JPS63177574A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPS63177574A
JPS63177574A JP62009248A JP924887A JPS63177574A JP S63177574 A JPS63177574 A JP S63177574A JP 62009248 A JP62009248 A JP 62009248A JP 924887 A JP924887 A JP 924887A JP S63177574 A JPS63177574 A JP S63177574A
Authority
JP
Japan
Prior art keywords
main
oxide film
electrode
main surface
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62009248A
Other languages
Japanese (ja)
Inventor
Yasukazu Seki
康和 関
Noritada Sato
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62009248A priority Critical patent/JPS63177574A/en
Publication of JPS63177574A publication Critical patent/JPS63177574A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To reduce a reverse leakage current by a method wherein a main electrode is formed on an oxide film formed on one of the main surfaces of a single-crystal silicon substrate and a rear electrode is formed on a main surface which is opposite to the main surface on which the main electrode is formed to constitute a MIS structure. CONSTITUTION:A main electrode 3 is formed on one of the main surfaces of a single- crystal silicon substrate 1 with an oxide film 6 between and a rear electrode 4 is formed on a main surface which is opposite to the main surface on which the main electrode is formed to constitute a MIS structure. When a positive voltage is applied to the metal side, the band is bent in accordance with the magnitude of the applied voltage. An actual leakage current is created when electrons and/or positive holes which exist above the conducting band EC and below the valence band EV respectively are transmitted into the metal side through the oxide film. However, as the energy barrier of the oxide film which is provided between the main surface of the single crystal silicon substrate 1 and the main electrode is extremely high, compared with the barrier of a P-N junction, electrons and positive holes can hardly transmitted. Therefore. almost no leakage current exists except a tunnel current and a displacement current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体内に形成された空乏層中へ入射する放射
線によって生ずるキャリアを利用した半導体放射線検出
素子に関するO 〔従来の技術〕 上記半導体放射線検出素子に関して単結晶シリコン基板
の少なくとも一主面に高比抵抗の非晶質シリコン層を介
して電極を形成したものを本発明者らは特開昭59−2
27168号公報により開示している。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a semiconductor radiation detection element that utilizes carriers generated by radiation incident on a depletion layer formed in a semiconductor. The present inventors have developed a detection element in which an electrode is formed on at least one main surface of a single crystal silicon substrate via an amorphous silicon layer with high resistivity, as described in Japanese Patent Laid-Open No. 59-2.
It is disclosed in Japanese Patent No. 27168.

この半導体放射線検出素子の構造を第6図の断面図に示
す0第6図において、この素子は単結晶シリコン基板1
の一主面に、水素を添加しドーパントを含まない高比抵
抗非晶質シリコン層2を成長させ、その上に主電極3と
基板1のもう一方の主面に裏面電極4を設けてあシ、基
板1と主電極3との間に高比抵抗の非晶質シリコン層2
を介在させるととくよ)主電極3と裏面電極4の間に逆
バイアス電圧を印加して、基板1と非晶質シリコン層2
のヘテ四接合部に大きなエネルギー障壁を形成させ、点
線で示した空乏層5を拡げ、この空乏層5の中に入射し
てくる放射線と基板1の結晶格子との相互作用による電
子正孔対を捕獲し放射線を検出するものである0 〔発明が解決しようとする問題点〕 ところで第6図に示すようま非晶質シリコンと単結晶シ
リコンとのへテロ接合型またはPN接合型などの半導体
放射線検出素子における最大の問照点は逆漏れ電流であ
る。接合型のダイオード構造では、接合部の形成の仕方
によっては結晶欠陥の少ない良質な接合部が得られず逆
漏れ電流が大きくなシノイズも増すようになる。逆漏れ
電流が大きくなると素子に接続する負荷での電圧降下も
大きくなシ、空乏層を十分に拡げることができず、放射
線検出の感度の低下を招く。また空乏層の拡がシが小さ
いと静電容量が増加して回路上からもノイズが増す〇 本発明は上述の点に鑑みてなされたものであシ、その目
的は従来とは異なる構造をもつ逆漏れ電流の小さい半導
体放射線検出素子を提供することにある。
The structure of this semiconductor radiation detection element is shown in the cross-sectional view of FIG.
A high resistivity amorphous silicon layer 2 doped with hydrogen and containing no dopants is grown on one main surface, and a main electrode 3 and a back electrode 4 are provided on the other main surface of the substrate 1. A high resistivity amorphous silicon layer 2 between the substrate 1 and the main electrode 3
By applying a reverse bias voltage between the main electrode 3 and the back electrode 4, the substrate 1 and the amorphous silicon layer 2 are
A large energy barrier is formed at the heterojunction of the substrate 1 to expand the depletion layer 5 shown by the dotted line, and electron-hole pairs are created by the interaction between the radiation entering the depletion layer 5 and the crystal lattice of the substrate 1. [Problem to be solved by the invention] By the way, as shown in Fig. 6, a semiconductor such as a heterojunction type or PN junction type of amorphous silicon and single crystal silicon The most important point of inquiry in radiation detection elements is reverse leakage current. In a junction diode structure, depending on how the junction is formed, a high-quality junction with few crystal defects may not be obtained, resulting in increased reverse leakage current and noise. When the reverse leakage current increases, the voltage drop across the load connected to the element also increases, and the depletion layer cannot be sufficiently expanded, resulting in a decrease in radiation detection sensitivity. Furthermore, if the expansion of the depletion layer is small, the capacitance increases and the noise from the circuit increases.The present invention was made in view of the above points, and its purpose is to create a structure different from the conventional one. An object of the present invention is to provide a semiconductor radiation detection element having a small reverse leakage current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体放射検出素子は第1図にその構造を断面
図で示したように、単結晶シリコン基板1のいずれか一
方の主面に形成した酸化膜6上に主電極3を設け、基板
1の主電極3とは反対側の主面に裏面電極4を形成しM
IS構造としたものである。
As shown in FIG. 1 in cross-sectional view, the semiconductor radiation detection element of the present invention has a main electrode 3 on an oxide film 6 formed on one of the main surfaces of a single-crystal silicon substrate 1. A back electrode 4 is formed on the main surface opposite to the main electrode 3 of M
It has an IS structure.

〔作 用〕[For production]

本発明の半導体放射線素子は基板1と主電極3の間に介
在している酸化膜6のエネルギー障壁が極めて高いので
トンネル電流や変位電流のほかにはほとんど逆漏れ電流
は流れず、放射線の入射によって発生するキャリアの蓄
積に対してはとれらを除くために交流電圧を印加して逆
方向電圧が印加される空乏層形成時のみ同期するシグナ
ルを引き出すようKする。
In the semiconductor radiation device of the present invention, since the energy barrier of the oxide film 6 interposed between the substrate 1 and the main electrode 3 is extremely high, almost no reverse leakage current flows other than the tunnel current and displacement current, and the incident radiation In order to eliminate the accumulation of carriers caused by the above, an alternating current voltage is applied to extract a synchronized signal only when a reverse voltage is applied to form a depletion layer.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明の半導体放射線検出素子の構造断面図で
あシ、第6図と共通部分を同一符号で示しである◎第1
図において本発明の素子は単結晶シリコン基板1の一主
面に酸化膜6が介在するようにして主電極3を設け、基
板1の主電極3とは反対側の面に裏面電極4を形成した
MIS構造をもっておシ、例えば基板IK比抵抗10 
kQanのP型単結晶シリコンを用い、酸化膜6は10
00〜2000A0の熱酸化膜1両電極3,4は金属ア
ルミニウムからなる。また裏面電極4と単結晶シリ;ン
基板1との間にオーミンクな接触を形成するため、高濃
度不純物層7を介在させるのもよい◇そして主電極3に
正の電圧を印加し、裏面電極4に負の電圧を印加するこ
とによシ印加電圧に応じて空乏層5を形成することがで
きる。
Fig. 1 is a cross-sectional view of the structure of the semiconductor radiation detection element of the present invention, and parts common to Fig. 6 are indicated by the same symbols.
In the figure, in the device of the present invention, a main electrode 3 is provided on one main surface of a single crystal silicon substrate 1 with an oxide film 6 interposed therebetween, and a back electrode 4 is formed on the surface of the substrate 1 opposite to the main electrode 3. For example, if you have a MIS structure with a substrate IK resistivity of 10
P-type single crystal silicon of kQan is used, and the oxide film 6 has a thickness of 10
00-2000A0 Thermal oxide film 1 Both electrodes 3 and 4 are made of metal aluminum. In addition, in order to form an ohmink contact between the back electrode 4 and the single crystal silicon substrate 1, it is good to interpose a high concentration impurity layer 7◇Then, a positive voltage is applied to the main electrode 3, and the back electrode By applying a negative voltage to 4, a depletion layer 5 can be formed depending on the applied voltage.

第2図に本発明の素子のエネルギーバンド構造を示した
。第2図に見られるように、金属側に正の電圧を印加す
ると、この印加電圧の大きさに依存してバンドは曲げら
れる0実際の漏れ電流はP形半導体の伝導帯Ecの上と
価電子帯gvの下にそれぞれ存在す電子と正孔のいずれ
かが酸化膜を介して金属側に通過したときに生ずる。し
かし第2図 。
FIG. 2 shows the energy band structure of the device of the present invention. As seen in Figure 2, when a positive voltage is applied to the metal side, the band bends depending on the magnitude of the applied voltage.The actual leakage current is above the conduction band Ec of the P-type semiconductor. This occurs when either electrons or holes, which exist below the electron band gv, pass through the oxide film to the metal side. However, Fig. 2.

のように仲介する酸化膜のエネルギー障壁が極めて高い
ので、PN接合による障壁に比べると電子および正孔は
ほとんど通過することができない。したがってトンネル
電流や変位電流のほかにはほとんど漏れ電流は流れない
Since the energy barrier of the intervening oxide film is extremely high, compared to the barrier caused by the PN junction, electrons and holes can hardly pass through. Therefore, other than tunnel current and displacement current, almost no leakage current flows.

また、印加電圧の低いうちは徐々に空乏層が拡が9はじ
めるがある程度印加電圧が大きくなると、強い電圧にひ
かれて電子が酸化膜直下に引き寄せられ反転層が生じ空
乏層が縮小し、空乏層に入射した放射線との相互作用に
よって発生したキャリアも蓄積されてしまう。とのため
チャージアップ現象を生じゃすくなシ、蓄積されたキャ
リアを開放してしまわなければならない。
In addition, when the applied voltage is low, the depletion layer gradually begins to expand9, but when the applied voltage increases to a certain extent, electrons are drawn directly under the oxide film due to the strong voltage, forming an inversion layer, and the depletion layer shrinks. Carriers generated by interaction with the radiation incident on the surface also accumulate. Therefore, in order to avoid the charge-up phenomenon, the accumulated carrier must be released.

そこで例えば第3図■に示す波形の交流パルス電圧を印
加すれば+側電圧のときにのみ空乏層が形成され一側の
ときすなわち逆方向電圧では空乏層が形成されずキャリ
アは開放される。このように交流電圧を印加することに
よ)周期的な逆方向電圧によって蓄積された電子をと勺
除く必要がある。したがって空乏層の形成時のみ放射線
検出のシグナルを引き出すように第3図■のような信号
をこれに同期させればよい。
For example, if an AC pulse voltage having the waveform shown in FIG. 3 is applied, a depletion layer is formed only when the voltage is on the positive side, and when the voltage is on the one side, that is, in the reverse direction, no depletion layer is formed and carriers are released. By applying an alternating current voltage in this way, it is necessary to remove the accumulated electrons due to the periodic reverse voltage. Therefore, it is only necessary to synchronize a signal as shown in FIG. 3 (2) so that the radiation detection signal is extracted only when the depletion layer is formed.

第4図は本発明の半導体放射線検出素子を用いて構成し
た検出回路の要部を示したものである。
FIG. 4 shows the main parts of a detection circuit constructed using the semiconductor radiation detection element of the present invention.

第4図の交流電源8は第3図■に相当する波形のパルス
電圧を検出素子9に印加し、波形選択回路10は第3図
■に相当し、素子の空乏層形成時のみこれと同期させる
信号発生装置であシ、放射線を検出するシグナルはプリ
アンプ11.メインアンプ12によって増幅され電子−
正孔対がカウントされる。
The AC power source 8 in FIG. 4 applies a pulse voltage with a waveform corresponding to the waveform shown in FIG. The signal for detecting radiation is generated by a preamplifier 11. The main amplifier 12 amplifies the electronic
Hole pairs are counted.

第5図は本発明の素子に241Amを用いた放射線スペ
クトル線図を従来のPN接合型検出素子との比較で表わ
したものである◇第5図中実線曲線イが本発明1口が従
来素子の場合であシ、第5図から本発明の素子の方が2
41Amのエネルギーを表わす59、5 eVのピーク
2点が明瞭に表われていることがわかる。
Fig. 5 shows a radiation spectrum diagram using 241Am as the element of the present invention in comparison with a conventional PN junction type detection element. In the case of
It can be seen that two peaks at 59.5 eV representing the energy of 41 Am are clearly visible.

〔発明の効果〕〔Effect of the invention〕

従来の半導体放射線検出素子の最大の問題であった逆漏
れ電流に対して、本発明では基板と主電極との間に酸化
膜を介在させたMIS構造としたために、酸化膜の高い
エネルギー障壁のためにほとんど逆漏れ電流が流れず、
印加電圧によるキャリアの蓄積に対しては交流電圧を印
加して空乏層形成時のみ放射線のシグナルをと)出すよ
うにして検出感度をあげ、ノイズの増加を抑え、低エネ
ルギーの放射線も十分に検出することができたものであ
る。
To address reverse leakage current, which was the biggest problem with conventional semiconductor radiation detection elements, the present invention employs an MIS structure in which an oxide film is interposed between the substrate and the main electrode. Therefore, almost no reverse leakage current flows,
To deal with the accumulation of carriers due to applied voltage, an AC voltage is applied to emit a radiation signal only when a depletion layer is formed, increasing detection sensitivity, suppressing noise increase, and sufficiently detecting low-energy radiation. It was possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体放射線検出素子の要部構成断面
図、第2図は本発明素子のエネルギーバンド構造図、第
3図は本発明素子に印加する交流電圧波形および放射線
シグナルをと)だすための同期パルス信号波形図、第4
図は本発明の素子を用いた放射線検出回路図、第5図は
本発明の素子によシ得られる放射線スペクトル線図、第
6図は従来素子の要部構成断面図である。 1・・・・・・単結晶シリコン基板、2・・・・・・非
晶質シリコン層、3・−・・・・主電極、4・・・・・
・裏面電極、5・・・・・・空乏層、6・・・・・・酸
化膜、7・・・・・・高濃度不純物層。 8・・・・・・交流電源、9・−・・・・検出素子、1
0・・・・・・波形選択回路、11・・・・・・プリア
ンプ、12・・・・−・メインアンプ。 第1区 第3図 第4図 チャ、!7一ンレ
Fig. 1 is a cross-sectional view of the main parts of the semiconductor radiation detection device of the present invention, Fig. 2 is an energy band structure diagram of the device of the present invention, and Fig. 3 shows the AC voltage waveform and radiation signal applied to the device of the present invention. Synchronous pulse signal waveform diagram for output, 4th
5 is a radiation detection circuit diagram using the device of the present invention, FIG. 5 is a radiation spectrum diagram obtained by the device of the present invention, and FIG. 6 is a sectional view of the main part of the conventional device. 1... Single crystal silicon substrate, 2... Amorphous silicon layer, 3... Main electrode, 4...
- Back electrode, 5... depletion layer, 6... oxide film, 7... high concentration impurity layer. 8...AC power supply, 9...detection element, 1
0... Waveform selection circuit, 11... Preamplifier, 12... Main amplifier. District 1, Figure 3, Figure 4 Cha! 71 inre

Claims (1)

【特許請求の範囲】 1)一導電形の単結晶半導体基板の一主面に酸化膜を介
して設けた主電極と前記基板の前記主電極とは反対の面
に設けた裏面電極とを備えたことを特徴とする半導体放
射線検出素子。 2)特許請求の範囲第1項記載の検出素子において、裏
面電極との接触面に一導電形半導体の高濃度不純物層を
有する基板を用いることを特徴とする半導体放射線検出
素子。
[Claims] 1) A main electrode provided on one main surface of a single crystal semiconductor substrate of one conductivity type via an oxide film, and a back electrode provided on a surface of the substrate opposite to the main electrode. A semiconductor radiation detection element characterized by: 2) A semiconductor radiation detection element according to claim 1, characterized in that a substrate having a high concentration impurity layer of one conductivity type semiconductor is used on the contact surface with the back electrode.
JP62009248A 1987-01-19 1987-01-19 Semiconductor radiation detector Pending JPS63177574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62009248A JPS63177574A (en) 1987-01-19 1987-01-19 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009248A JPS63177574A (en) 1987-01-19 1987-01-19 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPS63177574A true JPS63177574A (en) 1988-07-21

Family

ID=11715105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009248A Pending JPS63177574A (en) 1987-01-19 1987-01-19 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPS63177574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503481A (en) * 2009-08-31 2013-01-31 ゼネラル・エレクトリック・カンパニイ Radiation detector with semiconductor crystal and method for manufacturing the detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503481A (en) * 2009-08-31 2013-01-31 ゼネラル・エレクトリック・カンパニイ Radiation detector with semiconductor crystal and method for manufacturing the detector

Similar Documents

Publication Publication Date Title
Liao et al. Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond
Liang et al. Electrical properties of Si/Si interfaces by using surface-activated bonding
Alberi et al. Material quality requirements for efficient epitaxial film silicon solar cells
US11119228B2 (en) Radiation detector and radiation detection device using the same
DE2160033A1 (en) Radiation-sensitive semiconductor device
JPS63177574A (en) Semiconductor radiation detector
JPS59500539A (en) photodetector
US4524374A (en) Device for detecting infrared rays
JPH02111080A (en) Amorphous thin-film solar cell
US3466448A (en) Double injection photodetector having n+-p-p+
CN111668327B (en) Capacitive photoelectric detector
JP2505284B2 (en) Semiconductor position detector
JP3295725B2 (en) Photoelectric conversion element
JP3036258B2 (en) Semiconductor radiation detector
JPS63314422A (en) Infrared sensor
JPH06283750A (en) Junction type semiconductor element
Song et al. Application of poly-Si/SiOx passivating contact in x-ray silicon pixel detector
JPH05226686A (en) Photodetector
JPS61268072A (en) Thin-film photoelectric conversion element
Fernandes et al. Photocurrent multiplication in ITO/SiOx/Si optical sensors
JPH0529647A (en) Photodetector
JPS62293681A (en) Semiconductor radiation detecting element
JPS62272573A (en) Photoconductive thin film element
JPH08242014A (en) Semiconductor radiation detecting element
JPS6242467A (en) Photoelectric conversion element