JPS63177494A - Multiple-wavelength light source - Google Patents

Multiple-wavelength light source

Info

Publication number
JPS63177494A
JPS63177494A JP861887A JP861887A JPS63177494A JP S63177494 A JPS63177494 A JP S63177494A JP 861887 A JP861887 A JP 861887A JP 861887 A JP861887 A JP 861887A JP S63177494 A JPS63177494 A JP S63177494A
Authority
JP
Japan
Prior art keywords
diffraction grating
laser
lasers
substrate
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP861887A
Other languages
Japanese (ja)
Inventor
Noriaki Tsukada
塚田 紀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP861887A priority Critical patent/JPS63177494A/en
Publication of JPS63177494A publication Critical patent/JPS63177494A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a multiple-wavelength light source which can take out more than one laser beams from an identical region of a substrate by a simple structure and with good directivity by a method wherein the following are formed: more than one laser arranged on an identical substrate in different directions: a diffraction grating body formed in the identical region of the substrate by mutually piling up diffraction gratings corresponding to the lasers. CONSTITUTION:The following are formed: more than one distributed Bragg reflection laser A, B or distributed feedback laser, which is arranged on an identical substrate 1 in different directions; a diffraction grating body 3 which is formed in the identical region of said substrate 1 by mutually piling up diffraction gratings corresponding to said lasers A, B. For example, a beam of light radiated at a multiple-quantum-well layer 6 by injection of an electric current is multiple-reflected at a cleavage plane and at a diffraction grating, and is radiated as a laser beam from the cleavage plane and the diffraction grating. In order to take out one part of the laser beam from the diffraction grating in the vertical direction, the cycle of the diffraction grating is made identical to the wavelength of the laser. That is to say, the laser beam is fed back by a secondary diffraction effect, and, at the same time, one part of the laser beam is taken out by a primary diffraction effect in the vertical direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は複数のレーザ光を同一領域から基板面に垂直
方向に取り出すことのできる波長多重光源に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a wavelength multiplexed light source that can extract a plurality of laser beams from the same area in a direction perpendicular to a substrate surface.

〔従来の技術〕[Conventional technology]

第4図は例えばIEEEジャーナル オプ クオンタム
 エレクトロニクス、QE−13巻、 220頁(19
77年)  (I E E E  Journal o
f QuantumElectronics vol、
QE−13,p、220(1977))に記載された従
来の波長多重光源を示す構成図であり、図において11
は基板、128〜12fは6個の分布帰還型(D F 
B ; Distributed Feedback)
レーザ、13は光導波路である。
Figure 4 shows, for example, IEEE Journal Op Quantum Electronics, Volume QE-13, Page 220 (19
1977) (I E E E Journal o
f Quantum Electronics vol.
QE-13, p, 220 (1977)) is a configuration diagram showing a conventional wavelength multiplexed light source;
is the substrate, and 128 to 12f are six distributed feedback type (D F
B; Distributed Feedback)
The laser 13 is an optical waveguide.

DFBレーザ12a〜12fは回折格子のピソチを9人
ずつ変えることにより、発振波長が20人ずつ変わるよ
うに設計されている。各レーザ光は導波路13の中を伝
搬し、出力端に集められて・1本のファイバーに結合さ
れる。
The DFB lasers 12a to 12f are designed so that the oscillation wavelength is changed by 20 by changing the pisochi of the diffraction grating by 9. Each laser beam propagates through the waveguide 13 and is collected at the output end and coupled into a single fiber.

[発明が解決しようとする問題点〕 従来の多波長半導体レーザは以上のように構成されてい
るので、複数のレーザ光を1本の光導波路に導くために
複雑な導波路の形成を必要とするなどの問題点があった
[Problems to be solved by the invention] Since the conventional multi-wavelength semiconductor laser is configured as described above, it is not necessary to form a complicated waveguide in order to guide multiple laser beams into one optical waveguide. There were problems such as.

この発明は上記のような問題点を解消するためになされ
たもので、簡単な構成で複数のレーザビームを基板の同
一領域から指向性良く取り出すことのできる波長多重光
源を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a wavelength multiplexed light source that can extract multiple laser beams with good directionality from the same area of a substrate with a simple configuration. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る波長多重光源は同一基板上に異なる方向
に配置された複数個の分布ブラッグ反射型(D B R
; Distributed Bragg refle
ction)レーザあるいはD F B (Distr
ibuted feedback)レーザと、上記基板
上の同一領域に上記複数のレーザに対応した回折格子を
相互に重畳して形成してなる回折格子体とを備えたもの
である。
The wavelength multiplexed light source according to the present invention includes a plurality of distributed Bragg reflection type (DBR) arranged on the same substrate in different directions.
; Distributed Bragg Refle
ction) laser or D F B (Distr
ibbuted feedback) laser, and a diffraction grating body formed by mutually overlapping diffraction gratings corresponding to the plurality of lasers in the same area on the substrate.

〔作用〕[Effect]

この発明における波長多重光源は同一基板上に異なる方
向に配置された複数個のD B R(Distribu
ted Bragg reflection) レーザ
あるいはDFB(Distributed feedb
ack) レーザと、上記基板上の同一領域に上記複数
のレーザに対応した回折格子を相互に重畳して形成して
なる回折格子体とを備え、上記複数のレーザがそれぞれ
対応する上記回折格子の2次の回折により、活性領域で
発生したレーザ光の一部をフィードバックされ、同時に
、−次の回折によりレーザ光の一部を基板に垂直方向に
出射する構成としたから、簡単な構成で複数のレーザ光
を波長多重して指向性よく出射できる。
The wavelength multiplexed light source in this invention includes a plurality of DBRs (Distribution Light Sources) arranged in different directions on the same substrate.
ted Bragg reflection) laser or DFB (Distributed feedb)
ack) A laser, and a diffraction grating body formed by superimposing diffraction gratings corresponding to the plurality of lasers on the same area on the substrate, wherein each of the diffraction gratings corresponds to each of the plurality of lasers. A part of the laser light generated in the active region is fed back through second-order diffraction, and at the same time, a part of the laser light is emitted perpendicularly to the substrate through second-order diffraction. Laser light can be wavelength-multiplexed and emitted with good directionality.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例による波長多重光源を示す図であ
り、図において1は基板、A、 Bはそれぞれ発振波長
の異なるDBRレーザであり、2a、2bはDBRレー
ザの電流注入部、3はDBRレーザA、Bの回折格子を
相互に重畳して形成した回折格子体である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a wavelength multiplexed light source according to an embodiment of the present invention. In the figure, 1 is a substrate, A and B are DBR lasers with different oscillation wavelengths, 2a and 2b are current injection parts of the DBR laser, and 3 is a diffraction grating body formed by overlapping the diffraction gratings of DBR lasers A and B with each other.

第2図はDBRレーザA、Bの構造の一例を示す図であ
り、図において、4はGaAs基板、5aは下側クラッ
ド層、6は多重量子井戸(GaAs/AIGaAs)J
i、5bは上側クラッド層、7はキャップ層、3は上側
クラッド層5b上に形成された回折格子、8は下側電極
、2は上側電極である。
FIG. 2 is a diagram showing an example of the structure of DBR lasers A and B. In the figure, 4 is a GaAs substrate, 5a is a lower cladding layer, and 6 is a multiple quantum well (GaAs/AIGaAs) J
i and 5b are upper cladding layers, 7 is a cap layer, 3 is a diffraction grating formed on the upper cladding layer 5b, 8 is a lower electrode, and 2 is an upper electrode.

第2図のDBRレーザは片側を襞間し、この面を一方の
反射鏡として使用し、もう一方は回折格子3による反射
を用いている。
The DBR laser shown in FIG. 2 has a fold on one side, and uses this surface as a reflecting mirror on one side, and uses reflection by a diffraction grating 3 on the other side.

次に動作について説明する。電流注入により多重量子井
戸層6で発生した光は襞間面と回折格子で多重反射しレ
ーザ光として襞間面と回折格子から出ていく。ここで回
折格子からレーザ光の一部を基板に垂直方向に取り出す
ためには回折格子の周期をレーザ波長と同一にする必要
がある。すなわち2次の回折効果によりレーザ光のフィ
ードバックが起こるとともに、1次の回折効果によりレ
ーザ光の一部が基板に垂直方向に取り出せることが本発
明が利用する基本的効果である。
Next, the operation will be explained. Light generated in the multi-quantum well layer 6 by current injection undergoes multiple reflections on the inter-fold surfaces and the diffraction grating, and exits from the inter-fold surfaces and the diffraction grating as laser light. Here, in order to extract part of the laser beam from the diffraction grating in a direction perpendicular to the substrate, it is necessary to make the period of the diffraction grating the same as the laser wavelength. That is, the basic effect utilized by the present invention is that feedback of the laser beam occurs due to the second-order diffraction effect, and a part of the laser beam can be taken out in a direction perpendicular to the substrate due to the first-order diffraction effect.

第1図に示す様に、2つのDBRレーザA、 Bがそれ
ぞれ2次の回折格子のピッチ、八1.Δ3をもつ場合を
考える。このときレーザAはλヶ=η。it AAなる
波長でレーザ発振し、レーザBはλ、−ηaffAlで
発振する。ここでηoftは導波路の有効屈折率である
。図に示す様にレーザA。
As shown in FIG. 1, two DBR lasers A and B each have a second-order diffraction grating pitch, 81. Consider the case with Δ3. At this time, laser A is λ = η. The laser oscillates at a wavelength of it AA, and the laser B oscillates at λ, -ηaffAl. Here ηoft is the effective refractive index of the waveguide. Laser A as shown in the figure.

Bのそれぞれに対応する回折格子は同一領域に相互に重
畳され回折格子体3を形成しているので波長λ4.λ、
の2つのレーザビームがこの領域で結合され基板に垂直
方向に取り出せる。゛なお、上記実施例では2個のレー
ザからの光を基板に垂直方向に取り出すことを考えたが
、さらに多数のレーザ光も同様に取り出すことが可能で
ある。
Since the diffraction gratings corresponding to each of wavelengths λ4, . λ,
The two laser beams are combined in this region and can be taken out in a direction perpendicular to the substrate. Note that in the above embodiment, it was considered that light from two lasers is extracted in a direction perpendicular to the substrate, but it is also possible to extract a larger number of laser beams in the same way.

また第3図はD F B (Distributed 
Feedback)レーザ2個C,Dを直角方向に回折
格子を一部重ね合わせる様に集積化したものを示す図で
あり、図において2c’、2d’はそれぞれDFBレー
ザCとDの電流注入用の上部電極である。両DFBの回
折格子が重なり合う領域の上部電極は取り除かれ回折格
子体3が形成されており、ここから基板に垂直方向に2
つのDFBレーザの出力光を取り出すことができる。こ
の場合も前述の実施例同様に3個以上のDFBレーザの
集積化が可能である。
Also, Figure 3 shows D F B (Distributed
(Feedback) This is a diagram showing two lasers C and D integrated in such a way that their diffraction gratings are partially overlapped in the perpendicular direction. In the figure, 2c' and 2d' are for current injection of DFB lasers C and D, respectively. This is the upper electrode. The upper electrode in the area where the diffraction gratings of both DFBs overlap is removed to form a diffraction grating body 3, from which two
The output light of two DFB lasers can be extracted. In this case as well, three or more DFB lasers can be integrated as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、同一基板上に異なる
方向に配置された複数個のD B R(Distrib
uted Bragg reflection)  レ
ーザあるいはDFB (Distributed fe
edback) レーザと、上記基板上の同一領域に上
記複数のレーザに対応した回折格子を相互に重畳して形
成してなる回折格子体とを備え、上記複数のレーザの各
々に対応する回折格子をレーザ光の反射鏡として用いる
と同時に、レーザ光を外部に取り出すカップラーとして
も利用するように構成したから、レーザ光の取り出す領
域が大きく従って出射ビームの拡がりが小さい指向性の
良いビームが得られるうえ、複数のレーザビームを容易
に結合して外部に取り出せる効果がある。
As described above, according to the present invention, a plurality of DBRs (Distributes) arranged in different directions on the same substrate
Bragg reflection) laser or DFB (Distributed fe
edback) A laser, and a diffraction grating body formed by superimposing diffraction gratings corresponding to the plurality of lasers on the same area on the substrate, and a diffraction grating corresponding to each of the plurality of lasers. Because it is configured to be used as a reflector for laser light and at the same time as a coupler for extracting laser light to the outside, the area from which the laser light is extracted is large, and the emitted beam has a small spread and a beam with good directivity can be obtained. This has the effect of allowing multiple laser beams to be easily combined and extracted to the outside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による波長多重光源を示す
構成図、第2図はその断面構造を示す図、1は基板、A
、BはDBRレーザ、2a、2bはDBRレーザA、 
Bの電流注入部、C,DはDFBレーザ、2c”、2d
′はDFBレーザC2Dの上部電極、3は回折格子体。
FIG. 1 is a configuration diagram showing a wavelength multiplexed light source according to an embodiment of the present invention, FIG. 2 is a diagram showing its cross-sectional structure, 1 is a substrate, A
, B is a DBR laser, 2a and 2b are DBR lasers A,
B is the current injection part, C and D are DFB lasers, 2c", 2d
' is the upper electrode of the DFB laser C2D, and 3 is the diffraction grating.

Claims (4)

【特許請求の範囲】[Claims] (1)同一基板上に異なる方向に配置された複数個の分
布ブラッグ反射型レーザあるいは分布帰還型レーザと、 上記基板上の同一領域に上記複数のレーザに対応した回
折格子を相互に重畳して形成してなる回折格子体とを備
えたことを特徴とする波長多重光源。
(1) Multiple distributed Bragg reflection lasers or distributed feedback lasers arranged in different directions on the same substrate, and diffraction gratings corresponding to the plurality of lasers superimposed on the same area on the substrate. A wavelength multiplexed light source characterized by comprising a diffraction grating formed by forming a diffraction grating.
(2)上記各回折格子は2次回折効果により、上記複数
のレーザからの光のフィードバックを行うことを特徴と
する特許請求の範囲第1項記載の波長多重光源。
(2) The wavelength multiplexed light source according to claim 1, wherein each of the diffraction gratings feeds back light from the plurality of lasers by a second-order diffraction effect.
(3)上記回折格子体は各回折格子の1次回折効果によ
り上記各レーザからのレーザ光を上記基板面に垂直に出
射することにより波長多重光を出射することを特徴とす
る特許請求の範囲第1項または第2項記載の波長多重光
源。
(3) The above-mentioned diffraction grating body emits wavelength-multiplexed light by emitting the laser beams from the respective lasers perpendicularly to the substrate surface due to the first-order diffraction effect of each diffraction grating. The wavelength multiplexed light source according to item 1 or 2.
(4)2本の上記レーザが同一基板上に垂直に十字形に
配置形成され該2本のレーザの交点に上記回折格子体を
備えたことを特徴とする特許請求の範囲第1項ないし第
3項のいずれかに記載の波長多重光源。
(4) The above-mentioned two lasers are arranged vertically in a cross shape on the same substrate, and the above-mentioned diffraction grating body is provided at the intersection of the two lasers. The wavelength multiplexed light source according to any one of Item 3.
JP861887A 1987-01-17 1987-01-17 Multiple-wavelength light source Pending JPS63177494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP861887A JPS63177494A (en) 1987-01-17 1987-01-17 Multiple-wavelength light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP861887A JPS63177494A (en) 1987-01-17 1987-01-17 Multiple-wavelength light source

Publications (1)

Publication Number Publication Date
JPS63177494A true JPS63177494A (en) 1988-07-21

Family

ID=11697937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP861887A Pending JPS63177494A (en) 1987-01-17 1987-01-17 Multiple-wavelength light source

Country Status (1)

Country Link
JP (1) JPS63177494A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964334A (en) * 1995-08-28 1997-03-07 Toshiba Corp Integrated element of light emitting element and external modulator
US6185240B1 (en) 1998-01-30 2001-02-06 Motorola, Inc. Semiconductor laser having electro-static discharge protection
WO2003067724A1 (en) * 2002-02-08 2003-08-14 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and its manufacturing method
JP2009206256A (en) * 2008-02-27 2009-09-10 Denso Corp Semiconductor laser device
US8369372B1 (en) 2011-07-29 2013-02-05 Mitsubishi Electric Corporation Laser device
WO2022040468A1 (en) * 2020-08-20 2022-02-24 Apple Inc. Integrated edge-generated vertical emission laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964334A (en) * 1995-08-28 1997-03-07 Toshiba Corp Integrated element of light emitting element and external modulator
US6185240B1 (en) 1998-01-30 2001-02-06 Motorola, Inc. Semiconductor laser having electro-static discharge protection
WO2003067724A1 (en) * 2002-02-08 2003-08-14 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and its manufacturing method
US7009216B2 (en) 2002-02-08 2006-03-07 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device and method of fabricating the same
JP2009206256A (en) * 2008-02-27 2009-09-10 Denso Corp Semiconductor laser device
US8369372B1 (en) 2011-07-29 2013-02-05 Mitsubishi Electric Corporation Laser device
WO2022040468A1 (en) * 2020-08-20 2022-02-24 Apple Inc. Integrated edge-generated vertical emission laser

Similar Documents

Publication Publication Date Title
US6775427B2 (en) Laterally coupled wave guides
US6760359B2 (en) Grating-outcoupled surface-emitting lasers with flared gain regions
US7450624B2 (en) Grating—outcoupled surface-emitting lasers
US9995876B2 (en) Configurable compact photonic platforms
JPH0738205A (en) Surface-light emitting laser diode array, driving method thereof, photodetector, photodetector array, space light connecting system and multiple-wavelength optical communication system
JPH11513534A (en) Optical resonance structure
US10063028B2 (en) High SMSR unidirectional etched lasers and low back-reflection photonic device
US7113526B2 (en) Multi-wavelength grating-outcoupled surface emitting laser system
CA2473396C (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
JPS63177494A (en) Multiple-wavelength light source
US6647048B2 (en) Grating-outcoupled surface-emitting lasers using quantum wells with thickness and composition variation
US9373936B1 (en) Resonant active grating mirror for surface emitting lasers
US6636547B2 (en) Multiple grating-outcoupled surface-emitting lasers
JPS63150981A (en) Semiconductor laser
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
US10209445B2 (en) Method of fabricating a compact photonics platform
JPS63147388A (en) Semiconductor laser
JPH0722216B2 (en) Semiconductor laser
JPS61231791A (en) Semiconductor light emitting element
JPH10209554A (en) Surface emission type semiconductor laser
JPH0730192A (en) Semiconductor laser
JPH07263797A (en) Semiconductor laser device
Bengtsson et al. Diffractive solutions in integrated optics?
JPH04373193A (en) Integrated light emitting device
JPH0621580A (en) Integrated optical semiconductor device