JPS63176670A - Wave power generation set and method therefor - Google Patents

Wave power generation set and method therefor

Info

Publication number
JPS63176670A
JPS63176670A JP62009235A JP923587A JPS63176670A JP S63176670 A JPS63176670 A JP S63176670A JP 62009235 A JP62009235 A JP 62009235A JP 923587 A JP923587 A JP 923587A JP S63176670 A JPS63176670 A JP S63176670A
Authority
JP
Japan
Prior art keywords
power generation
turbine
generator
torque
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62009235A
Other languages
Japanese (ja)
Other versions
JP2575012B2 (en
Inventor
Katsumasa Kajiwara
梶原 勝正
Tetsuo Yamazaki
山崎 哲雄
Yoshiyuki Ota
太田 義之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryokuseisha KK
Original Assignee
Ryokuseisha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryokuseisha KK filed Critical Ryokuseisha KK
Priority to JP62009235A priority Critical patent/JP2575012B2/en
Priority to KR1019870001299A priority patent/KR970001720B1/en
Publication of JPS63176670A publication Critical patent/JPS63176670A/en
Application granted granted Critical
Publication of JP2575012B2 publication Critical patent/JP2575012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To increase the power generation efficiency by using a generator which possesses the torque characteristic that the driving torque for the number or revolution gently increases in monotone form, in the low revolution speed region. CONSTITUTION:A wave power generation set equipped with a one-through turbine is equipped with a self excitation type generator 30. In said generator 30, a fitting part 31a is formed by closing one edge of a cylindrical frame 31, and a shaft 33 is installed in turnable ways. The torque characteristic of the generator 30 is set so that the driving torque for the number of revolution gently increases in monotone form in the low revolution speed region. Therefore, even if the amplitude of the aeroenergy varies, the turbine efficiency at each revolution speed can be set in the vicinity of the max. efficiency point.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は海洋等に生じる波力を利用し、これを空気力に
変換して発電に利用する波力発電装置およびその発電方
法に関するものである。 (従来の技術) 従来の波力発電装置は大別して貫流タービンを用い友装
置と軸流タービンを用いた装置に分けられる。貫流ター
ビンを用いた装置としては。 WJ14図で示すように、開口した下面を水中に没し、
上部を空中に出した筒状の本体1を形成し、波面2より
も上方に空間をあけて空気室3とし7%空気室3の上端
に通気筒4を立設し1通気筒4の中央部に発電機(図示
せず)を直結した貫流タービンロータ5を回転自在に組
み込み、貫流タービンロータ5の前後に案内部材6.7
を内股している。軸流タービンを用いた装置としては、
第15図で示すように、開口した下面を水中に没し、上
部を空中1出した筒状の本体11の上部空間を空気室1
2とし、波面2の変化による空気の出入口13を空気室
12の上端面に開口し、出入口13の上方に空気流路1
4゜15とタービン室16を一体に形成し友上部本体を
設け、上部本体17には中央にタービン室16を、その
外周部に空気流路j4.15’i配置して、空気流路1
4を出入口13に接続させ、空気流路15にはフィルタ
18を取り付けた開口部19を設けて空気を出入てせ、
タービン室16はタービン入口室16aとタービン出口
室16bに分割し、タービン入口室16.とタービン出
口室16bの境界にタービンノズル20゜軸流タービン
ロータ21、および軸流タービンロータ21に直結り一
た発電機22を組み込み、タービン入口室16aの側面
には空気流路14と15のそれぞれに対応した位置に空
気人口弁23、24 ’(i−設け、タービン出口室1
6bの側面には空気流路14と15のそれぞれに対応し
た位置に空気出目弁25.26i設けている。 このような構成から5貫流タービンまたは軸流タービン
全設置した波力発電装置では、本体1またけ11の中の
波面2が上下することによって空気室3またけ12の空
気が出入りし、その流路途中に設けられた貫流タービン
ロータ5または軸流タービンロータ21を回転させ、発
電する。 (発明が解決しようとする問題点) 上記従来の波力発電装置に使用されている発電機は、あ
る波浪条件を仮定し、その条件で装置を出入する空気に
より生じる空気エネルギを疑似脈動空気エネルギ発生装
置で発生させ、その出力でタービンを駆動して一定の発
電機出力が得られるように設計されておフ、発電機の駆
動トルクは低回転領域において2次曲線的に増加する特
性を持つ。ところが、実際の海洋に存在する波浪エネル
ギは、時間、振幅共に不規則な状態で存在するため、現
実の波浪により誘起される空気エネルギも不規則となり
、設計条件に対しては実際の波浪エネルギの小さい領域
の占める割合が多く、発電機の駆動トルクが足シない状
態で使用する割合が大きくなる。このため上記特定の波
浪条件全仮定して設計した発電機を備えた波力発電装置
では、波浪エネルギすなわちそれにより発生される空気
エネルギが小さい領域において、タービン駆動エネルギ
の損失分が相対的に大きく々り、発電機を駆動するため
のトルクがブレーキの役目を果たす結果となり、波浪の
一周期内の回転数変動が大きくなって充分ガ発電機出力
が得られないという問題点があった。 上記に鑑み、本発明の目的は、低回転数領域において単
調で緩やかに増加する駆動トルクを有する発電機を備え
、各回転数に対する最大効率点で発電するようにして、
実際の波浪エネルギの発生状況によジ良く合致した特性
を持たせて効率良く発電させ、現実の波浪によシ銹起さ
れる空気エネルギによる発電機出力を有効に得ることが
できるようにして、上記問題点を解決した。波力発電装
置を提供するものである。 (問題点を解決するための手段) 本発明は、上記問題点を解決するための手段として、波
力発電装置を構成するにあたり、回転数に対する駆動ト
ルクが低回転数領域では単調で緩やかに増加するトルク
特性を有する発電機を備えたものである。 そして、本発明による波力発電装置の発電方法を、脈動
する波浪の一周期にわたって平均化したタービン出力ト
ルクの平均値および空気圧と空気流量の積の平均値とか
ら得られるタービン平均効率を与える回転数Nとトルク
Tとを求めて、この回転数NにおけるトルクTを駆動ト
ルクにする発電機駆動特性を与えることによって、空気
室内で発生する空気エネルギの振幅が変化しても各回転
数に対するタービン効率が最大効率点近傍になるように
したものである。 (作  用) 本発明は上記構成により、空気室内で発生する圧力P1
時間t、角速度ω、そして最大値全添字max k付し
て表わすと、変動する波浪に対して圧力Pが P = Pmax slnωt ・・・・・・・・・・
・・・・・・・・ (1)となり、その時の空気流量Q
は位相角θとすると、Q = Qmax sin”(ω
を十〇)・・・・・・・・・(2)とがり、発生する空
気エネルギFiP−Qで表わされ、その平均値P−Qと
すると、大路次式が成や立ち、 タービン出力トルクTの平均値Tl−1,脈動の一周期
τにわたり平均化し友もので と匁り、ここでタービン出力トルクTはトルク係数CT
、空気密度ρ、メタ−ンに作用する相対流入速度W!、
翼弦長!%翼高h1翼枚数z1ピッチ牛径r、とすると
。 1    鵞 T = CT −7/)W41 hZ rp ・・=−
−−−(5)であシ、相対流入速度W、は タービンへ
の絶対流入速度C1,タービン周速度U1タービンへの
絶対流入角度α1とすると、 Wl = cl”maX +U” −2clmaX U
 cos al−+・−・((1)で表わされ、平均値
Tは式(4)全時間について積分すると、 トルク係数CTの平均値CT  と式(5)および式(
6)から。 〒=で7・÷I) (Cl”maX 十〇”−2Clm
axU c o Bαt)lhZrp・・・・・・・・
・・・・(7) タービンの運動方程式は回転体の慣性モーメントエ、発
電機の負荷トルクTLとすると、t であり、脈動流中におけるタービンの平均効率特性を持
つトルクT’を式(8)の右辺第2項で示す発電機の負
荷トルクTLと等しいか若干大きくなるように運転して
、空気室内で発生する空気エネルギの振幅が変化しても
各回転数に対するタービン効率が最大効率点近傍で作動
させ、変動域全体として高い効率で運転し、低回転領域
から高回転領域までの広い入力(空気)エネルギ範囲に
おいて適正な駆動トルクで発電機が駆動され、タービン
出力の無用な損失を避けて。 入力(空気)エネルギを効率良く電気エネルギに変換す
ることができるようKなる。これKより不規則に変動す
る波浪エネルギから効率良く電気エネルギが得られるよ
うKなる。 (実 施 例) 以下に、本発明による波力発電装置の実施例を第1図乃
至第13図に基づき説明する。 第1実施例として貫流タービンを備えた波力発電装置の
場合にづいて述べる0貫流タービンを備えた波力発電装
置に設置する自励型の発電機30としては%WJ1図訃
よび第2図で示すように1円筒状フレーム51の一端を
閉じて嵌合部31a’ii形成し、他端に蓋板51b′
ft取り付け、それぞれの中心部にベアリング52t−
設けて軸33を回転自在に取り付け、軸33には外径5
1 tx (ミリメートル)、長さS Om (ミリメ
ートル)の六光芒筒状体で、−極当りの磁束’i 68
00乃至8800マクスウエルに形成し友磁石34t−
外嵌し、磁石34の外周側に線径α29朋(ミリメート
ル)の電線を2本隨り合せて33回巻回した固定子35
を周設する。 この発電機30を直結する貫流タービンロータ36とし
ては第3図および第4図で示すように、3枚羽根のサボ
ニウスタービンとして羽根前端外径D’ThD=120
m(ミリメートル)、羽根後端内径d ’e d=42
 m (ミリメートル)の位置に羽根37を同じ向きで
等間隔に配置し、羽根570両側端を円板状に形成した
支持板58.59に固着させる。一方の支持板39には
ボス40を設け、ボス40の中央部にキー溝を有するテ
ーパ孔41を穿設して発電機30の軸33を嵌合させる
。 この貫流タービンロータ36を収容する通気筒42は、
第5図および第6図で示すように。 角筒形に形成し、角筒形の一側壁の内面側中央部に貫流
タービンロータ36の外径よりもわずかに直径が大きな
穴43を穴43の中心軸を壁面に垂直にしてあけ、同じ
側壁の外面側中央部に発電機嵌合用の穴44を穴43と
同軸にあけ、穴43と穴44との間を貫通孔45で連通
ずる。 角筒形に形成された通気筒42の内側には、一端面が穴
43に沿って円弧を形成している案内部材46.47f
内設して空気流路48.49を形成する。案内部材46
と案内部材47とは貫流タービンロータ36の中心に対
して点対称に配置、形成し、空気流路48と空気流路4
9とが空気の出入りに対して対称かつ同一流路形状とな
るようKする。空気流路48.49から貫流タービンロ
ータ36へ流入する入口幅Wけ、羽根前端外径りとの比
W浄がQ、1くW/DくcL8となるように定める。 このような発電機30.貫流タービンロータ36、およ
び通気筒42を用いて、第14図で示すような、波力発
電装置を組み立て1式(9)ヲ与えるトルク特性のター
ビントルクTによp式(8)の右辺第2項で示す発電機
の負荷トルクTLと等しいか若干大きく々るように運転
すると、第7図で示すタービントルク特性曲線における
A曲線のように貫流タービンロータ36の回転数Nが毎
分3000回転以下の低回転領域では比較的緩やかな勾
配で単調に増加する駆動トルク曲線となり、近似的に直
線的に増加して、各圧力における貫流タービンの最大効
率点を結ぶ曲線Mに近い位置で作動する。このため従来
の2次曲線的に増加するC曲線と比較して同一回転数で
は、駆動トルクTが小さくてすみ、小さな駆動トルクで
も発電機50を取り付は定貫流タービンロータ36が回
転して発電し、その結果と[7て、第8図で示すように
、発電特性曲線がA曲線となり、従来のC曲線に比較し
て同一波高に訃ける発電出力が高くなる。 第2実施例として軸流タービンを備えた波力発電装置の
場合を述べる。軸流タービンを備えた波力発電装置の場
合でも%第1図および第2図で示すような自励型の発電
機30を用いるものとする。この発電機30を直結する
軸流タービンロータ50としては、第9図乃至第11図
で示すように、翼51を外周上に径方向外方に16枚延
設し、翼弦長l k 28 yx (ミリメートル)に
して、翼取付ピッチpを翼弦長!との比p/Jがα6<
p/A!<i、5  になるように定め、翼取付角γを
95〈γ〈135の範囲内にし、タービンノズル52は
ノズル出口を流出する空気の噴出速度が設計点で音速に
ガるように形成した軸流タービンを用いる。 このような発電機30.軸流タービンロータ5aを用い
て、第15図で示すような波力発電装置全組み立て、式
(9)全与えるトルク特性のタービントルクTにより式
(8)の右辺第2項で示す発電機の負荷トルクTLと等
しいか若干大きくなるように運転すると、第12図で示
す、タービントルク特性曲線におけるA曲線のように軸
流タービンロータ50の回転数が毎分3000回転以下
の低回転領域では比較的緩やかな勾配で単調に増加する
駆動トルク曲線となり、近似的に直線的に増加して、各
圧力における軸流タービンの最大効率点を結ぶ曲線Mに
近い位置で作動する。このため従来の2次曲線的に増加
するC曲線と比較して、同一回転数では駆動トルクTが
小さくてすみ、小言な駆動トルクでも発電機30を取り
付けた軸流タービンロータ50が回転して発電し、その
結果として、第13図で示すように1発電特性曲線がA
曲線となシ、従来のC曲線に比較して同一波高における
発電出力が高くなる。 このように本実施例では1発電機ロータを形成する磁石
の大きさ全従来のものに比較して長さを約172に減少
し、固定子の巻線全線径を1/2近く細くして、巻数を
3割以上増加させて駆動トルクを軽減させ、低回転数領
域において単調で緩やかに増加するトルク特性を与え、
タービンを各回転数に対して最大効率点近傍で作動させ
るようにしたことによって、低回転数領域から高回転数
領域までの広い入力(空気)エネルギ範囲において適正
な駆動トルクで発電機を駆動し、タービン出力の無用な
出力損失を避けて効率良く電気エネルギに変換すること
ができるように力る。この効果として不規則に変動する
現実の波浪エネルギから変動の全範囲において効率良く
電気エネルギを得ることができる。 また、発電の際に発電機負荷に蓄電池を接続した場合、
蓄電池に充電を開始する波高が従来よシも低くなり、同
じ波高における蓄電効率が高くなる。 (発明の効果) 以上のように本発明は、波力発電装置には回転数に対す
る駆動トルクが低回転数領域では単調で緩やかに増加す
るトルク特性を有する発電機を備え、発電方法として脈
動する波浪の一周期にわたって平均化したタービン出力
トルクの平均値および空気圧と空気流量の積の平均値と
から得られるタービン平均効率を与える回転数Nとトル
クTとを求めて、この回転数NにおけるトルクTt駆動
トルクとする発電機駆動特性を与えること釦よって、空
気室内で発生する空気エネルギの振幅が変化して4各回
転数に対するタービン効率が最大効率点近傍になるよう
にしたため、低回転数領域から高回転数領域に至る広い
入力(空気)エネルギ範囲において適正(ト) 明細書の浄書(内容に変更なし) 第7図は本発明による貫流タービンロータをな駆動トル
クで発電機を駆動し、タービン出力の無用な出力損失を
避けて効率良く電気エネルギに変換することができる。 これKより不規則に変動する現実の波浪エネルギから変
動の全範囲にわたって効率良く電気エネルギを得ること
ができる。
(Industrial Application Field) The present invention relates to a wave power generation device that utilizes wave power generated in the ocean, converts it into aerodynamic force, and uses it for power generation, and a power generation method thereof. (Prior Art) Conventional wave power generation devices can be roughly divided into those using a once-through turbine and those using an axial flow turbine. As a device using a once-through turbine. As shown in Figure WJ14, submerge the open bottom in water,
A cylindrical main body 1 with its upper part exposed in the air is formed, and an air chamber 3 is formed with a space above the wave surface 2. A ventilation cylinder 4 is erected at the upper end of the 7% air chamber 3, and a ventilation cylinder 4 is installed in the center of the ventilation cylinder 4. A once-through turbine rotor 5 with a generator (not shown) directly connected thereto is rotatably incorporated therein, and guide members 6.7 are installed at the front and rear of the once-through turbine rotor 5.
I have my thighs tucked inside my thighs. As a device using an axial flow turbine,
As shown in FIG. 15, the upper space of a cylindrical main body 11 with its open lower surface submerged in water and its upper part exposed in the air is used as an air chamber 1.
2, an air inlet/outlet 13 is opened at the upper end surface of the air chamber 12 due to a change in the wave surface 2, and an air flow path 1 is formed above the inlet/outlet 13.
4.15'i and the turbine chamber 16 are integrally formed, and a companion upper body is provided, and the upper body 17 has the turbine chamber 16 in the center and the air flow path j4.15'i arranged on the outer periphery of the upper body 17.
4 is connected to the inlet/outlet 13, and the air passage 15 is provided with an opening 19 to which a filter 18 is attached to allow air to enter and exit.
The turbine chamber 16 is divided into a turbine inlet chamber 16a and a turbine outlet chamber 16b. A turbine nozzle 20°, an axial flow turbine rotor 21, and a generator 22 directly connected to the axial flow turbine rotor 21 are built into the boundary between the turbine outlet chamber 16b and the air flow passages 14 and 15 on the side of the turbine inlet chamber 16a. Air population valves 23, 24' (i-provided, turbine outlet chamber 1
Air outlet valves 25 and 26i are provided on the side surface of 6b at positions corresponding to the air passages 14 and 15, respectively. With such a configuration, in a wave power generation device in which all 5 once-through turbines or axial flow turbines are installed, the wave surface 2 in the main body 1 straddle 11 moves up and down, causing the air in the 3 straddle air chambers 12 to enter and exit, and the flow The once-through turbine rotor 5 or the axial turbine rotor 21 provided along the path is rotated to generate electricity. (Problems to be Solved by the Invention) The generator used in the above-mentioned conventional wave power generation device assumes a certain wave condition and converts the air energy generated by the air flowing in and out of the device under that condition into pseudo pulsating air energy. It is designed to be generated by a generator and use that output to drive a turbine to obtain a constant generator output.The generator's driving torque has the characteristic of increasing in a quadratic curve in the low rotation range. . However, since the wave energy that actually exists in the ocean is irregular in both time and amplitude, the air energy induced by actual waves is also irregular, and the actual wave energy is not suitable for the design conditions. A large proportion of the area is occupied by a small area, and a large proportion of the generator is used without sufficient drive torque. For this reason, in a wave power generation device equipped with a generator designed assuming all of the above specific wave conditions, the loss of turbine drive energy is relatively large in regions where wave energy, that is, air energy generated by it, is small. As a result, the torque for driving the generator acts as a brake, resulting in large fluctuations in the rotational speed within one cycle of waves, resulting in a problem in that sufficient generator output cannot be obtained. In view of the above, an object of the present invention is to provide a generator having a driving torque that increases monotonically and gradually in a low rotational speed region, and generate power at the maximum efficiency point for each rotational speed.
By providing characteristics that closely match the actual wave energy generation situation and efficiently generating electricity, it is possible to effectively obtain generator output from the air energy generated by actual waves. The above problems have been resolved. The present invention provides a wave power generation device. (Means for Solving the Problems) The present invention provides, as a means for solving the above-mentioned problems, that when configuring a wave power generation device, the driving torque relative to the rotation speed increases monotonically and gradually in the low rotation speed region. It is equipped with a generator that has torque characteristics that Then, the power generation method of the wave power generation device according to the present invention is implemented by rotating the turbine to give an average turbine efficiency obtained from the average value of the turbine output torque averaged over one cycle of pulsating waves and the average value of the product of air pressure and air flow rate. By determining the number N and torque T and giving the generator drive characteristics in which the torque T at this rotation speed N is the driving torque, the turbine at each rotation speed can be maintained even if the amplitude of the air energy generated in the air chamber changes. The efficiency is set close to the maximum efficiency point. (Function) With the above configuration, the present invention reduces the pressure P1 generated in the air chamber.
Expressing the time t, the angular velocity ω, and the maximum value with all subscripts max k, the pressure P against the fluctuating waves is P = Pmax slnωt ・・・・・・・・・・・・
・・・・・・・・・(1) becomes, and the air flow rate Q at that time is
is the phase angle θ, then Q = Qmax sin”(ω
10) ...... (2) If the air energy generated by the sharp point is represented by FiP-Q, and its average value P-Q, then the following equation holds true, and the turbine output torque is The average value Tl-1 of T is averaged over one period τ of pulsation, and the turbine output torque T is the torque coefficient CT.
, air density ρ, relative inflow velocity W acting on methane! ,
Wing chord length! %blade height h1 number of blades z1 pitch diameter r. 1 Goose T = CT -7/)W41 hZ rp...=-
--- (5) If the relative inflow speed W is: Assuming that the absolute inflow speed to the turbine is C1, the turbine circumferential speed U1, and the absolute inflow angle to the turbine is α1, then Wl = cl"maX +U" -2clmaX U
cos al-+...
From 6). 〒=7・÷I) (Cl"maX 10"-2Clm
axU co Bαt)lhZrp・・・・・・・・・
(7) The equation of motion of the turbine is t, where the moment of inertia of the rotating body is E, and the load torque of the generator is TL.The torque T', which has the average efficiency characteristics of the turbine in pulsating flow, is expressed by equation (8 ) is operated so that the load torque TL of the generator is equal to or slightly larger than the load torque TL shown in the second term on the right side of The generator is operated nearby and operated with high efficiency over the entire fluctuation range, and the generator is driven with an appropriate drive torque in a wide input (air) energy range from low rotation to high rotation, eliminating unnecessary loss of turbine output. Avoid. K so that input (air) energy can be efficiently converted into electrical energy. This K makes it possible to efficiently obtain electrical energy from wave energy that fluctuates irregularly. (Example) Examples of the wave power generation device according to the present invention will be described below with reference to FIGS. 1 to 13. A self-excited generator 30 installed in a wave power generation device equipped with a once-through turbine will be described as a first example of a wave power generation device equipped with a once-through turbine. As shown, one end of the cylindrical frame 51 is closed to form a fitting part 31a'ii, and a cover plate 51b' is attached to the other end.
ft installation, bearing 52t- in the center of each
The shaft 33 is rotatably attached to the shaft 33, and the shaft 33 has an outer diameter of 5.
1 tx (mm), length S Om (mm), hexagonal cylinder, - magnetic flux per pole 'i 68
00 to 8800 Maxwell formed with friend magnet 34t-
A stator 35 is fitted onto the outside of the magnet 34, and two electric wires having a wire diameter α29 (mm) are wound 33 times around the outer circumferential side of the magnet 34.
will be established. As shown in FIGS. 3 and 4, the once-through turbine rotor 36 to which this generator 30 is directly connected is a three-blade Savonius turbine with a blade front end outer diameter D'ThD=120.
m (mm), inner diameter of blade rear end d'e d=42
The blades 37 are arranged at equal intervals in the same direction at m (millimeter) positions, and both ends of the blades 570 are fixed to support plates 58 and 59 formed in a disk shape. One support plate 39 is provided with a boss 40, and a tapered hole 41 having a keyway is bored in the center of the boss 40, into which the shaft 33 of the generator 30 is fitted. The ventilation cylinder 42 that accommodates this once-through turbine rotor 36 is
As shown in FIGS. 5 and 6. A hole 43 having a diameter slightly larger than the outside diameter of the once-through turbine rotor 36 is drilled in the center of the inner surface of one side wall of the rectangular cylinder shape, with the center axis of the hole 43 perpendicular to the wall surface. A hole 44 for fitting the generator is formed coaxially with the hole 43 in the center of the outer surface of the side wall, and a through hole 45 communicates between the hole 43 and the hole 44. Inside the ventilation cylinder 42 formed into a rectangular cylinder shape, there is a guide member 46.47f whose one end surface forms an arc along the hole 43.
The air passages 48 and 49 are formed internally. Guide member 46
and the guide member 47 are arranged and formed point-symmetrically with respect to the center of the once-through turbine rotor 36, and the air flow path 48 and the air flow path 4
9 is symmetrical with respect to the inflow and outflow of air and has the same flow path shape. The width of the inlet flowing into the once-through turbine rotor 36 from the air passages 48 and 49 is determined so that the ratio W with the outer diameter of the front end of the blade is Q, 1 x W/D x cL8. Such a generator 30. Using the once-through turbine rotor 36 and the ventilation cylinder 42, assemble a wave power generation device as shown in FIG. When the generator is operated so as to be equal to or slightly larger than the load torque TL of the generator shown in Section 2, the rotational speed N of the once-through turbine rotor 36 becomes 3000 revolutions per minute as shown by curve A in the turbine torque characteristic curve shown in FIG. In the following low rotation range, the driving torque curve increases monotonically with a relatively gentle slope, increases approximately linearly, and operates at a position close to the curve M connecting the maximum efficiency points of the once-through turbine at each pressure. . Therefore, compared to the conventional C curve that increases quadratically, the drive torque T is small at the same rotation speed, and even with a small drive torque, the constant once-through turbine rotor 36 rotates when the generator 50 is installed. As a result, as shown in FIG. 8, the power generation characteristic curve becomes curve A, and the power generation output at the same wave height becomes higher than the conventional curve C. As a second example, a case of a wave power generation device equipped with an axial flow turbine will be described. Even in the case of a wave power generation device equipped with an axial turbine, a self-excited generator 30 as shown in FIGS. 1 and 2 is used. As shown in FIGS. 9 to 11, the axial turbine rotor 50 to which the generator 30 is directly connected has 16 blades 51 extending radially outward on the outer periphery, and has a blade chord length l k 28. yx (mm), and the blade installation pitch p is the blade chord length! The ratio p/J is α6<
p/A! <i, 5, the blade attachment angle γ was set within the range of 95<γ<135, and the turbine nozzle 52 was formed so that the jet velocity of air flowing out of the nozzle outlet reached the speed of sound at the design point. Uses an axial flow turbine. Such a generator 30. Using the axial flow turbine rotor 5a, assembling the entire wave power generation device as shown in FIG. When the operation is performed so that the load torque is equal to or slightly larger than the load torque TL, the rotation speed of the axial flow turbine rotor 50 is compared in a low rotation range of 3000 revolutions per minute or less, as shown by curve A in the turbine torque characteristic curve shown in FIG. The driving torque curve increases monotonically with a gentle slope, increases approximately linearly, and operates at a position close to the curve M connecting the maximum efficiency points of the axial flow turbine at each pressure. Therefore, compared to the conventional C curve that increases quadratically, the driving torque T is small at the same rotation speed, and even with a small driving torque, the axial flow turbine rotor 50 to which the generator 30 is attached rotates. As a result, the power generation characteristic curve becomes A as shown in Figure 13.
Compared to the conventional curve C, the power generation output at the same wave height is higher. In this way, in this embodiment, the length of the magnets forming the generator rotor is reduced to approximately 172 mm compared to the conventional magnet, and the total wire diameter of the stator windings is reduced by nearly half. , the number of turns is increased by more than 30% to reduce the driving torque, giving a torque characteristic that increases monotonically and gradually in the low rotation speed region,
By operating the turbine near the maximum efficiency point for each rotation speed, the generator can be driven with an appropriate drive torque over a wide input (air) energy range from low rotation speeds to high rotation speeds. , avoiding unnecessary loss of turbine output and converting it into electrical energy efficiently. As a result of this effect, electrical energy can be efficiently obtained over the entire range of fluctuations from actual wave energy that fluctuates irregularly. Also, if a storage battery is connected to the generator load during power generation,
The wave height at which charging of the storage battery begins is lower than before, and the power storage efficiency at the same wave height is increased. (Effects of the Invention) As described above, in the present invention, the wave power generation device is equipped with a generator having a torque characteristic in which the driving torque relative to the rotation speed increases monotonically and gradually in the low rotation speed region, and the wave power generation device uses a pulsating power generation method. The rotation speed N and torque T that give the turbine average efficiency obtained from the average value of the turbine output torque averaged over one cycle of waves and the average value of the product of air pressure and air flow rate are determined, and the torque at this rotation speed N is calculated. This button gives the generator drive characteristics as Tt drive torque. Therefore, the amplitude of the air energy generated in the air chamber changes so that the turbine efficiency for each rotation speed is near the maximum efficiency point, so the low rotation speed region Appropriate in a wide range of input (air) energy from to high rotational speed regions (G). It is possible to avoid unnecessary loss of turbine output and efficiently convert it into electrical energy. Electrical energy can be efficiently obtained over the entire range of fluctuations from actual wave energy that fluctuates irregularly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による波力発電装置で用いられる発電機
を示す半縦断面側面図、 fX2図は本発明による波力発電装置で用いられる発電
機を示す正面図。 第3図は本発明による波力発電装置で用いられる貫流タ
ービンロータを示す横断面図。 第4図は本発明による波力発電装置で用いられる貫流タ
ービンロータを示す半縦断面側面図、第5図は本発明に
よる波力発電装置で用いられる貫流タービンロータを収
容する通気筒を示す縦断面正面図、 第6図は第5図の■−■線に沿う縦断面側面図。 明細書の浄書(内容に変更なし) 型装置を示す縦断面説明図。 フ、 第8図は本発明による貫流タービンロータを備えた波力
発電装置の発電特性を示すグラフ、第9図は本発明によ
る波力発電装置で用いられる軸流タービンの翼列を示す
平面展開説明図、 第1θ図は本発明による波力発電装置で用いられる軸流
タービンロータを示す正面図、第11図は本発明による
波力発電装置で用いられる軸流タービンロータを示す縦
断面側面図、第12図は本発明による軸流タービンロー
タを備えた波力発電装置のトルク特性を示すグラフ、 第13図は本発明による軸流タービンロータを備えた波
力発電装置の発電特性を示すグラフ、第14図は貫流タ
ービンを備えた波力発電装置を示す縦断面説明図。 第15図は従来の軸流タービンを備えた波力発2・・・
波面 3.12・・・空気室  30・・・発電機33・・・
軸      34・・・磁石35・・・固定子   
 38・・・貫流タービンロータ42・・・通気筒  
  50・・・軸流タービンロータA・・・本発明によ
る波力発電装置の特性曲線C・・・従来の波力発電装置
の特性曲線M・・・タービンの最大効率点におけるトル
ク特性曲線 特許出願人   株式会社 緑星社 代理人 弁理士    萼    優 美(他2名) 第6図 −L象心ト(?・E) 牟智E役(≧) 第12図 回転& N (rl)m) 第13図 °°[− 波周XjlT=2.8抄 1、!l−開B、’:63−176670(8)手続補
正書(方式) 昭和62年 4月28日 特許庁長官 殿        魁#謙1、事件の表示 昭和62年 特 許 願 第9235号2、発明の名称 波力発電装置およびその発電方法 3、補正する者 事件との関係  特許出願人 名 称 株式会社 緑星社 4、代 理 人 (〒101) (ほか2名) 5、補正命令の日付 昭和62年 3月 4日 (発送日:昭和62年3月31日) 6、補正の対象 (1)代理権を証明する書面
FIG. 1 is a half-vertical cross-sectional side view showing a generator used in the wave power generation device according to the present invention, and FIG. fX2 is a front view showing the generator used in the wave power generation device according to the present invention. FIG. 3 is a cross-sectional view showing a once-through turbine rotor used in the wave power generation device according to the present invention. FIG. 4 is a half-longitudinal cross-sectional side view showing a once-through turbine rotor used in a wave power generation device according to the present invention, and FIG. Figure 6 is a vertical cross-sectional side view taken along the line ■-■ in Figure 5. An engraving of the specification (no changes to the contents) A vertical cross-sectional explanatory view showing the mold device. Fig. 8 is a graph showing the power generation characteristics of the wave power generation device equipped with the once-through turbine rotor according to the present invention, and Fig. 9 is a planar development showing the blade row of the axial flow turbine used in the wave power generation device according to the present invention. Explanatory drawings, Figure 1θ is a front view showing an axial flow turbine rotor used in the wave power generation device according to the present invention, and FIG. 11 is a vertical cross-sectional side view showing the axial flow turbine rotor used in the wave power generation device according to the present invention. , FIG. 12 is a graph showing the torque characteristics of a wave power generation device equipped with an axial flow turbine rotor according to the present invention, and FIG. 13 is a graph showing power generation characteristics of a wave power generation device equipped with an axial flow turbine rotor according to the present invention. , FIG. 14 is a vertical cross-sectional explanatory diagram showing a wave power generation device equipped with a once-through turbine. Figure 15 shows a wave power generator 2 with a conventional axial flow turbine.
Wave surface 3.12... Air chamber 30... Generator 33...
Shaft 34... Magnet 35... Stator
38... Once-through turbine rotor 42... Ventilation cylinder
50... Axial flow turbine rotor A... Characteristic curve of the wave power generation device according to the present invention C... Characteristic curve M of the conventional wave power generation device... Torque characteristic curve at the maximum efficiency point of the turbine Patent application Person Ryokuseisha Co., Ltd. Agent Patent attorney Yumi Sae (2 others) Figure 6 - L image (?・E) Muchi E role (≧) Figure 12 Rotation & N (rl)m) 13th Figure °° [- Wave frequency XjlT = 2.8 Sho 1,! l-Open B, ': 63-176670 (8) Procedural amendment (method) April 28, 1988 Director General of the Patent Office Mr. Kai #Ken 1, Indication of case 1988 Patent Application No. 9235 2, Invention Name of wave power generation device and its power generation method 3. Relationship with the person making the amendment Name of patent applicant: Ryokuseisha Co., Ltd. 4, Agent (101) (2 others) 5. Date of amendment order: 1988 March 4, 1988 (Shipping date: March 31, 1986) 6. Subject of amendment (1) Document certifying power of representation

【図面の簡単な説明】[Brief explanation of the drawing]

7、補正の内容 (1)株式会社 緑星社の委任状を提出する。 7. Contents of correction (1) Submit a power of attorney from Ryokuseisha Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)回転数に対する駆動トルクが低回転数領域では単
調で緩やかに増加するトルク特性を有する発電機を備え
たことを特徴とする波力発電装置。
(1) A wave power generation device comprising a generator having a torque characteristic in which the driving torque relative to the rotation speed increases monotonically and gradually in a low rotation speed region.
(2)脈動する波浪の一周期にわたって平均化したター
ビン出力トルクの平均値および空気圧と空気流量の積の
平均値とから得られるタービン平均効率を与える回転数
NとトルクTとを求めて、この回転数Nにおけるトルク
Tを駆動トルクとする発電機駆動特性を与えることによ
って、空気室内で発生する空気エネルギの振幅が変化し
ても各回転数に対するタービン効率が最大効率近傍にな
るようにしたことを特徴とする波力発電装置の発電方法
(2) Determine the rotation speed N and torque T that give the turbine average efficiency obtained from the average value of the turbine output torque averaged over one period of pulsating waves and the average value of the product of air pressure and air flow rate. By providing a generator drive characteristic in which the driving torque is torque T at rotational speed N, the turbine efficiency for each rotational speed is close to the maximum efficiency even if the amplitude of the air energy generated in the air chamber changes. A power generation method using a wave power generation device characterized by:
JP62009235A 1987-01-19 1987-01-19 Wave power generation device and power generation method thereof Expired - Fee Related JP2575012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62009235A JP2575012B2 (en) 1987-01-19 1987-01-19 Wave power generation device and power generation method thereof
KR1019870001299A KR970001720B1 (en) 1987-01-19 1987-02-17 Wave power plants and wave power method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009235A JP2575012B2 (en) 1987-01-19 1987-01-19 Wave power generation device and power generation method thereof

Publications (2)

Publication Number Publication Date
JPS63176670A true JPS63176670A (en) 1988-07-20
JP2575012B2 JP2575012B2 (en) 1997-01-22

Family

ID=11714738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009235A Expired - Fee Related JP2575012B2 (en) 1987-01-19 1987-01-19 Wave power generation device and power generation method thereof

Country Status (2)

Country Link
JP (1) JP2575012B2 (en)
KR (1) KR970001720B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364689A (en) * 1992-02-21 1994-11-15 Hashimoto Forming Industry Co., Ltd. Painting with magnetically formed pattern and painted product with magnetically formed pattern
JP2016010177A (en) * 2014-06-20 2016-01-18 国立大学法人 東京大学 Wave power generation device
CN107503875A (en) * 2017-08-04 2017-12-22 天津大学 The Flow vibration TRT and control method that a kind of excitation automatically supplies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173780U (en) * 1985-04-16 1986-10-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173780U (en) * 1985-04-16 1986-10-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364689A (en) * 1992-02-21 1994-11-15 Hashimoto Forming Industry Co., Ltd. Painting with magnetically formed pattern and painted product with magnetically formed pattern
JP2016010177A (en) * 2014-06-20 2016-01-18 国立大学法人 東京大学 Wave power generation device
CN107503875A (en) * 2017-08-04 2017-12-22 天津大学 The Flow vibration TRT and control method that a kind of excitation automatically supplies
CN107503875B (en) * 2017-08-04 2023-01-31 天津大学 Excitation self-supply flow-induced vibration power generation device and control method

Also Published As

Publication number Publication date
KR880009172A (en) 1988-09-14
JP2575012B2 (en) 1997-01-22
KR970001720B1 (en) 1997-02-14

Similar Documents

Publication Publication Date Title
Patel et al. Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement
US6417578B1 (en) Power-transducer/conversion system and related methodology
US4960363A (en) Fluid flow driven engine
US5451138A (en) Unidirecional reaction turbine operable under reversible fluid from flow
US7479709B2 (en) Wind-tunnel type power generator
US20120068670A1 (en) Wind jet turbine
EP3155255B1 (en) Device for converting kinetic energy of a flowing medium to electrical energy
US4405866A (en) Wave-power generator assembly
CA2755521A1 (en) Wind jet turbine ii
WO2012054079A2 (en) Electricity generating assembly
JPH0960573A (en) Wind power generator
CA2421139A1 (en) Hydraulic turbine for deep ocean conditions
JPH11299197A (en) Wind power generator
US6013955A (en) Hydroreactor to take advantage of the kinetic energy from the water in places where the streams are meaningful for the production electric power
CN106837816B (en) A kind of outer rotor submersed three-flow pump
US20160172934A1 (en) Contra rotor wind turbine system using a hydraulic power transmission device
JPS63176670A (en) Wave power generation set and method therefor
WO2002097264A1 (en) Improvements in and relating to fluid turbines and devices
EP4047202A1 (en) Centrifugal kinetic power turbine
JPH029100Y2 (en)
RU2131995C1 (en) Windmill electric generating plant
JP2003120509A (en) Wind power generating device
JPS6375365A (en) Hydraulic turbine
JP2004052720A (en) Wind turbine generator
JP2003206851A (en) Hydrodynamic force power generating system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees