JPS63177047A - Apparatus for analyzing depth direction - Google Patents

Apparatus for analyzing depth direction

Info

Publication number
JPS63177047A
JPS63177047A JP813687A JP813687A JPS63177047A JP S63177047 A JPS63177047 A JP S63177047A JP 813687 A JP813687 A JP 813687A JP 813687 A JP813687 A JP 813687A JP S63177047 A JPS63177047 A JP S63177047A
Authority
JP
Japan
Prior art keywords
specimen
rays
incident
critical angle
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP813687A
Other languages
Japanese (ja)
Inventor
Yasubumi Kameshima
亀島 泰文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP813687A priority Critical patent/JPS63177047A/en
Publication of JPS63177047A publication Critical patent/JPS63177047A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an analytical apparatus having a good quantifying property, high sensitivity and the high resolving power in a depth direction, by a method wherein the beam emitted from a synchrotron is allowed to be incident on a specimen to be measured at a critical angle or less and the intensity of generated characteristic X-rays is recorded while ion etching is performed. CONSTITUTION:The exciting X-rays 2 emitted from a synchrotron radiation beam source 1 are converted to a diameter of several hundred mum by a slit 3 to irradiate a specimen 4 to be measured at a critical angle or less. When the specimen 4 is composed of glass, the critical angle is about 0.15 deg.. The beam after total reflection from the specimen 4 is absorbed by a proper absorber 5. The characteristic X-rays 6 generated from the specimen 4 are introduced into a semiconductor detector 8 in such a state that a shutter 7 is opened. The value counted by the detector 8 is recorded on a recorder 10 through a signal processing system 9 along with the incident X-ray quantity measured by the absorber 5 of incident X-ray quantity. Further, an ion etching gun 11 has a structure so as to obliquely irradiate the specimen 4 and the vicinity of an incident X-ray irradiation part is scanned by an electric field plate 12 so that the X-rays can irradiate an etching surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体エピタキシセル層などの評価に用いる
高分解能深さ方向分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a high-resolution depth direction analysis device used for evaluating semiconductor epitaxy cell layers and the like.

[従来の技術とその問題点1 固体の分析においてはバルク分析、即ち平均的な組成、
不純物量の正確な定量もさることながら、その深さ方向
および面内分布の測定が強く望まれている。例えば電子
デバイス工業においては基板上への多層膜の形成あるい
は新規物質の超薄膜など、対象となる材料は多く、その
深さ方向の界面での不純物の偏析、測定膜組成の精度の
よい定量などの要求がある。
[Conventional technology and its problems 1 In the analysis of solids, bulk analysis, that is, average composition,
In addition to accurately quantifying the amount of impurities, there is a strong desire to measure their depth and in-plane distribution. For example, in the electronic device industry, there are many materials to be targeted, such as the formation of multilayer films on substrates or ultra-thin films of new substances, segregation of impurities at interfaces in the depth direction, and accurate quantification of measured film composition. There is a demand for

従来の深さ方向物理分析装置にはいくつか知られている
。第一は二次イオン質量分析計(Sl)Is)で高感度
であることから広く用いられているが、定量性に欠ける
ことが欠点である。第二はイオンスパッタリングを利用
したオージェ電子(AES)あるいは光電子分光(ES
CA)である。この方法も広く使われているが感度が不
十分であることが欠点である。伯にラザフォード後方散
乱(RBS)も使われているが深さ方向分解能の悪いこ
とが欠点である。
Several conventional depth direction physical analysis devices are known. The first type is a secondary ion mass spectrometer (Sl), which is widely used due to its high sensitivity, but has the disadvantage of lacking quantitative performance. The second is Auger electron spectroscopy (AES) or photoelectron spectroscopy (ES) using ion sputtering.
CA). Although this method is also widely used, it suffers from insufficient sensitivity. Rutherford backscatter (RBS) is also used, but its drawback is poor depth resolution.

本発明は上記したような従来の問題点を解決するために
なされたもので、定量性がよく、高感度であり、かつ深
さ方向分解能の高い深さ方向分析装置を提供することを
目的とする。
The present invention was made in order to solve the above-mentioned conventional problems, and its purpose is to provide a depth direction analysis device with good quantitative performance, high sensitivity, and high depth direction resolution. do.

[問題点を解決するための手段] 本発明は励起光源としてシンクロトロンtl 射光を用
い、被測定試料に対する入射角を全反射が生する臨界角
以下とし、イオンエツチング銃でなめらかに切削しつつ
発生する特性X線強度を記録することを特徴とする深さ
方向分析装置である。
[Means for Solving the Problems] The present invention uses synchrotron TL radiation as an excitation light source, sets the angle of incidence on the sample to be measured to be less than the critical angle at which total internal reflection occurs, and generates light while cutting smoothly with an ion etching gun. This is a depth direction analysis device characterized by recording the characteristic X-ray intensity.

本発明による深さ方向分析装置は1)光源にシンクロト
ロン敢射(SR)を利用した螢光XI!装置であること
、2)光源、材料、検知器の配置において、入側光が全
反射モードであること、および3)試料をイオンエツチ
ングしながら螢光X線を観測することを特徴とする。
The depth direction analysis device according to the present invention includes: 1) Fluorescence XI that uses synchrotron radiation (SR) as a light source! 2) In terms of the arrangement of the light source, materials, and detector, the incident light is in total reflection mode, and 3) Fluorescent X-rays are observed while ion etching the sample.

本発明の光源として利用されるシンクロトロンi射(S
R)光とは光とほぼ同じ速度で走る高エネルギー電子が
磁場で軌道を曲げられた時に発する光であり、1)赤外
線からX線におよぶ連続スペクトル光源であること、2
)極めて強い光源であり、X線領域で従来のX線管の約
103倍に至る強度を有すること、さらに3)特有の偏
光特性をもち、光源、試料、検知器の配置により散乱光
の偏光特性を制御できること等の特徴を有する。従って
SRを螢光X線(XRF)の光源として用いれば螢光X
線特有の定量性の良さを確保しつつ分析感度を向上さぜ
ることができる。本発明では螢光X線特有の入射X線の
侵入深さが大ぎいことを全反射モードを導入することに
より解決し、深さ方向分解能を高めたものである。ここ
で全反射モードとはX線領域で空気の屈折率が1より大
であることから、試料に入射する角度が試料の屈折率に
よって決まる臨界角以下である場合殆んどの成分が試料
内に侵入することもなく全反射される現象を言う。入射
角が臨界角近傍で試料侵入深さは試料の屈折率によるが
数人とすることができる。このことを前述したSt?励
起とあわせて利用すれば深さ方向分解能を高く、分析感
度を向上させかつ定量性の良い分析方法を確立できる。
Synchrotron radiation (S) used as a light source in the present invention
R) Light is the light emitted when high-energy electrons traveling at almost the same speed as light have their orbits bent by a magnetic field; 1) It is a continuous spectrum light source ranging from infrared to X-rays; 2)
) It is an extremely strong light source, with an intensity approximately 103 times that of a conventional It has characteristics such as being able to control its characteristics. Therefore, if SR is used as a light source for fluorescent X-rays (XRF), fluorescent X-rays
Analytical sensitivity can be improved while ensuring good quantitative properties specific to the line. In the present invention, the problem of the large penetration depth of incident X-rays peculiar to fluorescent X-rays is solved by introducing a total internal reflection mode, and the resolution in the depth direction is improved. Here, total internal reflection mode means that the refractive index of air is greater than 1 in the X-ray region, so if the angle of incidence on the sample is less than the critical angle determined by the refractive index of the sample, most of the components will be absorbed into the sample. This refers to the phenomenon of total reflection without any penetration. When the angle of incidence is near the critical angle, the depth of sample penetration depends on the refractive index of the sample, but can be several times. St., who mentioned this earlier? When used in conjunction with excitation, it is possible to establish an analytical method with high depth resolution, improved analytical sensitivity, and good quantitative performance.

測定深さを変化させるには通常のイオンエツチングを用
いる。エツチング表面の平坦性が重要でありイオン源ガ
スを酸素とし、加速電圧、電流密度を最適値とすること
が望ましい。
Ordinary ion etching is used to change the measurement depth. The flatness of the etched surface is important, and it is desirable to use oxygen as the ion source gas and to optimize the accelerating voltage and current density.

[実施例] 次に本発明を図面に基づいて説明する。[Example] Next, the present invention will be explained based on the drawings.

第1図は本発明の一実施例を模式的に示す構成図である
。シンクロトロン放射光源1から発射された励起X線2
はスリット3で数百μmの径に絞られた後、試料4に臨
界角θC以下で照射される。
FIG. 1 is a block diagram schematically showing an embodiment of the present invention. Excited X-rays 2 emitted from synchrotron radiation light source 1
is narrowed down to a diameter of several hundred μm by the slit 3, and then irradiated onto the sample 4 at a critical angle θC or less.

試料がガラスの場合はθc−0,15°である。試料4
を全反射したあとのビームは適当なアブソーバ5に吸収
される。
When the sample is glass, θc-0.15°. Sample 4
The beam after being totally reflected is absorbed by a suitable absorber 5.

一方試料4から発生した特性X線6はシャッター7がお
いている状態で半導体検知器8へ導入される。検知器8
でカウントされた値は信号処理系9をへて入射X線量の
7ブソーバ5によって測定されたへgFIX線但と共に
記録計10に記録される。
On the other hand, characteristic X-rays 6 generated from the sample 4 are introduced into the semiconductor detector 8 with the shutter 7 closed. Detector 8
The counted value passes through a signal processing system 9 and is recorded in a recorder 10 together with the incident X-ray dose measured by the absorber 5.

またイオンエツチング銃11が試料4に斜めに照射され
る構造になっており、電界板12によって入射X線照射
部近傍を、X線がエツチング面を照射できるように走査
される。なおイオンエツチング中はシャッター7は閉じ
られており、イオンエツチングでスパッタされた物質に
よって半導体検知器8が汚染されることを防いでいる。
Further, the ion etching gun 11 is structured to irradiate the sample 4 obliquely, and the vicinity of the incident X-ray irradiation part is scanned by the electric field plate 12 so that the X-rays can irradiate the etching surface. Note that the shutter 7 is closed during ion etching to prevent the semiconductor detector 8 from being contaminated by substances sputtered during ion etching.

し発明の効果] 以上、詳述したように、本発明によれば、従来の深さ方
向分析機能をもつ物理分析装置とは異なり、定を性、深
さ方向高分解能、高感度性にすぐれた深さ方向分析装置
が提供できる。
[Effects of the Invention] As detailed above, according to the present invention, unlike conventional physical analyzers having a depth analysis function, the present invention has excellent accuracy, high resolution in the depth direction, and high sensitivity. A depth direction analysis device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を模式的に示す構成図である
。 1・・・シンクロトロン敢射光源 2・・・励起X線    3・・・スリット4・・・試
料      5・・・アブソーバ6・・・特性X線 
   7・・・シャッター8・・・半導体検知器  9
・・・信号処理系10・・・記録計     11・・
・イオンエツチング銃12・・・電界板
FIG. 1 is a block diagram schematically showing an embodiment of the present invention. 1... Synchrotron radiation light source 2... Excitation X-rays 3... Slit 4... Sample 5... Absorber 6... Characteristic X-rays
7...Shutter 8...Semiconductor detector 9
...Signal processing system 10...Recorder 11...
・Ion etching gun 12...Electric field plate

Claims (1)

【特許請求の範囲】[Claims] (1)励起光源としてシンクロトロン放射光を用い、被
測定試料に対する入射角を全反射が生ずる臨界角以下と
し、イオンエッチング銃でなめらかに切削しつつ発生す
る特性X線強度を記録することを特徴とする深さ方向分
析装置。
(1) Synchrotron radiation is used as an excitation light source, the angle of incidence on the sample to be measured is below the critical angle at which total internal reflection occurs, and the characteristic X-ray intensity generated while being smoothly cut with an ion etching gun is recorded. Depth direction analysis device.
JP813687A 1987-01-19 1987-01-19 Apparatus for analyzing depth direction Pending JPS63177047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP813687A JPS63177047A (en) 1987-01-19 1987-01-19 Apparatus for analyzing depth direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP813687A JPS63177047A (en) 1987-01-19 1987-01-19 Apparatus for analyzing depth direction

Publications (1)

Publication Number Publication Date
JPS63177047A true JPS63177047A (en) 1988-07-21

Family

ID=11684876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP813687A Pending JPS63177047A (en) 1987-01-19 1987-01-19 Apparatus for analyzing depth direction

Country Status (1)

Country Link
JP (1) JPS63177047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632113B1 (en) 1998-09-09 2003-10-14 Canon Kabushiki Kaisha Image display apparatus, disassembly processing method therefor, and component recovery method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547991A (en) * 1977-06-18 1979-01-20 Ibm Fluorescent xxray analyzer
JPS6188131A (en) * 1984-10-05 1986-05-06 Shimadzu Corp X-ray microanalyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547991A (en) * 1977-06-18 1979-01-20 Ibm Fluorescent xxray analyzer
JPS6188131A (en) * 1984-10-05 1986-05-06 Shimadzu Corp X-ray microanalyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632113B1 (en) 1998-09-09 2003-10-14 Canon Kabushiki Kaisha Image display apparatus, disassembly processing method therefor, and component recovery method
US6951494B2 (en) 1998-09-09 2005-10-04 Canon Kabushiki Kaisha Spacer recovery method and apparatus used during disassembling of an image display apparatus
US7416462B2 (en) 1998-09-09 2008-08-26 Canon Kabushiki Kaisha Glass substrate processing method and material removal process using x-ray fluorescence

Similar Documents

Publication Publication Date Title
US5778039A (en) Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
DE2727505A1 (en) ROENTGEN FLUORESCENT ANALYSIS FOR THE EXAMINATION OF LAYERS NEAR THE SURFACE
Wobrauschek et al. X-ray fluorescence analysis in the ng region using total reflection of the primary beam
JPH03505251A (en) Methods for measuring thickness and composition of films on substrates
Klenk et al. X-ray fluorescence measurements of thin film chalcopyrite solar cells
Aljboor et al. Light-element sensitive in-air millibeam PIXE setup for fast measurement of atmospheric aerosol samples
JP2019158560A (en) X-ray fluorescence analysis method, x-ray fluorescence analyzer and program
JP2005140767A (en) Three-dimensional surface analysis method
Wittry Methods of quantitative electron probe analysis
JPS63177047A (en) Apparatus for analyzing depth direction
van Riessen et al. Auger photoelectron coincidence spectroscopy: simplifying complexity
Deleuze et al. Hard x-ray photoelectron spectroscopy of Al2O3 with Cr Kα excitation
Vanleenhove et al. High-energy x-ray photoelectron spectroscopy spectra of SiO2 measured by Cr Kα
Tsuji et al. Surface studies by grazing‐exit electron probe microanalysis (GE‐EPMA)
JP2906606B2 (en) Qualitative analysis of thin film samples
JPH08220030A (en) Method and apparatus for analyzing surface
Birks et al. Development of X-ray fluorescence spectroscopy for elemental analysis of particulate matter in the atmosphere and in source emissions
SU1206660A1 (en) Method of x-ray fluorescent analysis of substance composition
Bulpett Electron probe X-ray microanalysis of surfaces and thin films
JPS63186133A (en) In-surface distribution analyzing device
Russ XRF and other surface analysis techniques
Markwitz et al. Depth Profiling by Ion Beams Analysis Techniques for the Characterization of Interdiffusion in Multilayered Au–Al Systems
Kurunczi et al. Investigation of adsorbed mercury distribution in silver coated filters by X-ray fluorescence
Cheng et al. Nondestructive Determination of the Composition of High-T c Superconducting Thin Films
JPH083475B2 (en) Sample holder for X-ray fluorescence analyzer