-28 2014-12-04 Ube Material Industries, Ltd. Plant disease controlling agent and method for controlling plant diseases using same
JP5956238B2 (en) * 2012-04-27 2016-07-27 クミアイ化学工業株式会社 Agricultural and horticultural hydrating fungicide and plant disease control method
JP5956239B2 (en) * 2012-04-27 2016-07-27 クミアイ化学工業株式会社 Agricultural and horticultural hydrating fungicide and plant disease control method

Also Published As

Publication number Publication date
JPS57131708A (en) 1982-08-14

Similar Documents

Publication Publication Date Title
EP1592301B1 (en) Crop protecting and improving lignosulfonate compositions
KR20030069803A (en) Methods and compositions for controlling plant pathogen
US3376126A (en) Method for regulating plant growth
EP3258782A1 (en) Aqueous compositions for controlling pests or regulating plant growth, said compositions comprising thymol or carvacrol, a surfactant, and a solvent
JPS5822084B2 (en) Fungicide composition for agriculture and horticulture
CN110583716A (en) Pesticide composition containing brassinolide compound, chitosan and oligosaccharins and application thereof
CN114223665B (en) Use of bactericidal composition for preventing and controlling plant pathogenic fungi
JPS6317803B2 (en)
RU2294101C2 (en) Composition and methods of controlling phytopathogenic fungi ising this composition
JPS6328404B2 (en)
CN107318865A (en) The composition pesticide of captan and furametpyr compounding
US4066760A (en) Agricultural and horticultural fungicidal compositions
JPH0613442B2 (en) Agro-horticultural fungicide composition
JPS5852965B2 (en) Sterilizing composition for agriculture and horticulture
JPS61100504A (en) Agent for increasing yield
JPS5823609A (en) Agricultural and horticultural germicidal composition
JP2877155B2 (en) Agricultural and horticultural fungicides
WO1999063827A1 (en) Agricultural/horticultural bacterial disease injury-controlling agents
JPH05194129A (en) Bactericidal agent for agriculturaland gardening purposes
JPH04128204A (en) Agricultural and horticultural germicide
CN112056316A (en) Bactericidal composition
CN115644183A (en) Weeding and insecticidal composition containing metamifop and monosultap
CN112244034A (en) Bactericidal composition
FI102449B (en) Procedure for the control of microorganisms on plants
JPH0249708A (en) Agricultural and horticultural fungicide composition