JPS6317268A - Method of joining silicon carbide base materials - Google Patents

Method of joining silicon carbide base materials

Info

Publication number
JPS6317268A
JPS6317268A JP15926586A JP15926586A JPS6317268A JP S6317268 A JPS6317268 A JP S6317268A JP 15926586 A JP15926586 A JP 15926586A JP 15926586 A JP15926586 A JP 15926586A JP S6317268 A JPS6317268 A JP S6317268A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
joining
strength
base materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15926586A
Other languages
Japanese (ja)
Inventor
隆治 加藤
孝一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Original Assignee
Narumi China Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp filed Critical Narumi China Corp
Priority to JP15926586A priority Critical patent/JPS6317268A/en
Publication of JPS6317268A publication Critical patent/JPS6317268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は接合強度の強化を図るようにした炭化珪素質材
料の接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for joining silicon carbide materials, which aims to strengthen the joining strength.

(従来の技術) セラミックスのうち炭化珪素は優れた高温強度を有して
近時その用途拡大が図られている。ところが、これはセ
ラミックス一般の例に漏れず難加工性材料であり、複雑
な形状の製品となすためには材料相互を接合することが
必要となる場合がある。
(Prior Art) Among ceramics, silicon carbide has excellent high-temperature strength, and its uses have recently been expanded. However, like all ceramics, this is a difficult-to-process material, and it may be necessary to bond the materials together to create a product with a complex shape.

従来より、この種の接合方法としては、炭化珪素焼結体
を高温下で高荷電を作用させる方法があるが、これでは
ホットプレス等の特殊な装置が必要とされる等困難が大
きい。これを避けるべく例えばガラス系の接合材を用い
る方法もあるが、これは高温における接合強度に欠ける
という欠点がある。
Conventionally, as a joining method of this type, there has been a method in which a silicon carbide sintered body is highly charged at high temperature, but this method is very difficult as it requires special equipment such as a hot press. In order to avoid this, there is a method of using, for example, a glass-based bonding material, but this has the drawback of lacking bonding strength at high temperatures.

(発明が解決しようとする問題点) 要するに、従来の炭化珪素質材料の接合方法では、特殊
な設備を使用せずに接合を行おうとすれば、十分な接合
強度を得ることができないという問題があったのである
(Problems to be Solved by the Invention) In short, the conventional method for joining silicon carbide materials has the problem that sufficient joining strength cannot be obtained if joining is attempted without using special equipment. There it was.

そこで、本発明の目的は、ホットプレス等の特殊な設備
を必要とすることなく高強度の接合を行ない得る炭化珪
素質材料の接合方法を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for joining silicon carbide materials that can perform high-strength joining without requiring special equipment such as a hot press.

[発明の構成コ (問題点を解決するための手段とその・作用)本発明の
炭化珪索質祠r4の接合方法は、所定形状に成形した炭
化珪素質材料を重ね合せて真空中又は非酸化性雰囲気中
で1400 ’C以上に加熱し、これに溶融シリコンを
接触させるところに特徴を有するものである。
[Structure of the Invention (Means for Solving the Problems and Their Functions)] The method for joining the silicon carbide rod r4 of the present invention is to stack silicon carbide materials molded into a predetermined shape and stack them in a vacuum or in a non-smoking environment. It is characterized in that it is heated to 1400'C or higher in an oxidizing atmosphere and molten silicon is brought into contact with it.

炭化珪素質材料が、炭化珪素或は炭化珪素と炭素等との
混合物からなる未焼結の成形体である場合、重ね合せ状
態にして加熱し、これに溶融シリコンを接触させると、
炭化珪素質成形体の焼結が進行すると共に、重ね合せ部
に溶融シリコンが浸透して炭化珪素とシリコンとの反応
物が生成して接合が行われる。これにより、高荷重を作
用させずとも、炭化珪素質焼結体間で大きな接合強度が
得られる。また、加熱温度は、シリコン溶融が生ずる1
400℃以上とすれば足りる。この場合、炭化珪素及び
シリコンの酸化防止のため、加熱は真空中又はアルゴン
もしくは窒素中等の非酸化性雰囲気中にて行うことが必
要である。このように、炭化珪素質材料を未焼結の成形
体とした場合には、炭化珪素質材料の焼結と接合とを同
時的に行うことができるので、焼成工程を一度で済ませ
ることができて大幅なコストダウンが可能となる。
When the silicon carbide material is an unsintered molded body made of silicon carbide or a mixture of silicon carbide and carbon, etc., when the silicon carbide material is heated in a stacked state and brought into contact with molten silicon,
As the sintering of the silicon carbide molded body progresses, molten silicon permeates into the overlapping portion, a reaction product of silicon carbide and silicon is generated, and bonding is performed. As a result, large bonding strength can be obtained between the silicon carbide sintered bodies without applying a high load. In addition, the heating temperature is 1, at which silicon melting occurs.
A temperature of 400°C or higher is sufficient. In this case, in order to prevent oxidation of silicon carbide and silicon, it is necessary to perform the heating in a vacuum or in a non-oxidizing atmosphere such as argon or nitrogen. In this way, when the silicon carbide material is made into an unsintered compact, the sintering and bonding of the silicon carbide material can be performed at the same time, so the firing process can be completed in one time. This enables significant cost reductions.

一方、本発明では、炭化珪素質材料としては、未焼結材
料に限らず、炭化珪素質粉体を所定形状に形成した後こ
れを予め焼結させてなる炭化珪素質焼結体とすることも
可能である。この場合には、炭化珪素或は炭化珪素と炭
素等とから成る未焼結の炭化珪素質成形体をまず予備焼
成により焼結させる。この後、焼結体を重ね合せて真空
中又は非酸化性雰囲気中で1400℃以上に加熱して溶
融シリコンを接触させれば、溶融シリコンが重ね合せ部
に浸透して炭化珪素とシリコンとの反応物が生成する。
On the other hand, in the present invention, the silicon carbide material is not limited to an unsintered material, but may also be a silicon carbide sintered body obtained by forming silicon carbide powder into a predetermined shape and then sintering it in advance. is also possible. In this case, an unsintered silicon carbide molded body made of silicon carbide or silicon carbide and carbon is first sintered by preliminary firing. After that, if the sintered bodies are stacked and heated to 1400°C or higher in vacuum or in a non-oxidizing atmosphere and brought into contact with molten silicon, the molten silicon will penetrate into the stacked part and cause the silicon carbide and silicon to contact each other. Reactants are produced.

これにて、やはり高荷重を作用させずとも、炭化珪素質
焼結体間で強固な接合が行われる。このように加熱を2
段に行うようにした場合には、予備焼成によって炭化珪
素とシリコンとの濡れ性が向上して炭化珪素質焼結体へ
のシリコン含浸が容易になるため、同時焼成法に比べて
同一の接合強度が得られる加熱温度をより低くすること
ができる。
In this way, strong bonding can be achieved between the silicon carbide sintered bodies without applying a high load. Heat 2 in this way
If the process is performed in stages, pre-firing improves the wettability between silicon carbide and silicon, making it easier to impregnate the silicon carbide sintered body with silicon. The heating temperature at which strength is obtained can be lowered.

(実施例1) 炭化珪素80重量%と炭素20重量%とに有機バインダ
ーを添加して混合し、金型により所定の形状に成形し、
最終的に1000 kg/ a11’で静水圧プレス成
形した。この成形体を窒素中800’Cで脱脂したもの
を重ね合せ、アルゴン中で2000℃において溶融シリ
コンと接触させた。このようにして接合を行った後、接
合体を3X4X40報に切出し、4点曲げ試験にて接合
強度を測定した。その結果は、母相強度40kg/關2
に対し、接合強度が母材強度の61%以上に相当する2
4゜5 kg / mm ’ であった。
(Example 1) An organic binder is added to and mixed with 80% by weight of silicon carbide and 20% by weight of carbon, and the mixture is molded into a predetermined shape using a mold.
Finally, it was subjected to isostatic press molding at 1000 kg/a11'. The molded bodies were degreased at 800° C. in nitrogen and then stacked on top of each other, and brought into contact with molten silicon at 2000° C. in argon. After joining in this manner, the joined body was cut into 3×4×40 pieces, and the joining strength was measured by a 4-point bending test. The result is that the matrix strength is 40 kg/2
2, where the bonding strength is equivalent to 61% or more of the base metal strength.
It was 4°5 kg/mm'.

(実施例・2) 炭化珪素100重二重量存機バインダーを添加して混合
し、金型成形して最終的に1200kg/Cff1’で
静水圧プレス成形した。この成形体をアルゴン中におい
て800℃で脱脂したものをやはりアルゴン中で180
0℃にて予備焼成した。斯くして得られた2個の炭化珪
素焼結体を互いに重ね合せ、真空中において1450’
Cにて溶融シリコンと接触させることにより接合した。
(Example 2) A 100% silicon carbide binder was added and mixed, molded with a mold, and finally hydrostatic press molded at 1200 kg/Cff1'. This molded body was degreased at 800°C in argon and then heated to 180°C in argon.
Preliminary firing was performed at 0°C. The two silicon carbide sintered bodies thus obtained were stacked on top of each other and heated to 1450' in a vacuum.
Bonding was performed by contacting with molten silicon at C.

接合体を3X 4 X 40 IIImに切出し、4点
曲げ試験を行ったところ、母材強度50kg/mm’ 
に対し、接合強度が母材強度の64%に相当する32k
g/mm’であった。
When the joined body was cut into 3 x 4 x 40 IIIm and a 4-point bending test was performed, the base material strength was 50 kg/mm'
In contrast, the bonding strength is 32k, which is equivalent to 64% of the base metal strength.
g/mm'.

[発明の効果] 以上述べたように本発明は、所定形状に成形した炭化珪
素質材料を重ね合せて真空中又は非酸化性雰囲気中で1
400℃以上に加熱し、溶融シリコンを接触させるとこ
ろに特徴を有し、これにてホットプレス等の特殊な投錨
を要さずに高強度の接合が可能になるという優れた効果
を奏するものである。
[Effects of the Invention] As described above, the present invention has silicon carbide materials formed into a predetermined shape stacked one on top of the other in a vacuum or a non-oxidizing atmosphere.
It is unique in that it is heated to over 400°C and brought into contact with molten silicon, which has the excellent effect of making high-strength joints possible without the need for special anchors such as hot pressing. be.

Claims (1)

【特許請求の範囲】[Claims] 1、所定形状に成形した炭化珪素質材料を重ね合せて真
空中又は非酸化性雰囲気中で1400℃以上に加熱し、
これに溶融シリコンを接触させることを特徴とする炭化
珪素質材料の接合方法。
1. Layer silicon carbide materials formed into a predetermined shape and heat them to 1400°C or higher in a vacuum or non-oxidizing atmosphere,
A method for joining silicon carbide materials, characterized by bringing molten silicon into contact with the material.
JP15926586A 1986-07-07 1986-07-07 Method of joining silicon carbide base materials Pending JPS6317268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15926586A JPS6317268A (en) 1986-07-07 1986-07-07 Method of joining silicon carbide base materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15926586A JPS6317268A (en) 1986-07-07 1986-07-07 Method of joining silicon carbide base materials

Publications (1)

Publication Number Publication Date
JPS6317268A true JPS6317268A (en) 1988-01-25

Family

ID=15689991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15926586A Pending JPS6317268A (en) 1986-07-07 1986-07-07 Method of joining silicon carbide base materials

Country Status (1)

Country Link
JP (1) JPS6317268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395171A (en) * 1986-10-07 1988-04-26 イビデン株式会社 Silicon carbide base tool for manufacturing semiconductor and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395171A (en) * 1986-10-07 1988-04-26 イビデン株式会社 Silicon carbide base tool for manufacturing semiconductor and manufacture

Similar Documents

Publication Publication Date Title
JPH0231033B2 (en)
EP0356800B1 (en) Silicon carbide ceramics bonding compositions
EP0357491B1 (en) Method for the preparation of an integrally conjoined sintered body of silicon carbide
US4209478A (en) Method of sintering ceramics
JPS61197476A (en) Composite body and manufacture
US4163074A (en) Method for fast adhesion of silver to nitride type ceramics
JPS6317268A (en) Method of joining silicon carbide base materials
JPS60171274A (en) Ceramic bonding method
JPH0579630B2 (en)
JPS6317269A (en) Method of joining silicon carbide base sintered body
JPS5884186A (en) Ceramics bonding method
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS60251177A (en) Bonding method
JP3154770B2 (en) Silicon nitride ceramics joints
JPH1171186A (en) Bound structure of ceramic to metal and its binding
JPS61132562A (en) Manufacture of silicon carbide sintered body
JPS6077179A (en) Method of adhering silicon nitride ceramic sintered body
JPH0427192B2 (en)
JPS5864270A (en) Silicon nitride sintered body
JPS6296369A (en) Si3n4 silicon carbide composite sintered body and manufacture
JPH0369867B2 (en)
JPS63206365A (en) Joined body of ceramic and metal
JPS6230678A (en) Manufacture of high strength silicon nitride base ceramics
JP2600104B2 (en) Manufacturing method of composite material parts
JPH04160070A (en) Ceramic joint body and its production