JPS63172122A - Field effect type liquid crystal display element - Google Patents

Field effect type liquid crystal display element

Info

Publication number
JPS63172122A
JPS63172122A JP350287A JP350287A JPS63172122A JP S63172122 A JPS63172122 A JP S63172122A JP 350287 A JP350287 A JP 350287A JP 350287 A JP350287 A JP 350287A JP S63172122 A JPS63172122 A JP S63172122A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
flickering
display element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP350287A
Other languages
Japanese (ja)
Inventor
Hirobumi Wakemoto
博文 分元
Shoichi Ishihara
將市 石原
Fumiko Yokoya
横谷 文子
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP350287A priority Critical patent/JPS63172122A/en
Publication of JPS63172122A publication Critical patent/JPS63172122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent increase in flickering which arises from a temp. rise by specifying the imido forming rate of a polyimide oriented film. CONSTITUTION:The ratio of the effective voltage applied on each dielectric layer with lapse of time so changes as to be equalized to the ratio of the electric resistances of the respective dielectric layers. If an unbalance arises between upper and lower substrates 1 and 9, the quantity of the electric charge accumulated on the respective substrates of a liquid crystal element 7 varies and the effective voltage applied on the liquid crystal layer varies in polarity. Such variation is the cause for flickering. However, the accumulation of the electric charge at the liquid crystal-oriented film boundary face hardly arises if the polyamic acid remains in the film. In addition, the charge hardly accumulates in the film itself. The flickering is thereby decreased and the increase in the flickering at the time of the temp. rise is prevented as well. The imido forming rate of the polyimide oriented film is specified to 40-80%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気光学的な液晶ディスプレイに用いられる液
晶表示素子、更に詳しくはe o Hz以下の低周波数
、駆動を行う液晶表示素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid crystal display element used in an electro-optical liquid crystal display, and more particularly to a liquid crystal display element that is driven at a low frequency of e o Hz or less.

従来の技術 電界効果型液晶表示素子における配向膜には、化学的安
定性、熱的安定性のほか、電極から液晶層中への電荷の
注入を少なくし素子の信頼性を上げるため、液晶材料の
電気絶縁性に比べて充分高い電気絶縁性が求められてお
り、ポリオキシエチレン、ポリイミド、ポリアミドやア
セチレンのプラズマ重合膜などの薄膜、および二酸化ケ
イ素の斜方蒸着膜などが適格な材料として知られている
Conventional technology In addition to chemical stability and thermal stability, the alignment film in field-effect liquid crystal display elements is made of liquid crystal material in order to reduce the injection of charge from the electrodes into the liquid crystal layer and increase the reliability of the element. There is a need for electrical insulation properties that are sufficiently high compared to those of other materials, and thin films such as plasma polymerized films of polyoxyethylene, polyimide, polyamide, and acetylene, and obliquely vapor-deposited films of silicon dioxide are known as suitable materials. It is being

なかでもポリイミドは化学的安定性、量産性、コストの
点で優れており、半導体のパッシベーション膜としての
実績もあることより、大部分の液晶表示素子に用いられ
てきている。
Among them, polyimide is superior in terms of chemical stability, mass productivity, and cost, and has a proven track record as a passivation film for semiconductors, so it has been used in most liquid crystal display elements.

通常の交流駆動では、印加電界の極性反転時に液晶層に
は所定の実効電圧が印加されるものの、次の極性反転時
(301−lx駆動の場合には16.6mg後)までに
液晶層にかかる実効電圧は低下してしまう。そのため、
液晶表示素子の光透過率は駆動周波数の2倍の周波数で
もって変化する。
In normal AC driving, a predetermined effective voltage is applied to the liquid crystal layer when the polarity of the applied electric field is reversed; This effective voltage will drop. Therefore,
The light transmittance of a liquid crystal display element changes at a frequency twice the driving frequency.

発明が解決しようとする問題点 しかしながら、実際の液晶表示素子の透過光には1.駆
動周波数の2倍の周波数の光成分のみならず1、駆動周
波数と同一の周波数の光成分をも含んでいる。特に、6
0〜60−未満の低周波数で駆動する場合には、この光
透過率の周期的変動は人間の眼にはちらつき(フリッカ
)として認識され、表示される画像の品質を著しく低下
させる。上記問題点を解決する方法としては、■1画素
を二つに分け、それぞれに同じ大きさでかつ反対極性の
電圧を印加し、見かけ上フリッカを相殺する方法や、■
液晶材料の改良によりフリッカを少なくする方法(宍田
ほか、昭和69年0電気関係学会関西支部連合大会G9
−1s)などが行われている。
Problems to be Solved by the Invention However, the transmitted light of an actual liquid crystal display element has 1. It includes not only an optical component with a frequency twice the driving frequency, but also an optical component with the same frequency as the driving frequency. In particular, 6
When driven at a low frequency of less than 0 to 60 -, this periodic variation in light transmittance is perceived by the human eye as flicker, significantly reducing the quality of the displayed image. Methods to solve the above problems include (1) dividing one pixel into two and applying voltages of the same magnitude and opposite polarity to each to cancel out the apparent flicker;
Method for reducing flicker by improving liquid crystal materials (Shishida et al., 1986 0 Electrical Association Kansai Branch Conference G9
-1s) etc. are being carried out.

しかしながら前者の方法は新たな駆動用ICが必要であ
り、コストアップとともに消費電力量の増大をもたらす
。一方、後者の液晶材料から解決しようとする試みは、
必ずしもすべてのフリッカ現象に有効ではなく、優れた
電気光学特性を出すための液晶材料の選択範囲を大幅に
狭めることにもなり実用的ではない。
However, the former method requires a new driving IC, which increases the cost and power consumption. On the other hand, attempts to solve the latter problem using liquid crystal materials,
This method is not necessarily effective against all flicker phenomena, and it is not practical because it greatly narrows down the selection range of liquid crystal materials for achieving excellent electro-optical characteristics.

また、このような駆動周波数と同一周期のフリッカは、
液晶に加わる実効電圧が十電圧と一電圧で同じになるよ
うに駆動電圧を調整し、最適駆動電圧に設定することで
、ある程度低減できる。しかし、温度が変化すると最適
駆動電圧も変化する場合が多く、一般に、液晶の応答速
度が速まるのとあいまって、温度の上昇にともないフリ
ッカが増大する。
In addition, flicker with the same period as the driving frequency is
This can be reduced to some extent by adjusting the drive voltage so that the effective voltage applied to the liquid crystal is the same for 10 voltages and 1 voltage, and setting it to the optimum drive voltage. However, as the temperature changes, the optimum drive voltage often changes, and in general, flicker increases as the temperature rises, along with the faster response speed of the liquid crystal.

問題点を解決するだめの手段 少なくとも、その表面がポリイミド配向膜でおおわれた
電極を有する2枚の基板と、前記基板間に挾持された液
晶層とからなる電界効果型液晶表示素子において、前記
ポリイミド配向膜のイミド化率が40%以上、8o%以
下であることを特徴とする電界効果型液晶表示素子を用
いる。
Means for Solving the Problems In a field effect liquid crystal display element comprising at least two substrates having electrodes whose surfaces are covered with a polyimide alignment film, and a liquid crystal layer sandwiched between the substrates, the polyimide A field effect liquid crystal display element is used, which is characterized in that the imidization rate of the alignment film is 40% or more and 8o% or less.

作  用 駆動周波数と同一の周期で光透過率が変化するというこ
とは、液晶層に印加される電圧の極性により光透過率が
変化することを意味している。即ち、この現象は液晶層
に加わる実効電圧が十の電圧と−の電圧とで異なること
を意味し7ている。各誘電体層にかかる実効電圧は、電
界極性反転時には各誘電体層の容量に応じて加わるが、
時間の経過とともに各誘電体層にかかる実効電圧の比は
各誘電体層の電気抵抗の比に等しくなるように変化する
。しかし、界面分極やイオン移動等にともなう空間電荷
層の形成や電荷注入などが起こると現象は複雑となる。
The fact that the light transmittance changes with the same period as the operating driving frequency means that the light transmittance changes depending on the polarity of the voltage applied to the liquid crystal layer. That is, this phenomenon means that the effective voltage applied to the liquid crystal layer is different between a voltage of 10 and a voltage of -. The effective voltage applied to each dielectric layer is applied according to the capacitance of each dielectric layer when the electric field polarity is reversed.
Over time, the ratio of effective voltages applied to each dielectric layer changes to become equal to the ratio of electrical resistances of each dielectric layer. However, the phenomenon becomes complicated when a space charge layer is formed or charge injection occurs due to interfacial polarization, ion movement, etc.

これらの現象に上下基板間でアンバランスが生じると、
液晶素子の一方の基板上と他方の基板上で蓄積される電
荷量が異なシ、液晶層に加わる実効電圧が極性によって
異なることとなり、フリッカの原因となる。また、素子
の温度が上昇すると、液晶の粘度の低下にともなって、
液晶の応答速度が速くなるために、液晶層に加わる実効
電圧の極性によるアンバランスは、低温時に比べて、よ
り大きなフリッカとして現われる。
If an imbalance occurs between the upper and lower boards due to these phenomena,
Since the amount of charge accumulated on one substrate of the liquid crystal element differs from that on the other substrate, the effective voltage applied to the liquid crystal layer differs depending on the polarity, which causes flicker. Additionally, as the temperature of the element increases, the viscosity of the liquid crystal decreases,
Because the response speed of the liquid crystal becomes faster, imbalance due to the polarity of the effective voltage applied to the liquid crystal layer appears as larger flicker than at low temperatures.

本発明液晶素子のフリッカが何故少ないかは明らかでは
ないが、配向膜のイミド化率が8o%以下であり、膜中
にポリアミド酸が残っていることから、液晶−配向膜界
面での電荷蓄積が起こりにくいことや、イミド化率が1
oo%に近い膜に比べて抵抗が低く、膜自体にも電荷が
蓄積しにくいために、フリッカが非常に少なく、温度上
昇時にもフリッカが増大しないと考えられる。
It is not clear why the flicker of the liquid crystal element of the present invention is low, but since the imidization rate of the alignment film is less than 8o% and polyamic acid remains in the film, charge accumulation at the interface between the liquid crystal and the alignment film is unlikely to occur, and the imidization rate is 1.
Since the resistance is lower than that of a film close to 0.0%, and it is difficult for charges to accumulate in the film itself, there is very little flicker, and it is thought that flicker does not increase even when the temperature rises.

実施例 平均透過光強度 本実施例では駆動波形をf=3oh、矩形波とし、液晶
表示素子の光透過率をso%変化させるのに要する電圧
■60を印加してm値を測定した。透過光変動の30円
成分はスペクトラム・アナライザ(アトパンテスト(株
)製T R−9406)にて分離した。また、イミド化
率はニコレー社製FT−IRスペクトロフォトメータ6
oSXを用い、配向膜中のCO伸縮振動に基づく吸収の
大きさを測定し算出した。この時、350″Cにて1時
間硬化したポリイミド配向膜のイミド化率を100%と
仮定した。
Example Average Transmitted Light Intensity In this example, the drive waveform was set to f=3oh and a rectangular wave, and the m value was measured by applying a voltage of 60 required to change the light transmittance of the liquid crystal display element by so%. The 30-yen component of the transmitted light fluctuation was separated using a spectrum analyzer (TR-9406 manufactured by Atopan Test Co., Ltd.). In addition, the imidization rate was measured using a Nikolay FT-IR spectrophotometer 6.
Using oSX, the magnitude of absorption based on CO stretching vibration in the alignment film was measured and calculated. At this time, it was assumed that the imidization rate of the polyimide alignment film cured at 350''C for 1 hour was 100%.

フリッカが感じられるレベルは個人差も大きいが、30
Hzの場合、輝度変調度m (0、01では殆どの場合
フリッカは認識されない。
The level at which flicker can be felt varies greatly from person to person, but
In the case of Hz, flicker is not recognized in most cases when the brightness modulation degree m (0, 01).

以下に本発明の実施の態様を図面を参照しつつ詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

〈実施例1〉 第1図に示される構成を有するTN型液晶表示特性評価
セルを作成した。配向膜3,4として日立化成製ポリイ
ミド樹脂P I Q (4,6wt%、NMP溶液)を
ITO電極2.8を有するガラス基板1.9上に硬化後
の膜厚が1000人となるようスピンコード法により塗
布した。その後、塗布したポリイミド樹脂を窒素気流中
120〜300°Cの温度で2時間硬化させ、イミド化
率の異なる配向膜を有する基板を作成した。第2図はこ
の時の配向膜の硬化温度とイミド化率との関係を表した
ものである。
<Example 1> A TN type liquid crystal display characteristic evaluation cell having the configuration shown in FIG. 1 was created. As alignment films 3 and 4, polyimide resin P I Q (4.6 wt%, NMP solution) manufactured by Hitachi Chemical was spun onto a glass substrate 1.9 having an ITO electrode 2.8 so that the film thickness after curing was 1000 nm. It was applied using the cord method. Thereafter, the applied polyimide resin was cured in a nitrogen stream at a temperature of 120 to 300° C. for 2 hours to produce substrates having alignment films with different imidization rates. FIG. 2 shows the relationship between the curing temperature of the alignment film and the imidization rate at this time.

次に、作成したガラス基板を常法に従い、5.0μmガ
ラスファイバ製スペーサ6を介して貼り合わせ、メルク
社製液晶ZL I −1566を減圧注入し、エポキシ
愼脂により注入口を封止し、偏光板をノーマリブラック
モードで貼り評価セルA、B。
Next, the prepared glass substrates were bonded together via a 5.0 μm glass fiber spacer 6 according to a conventional method, liquid crystal ZL I-1566 manufactured by Merck & Co. was injected under reduced pressure, and the injection port was sealed with epoxy resin. Evaluation cells A and B with polarizing plates pasted in normally black mode.

C,D、Eを作成したへ表1は各評価セル中の配向膜の
イミド化率を表している。
Table 1 shows the imidization rate of the alignment film in each evaluation cell.

表    1 次にキャノン社製液晶評価装置を用いて、20°Cで各
素子の電圧−透過率特性を測定し、光透過率が60%変
化するのに要する電圧v5oを求めた。そして、前述の
方法により3o−の輝度変調度mを測定し、結果を表2
に示した。尚、評価セルAは、評価セル作成中のラビン
グ処理により、膜のはく離が起こり、評価することがで
きなかった。膜の接着強度や硬度、素子の信頼性の点か
ら、イミド化率は少なくとも40チ以上であることが必
要であシ、製造工程の歩留シを考えれば、イミド化率は
50%以上であることが好ましい。
Table 1 Next, the voltage-transmittance characteristics of each element were measured at 20° C. using a Canon liquid crystal evaluation device, and the voltage v5o required for a 60% change in light transmittance was determined. Then, the luminance modulation degree m of 3o- was measured using the method described above, and the results are shown in Table 2.
It was shown to. In addition, evaluation cell A could not be evaluated because the film peeled off due to the rubbing treatment during the preparation of the evaluation cell. From the point of view of the adhesive strength and hardness of the film and the reliability of the device, the imidization rate must be at least 40%, and considering the yield of the manufacturing process, the imidization rate must be 50% or more. It is preferable that there be.

表    2 表2より、配向膜のイミド化率がso%以下の評価セル
B、C,Dは、1oo%イミド化が進んだ配向膜を用い
たセルEと比較してm値が小さいことが分かる。この結
果より、配向膜のイミド化率は、40%〜80%、とく
に60%付近が、フリッカの点で最も良い特性を与える
Table 2 From Table 2, evaluation cells B, C, and D, in which the imidization rate of the alignment film is less than so%, have smaller m values than cell E, which uses an alignment film that has been imidized by 10%. I understand. From this result, the imidization rate of the alignment film is 40% to 80%, particularly around 60%, giving the best characteristics in terms of flicker.

〈実施例2〉 実施例1には、評価セルの上下基板に対称な3゜庵の矩
形波を印加した場合の例であった。30−のフリッカは
、前述したように、液晶層に加わる実効電圧の極性によ
るアンバランスによると考えられる。一方の基板にバイ
アス電圧を加えることで、液晶層に加わる実効電圧のア
ンバランスを小さくし、フリッカを低減させることがで
きる。そこで、実施例1で用いた評価セルB、Hについ
て、各々適当なバイアス電圧を加えることにより、20
°Cでのv5゜におけるm値が最少となるように調整し
た。バイアス電圧はセルにより異なるが、5mVから1
70mVの範囲であった。
<Example 2> Example 1 was an example in which symmetrical 3° rectangular waves were applied to the upper and lower substrates of the evaluation cell. The flicker of 30- is considered to be due to the unbalance due to the polarity of the effective voltage applied to the liquid crystal layer, as described above. By applying a bias voltage to one of the substrates, it is possible to reduce the unbalance of the effective voltage applied to the liquid crystal layer and reduce flicker. Therefore, by applying appropriate bias voltages to evaluation cells B and H used in Example 1, 20
The m value at v5° at °C was adjusted to be the minimum. The bias voltage varies depending on the cell, but it ranges from 5 mV to 1
It was in the range of 70 mV.

次に、駆動電圧、バイアス電圧を一定に保ったまま、セ
ルの温度を60″Cに上げてm値の変化を調べた。20
″Cと60°Cにおける各評価セルのm値を表3に示し
た。
Next, while keeping the drive voltage and bias voltage constant, the cell temperature was raised to 60"C and changes in the m value were investigated.20
Table 3 shows the m values of each evaluation cell at 60°C and 60°C.

表    3 表3より、20°Cではバイアス電圧を加えることによ
り、いずれのセルもm値を低いレベルに押えることがで
きることが分かる。しかし、60°Cに温度を上げると
、イミド化率100チのセルEは、他のセルに比べてm
値の増加が大きい。
Table 3 From Table 3, it can be seen that at 20° C., by applying a bias voltage, the m value can be suppressed to a low level in any cell. However, when the temperature is raised to 60°C, cell E with an imidization rate of 100% has m
The increase in value is large.

表3から明らかなように、セルB、C,Dは温度が上昇
したときのフリッカの増加が少ない。素子の実際の使用
においては、バックライトの使用や使用環境の温度変化
によシ、温度上昇が起こるため、温度上昇にともなって
フリッカが増加しないことは、実用上、大きな利点であ
る。とくに、イミド化率が約60%のポリイミド膜を用
いた電界効果型液晶表示素子は、温度上昇にともなうフ
リッカの増加が非常に小さく、低周波で、駆動するアク
ティブマトリクス型液晶表示素子に用いた場合その実用
価値は極めて高い。
As is clear from Table 3, cells B, C, and D show little increase in flicker when the temperature rises. In actual use of the device, the temperature rises due to the use of a backlight and temperature changes in the usage environment, so it is a great practical advantage that flicker does not increase as the temperature rises. In particular, field-effect liquid crystal display elements using a polyimide film with an imidization rate of about 60% have a very small increase in flicker as the temperature rises, and are suitable for use in active matrix liquid crystal display elements driven at low frequencies. In this case, its practical value is extremely high.

発明の効果 以上述べたように、本発明の電界効果型液晶表示素子は
、駆動周波数と同一の周波数で変化する素子の光透過率
の変化(フリッカ)を著しく小さくし、かつ、温度が上
昇しても、フリッカが増加しないため、画像の表示品質
が良く、その実用的価値は非常に高い。
Effects of the Invention As described above, the field-effect liquid crystal display element of the present invention significantly reduces the change in light transmittance (flicker) of the element that changes at the same frequency as the driving frequency, and also reduces temperature rise. However, since there is no increase in flicker, the display quality of images is good, and its practical value is very high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である表示特性評価セルの構
成を説明するだめの断面図、第2図は配向膜の硬化温度
とイミド化率との関係を表しだグラフ−である。 1.9・・・・・・ガラス基板、2,8・・・・・・I
TO電極、3.4・・・・・・配向膜、6・・・・・・
シール樹脂、6・・・・・・ガラスファイバスペーサ、
7・・・・・・液晶。
FIG. 1 is a cross-sectional view illustrating the structure of a display characteristic evaluation cell according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the curing temperature of the alignment film and the imidization rate. 1.9...Glass substrate, 2,8...I
TO electrode, 3.4...Alignment film, 6...
Seal resin, 6...Glass fiber spacer,
7...LCD.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも、その表面がポリイミド配向膜でおお
われた電極を有する2枚の基板と、前記基板間に挾持さ
れた液晶層とからなる電界効果型液晶表示素子において
、前記ポリイミド配向膜のイミド化率が40%以上、8
0%以下であることを特徴とする電界効果型液晶表示素
子。
(1) In a field effect liquid crystal display element consisting of at least two substrates having electrodes whose surfaces are covered with a polyimide alignment film and a liquid crystal layer sandwiched between the substrates, the polyimide alignment film is imidized. Rate is 40% or more, 8
A field-effect liquid crystal display element characterized in that the field-effect liquid crystal display element is 0% or less.
(2)ポリイミド配向膜が熱縮合型ポリイミドであるこ
とを特徴とする特許請求の範囲第1項に記載の電界効果
型液晶表示素子。
(2) The field-effect liquid crystal display device according to claim 1, wherein the polyimide alignment film is a thermally condensed polyimide.
(3)ポリイミド配向膜のイミド化率が概略60%であ
ることを特徴とする特許請求の範囲第2項に記載の電界
効果型液晶表示素子。
(3) The field-effect liquid crystal display device according to claim 2, wherein the imidization rate of the polyimide alignment film is approximately 60%.
JP350287A 1987-01-09 1987-01-09 Field effect type liquid crystal display element Pending JPS63172122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP350287A JPS63172122A (en) 1987-01-09 1987-01-09 Field effect type liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP350287A JPS63172122A (en) 1987-01-09 1987-01-09 Field effect type liquid crystal display element

Publications (1)

Publication Number Publication Date
JPS63172122A true JPS63172122A (en) 1988-07-15

Family

ID=11559128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP350287A Pending JPS63172122A (en) 1987-01-09 1987-01-09 Field effect type liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS63172122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424227A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424227A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Liquid crystal display device

Similar Documents

Publication Publication Date Title
US6704082B2 (en) Liquid crystal display device
JP4052307B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP3731229B2 (en) Polyamide acid, polyimide film, liquid crystal alignment film using the same, and liquid crystal display element
EP0450549A1 (en) Liquid crystal device and display apparatus
US20070178250A1 (en) Active matrix type liquid crystal display apparatus
US6027772A (en) Optical alignment composition, alignment layer formed using the same and LCD having the alignment layer
JPH01303413A (en) Liquid crystal display device
US5326600A (en) Liquid crystal device
US5330803A (en) Liquid crystal device
JP3536925B2 (en) Liquid crystal alignment film and liquid crystal display device
US5250330A (en) Liquid crystal device
US5576864A (en) Chiral smectic liquid crystal device having fluorine-containing polymeric alignment film with predetermined refractive index anisotropy after rubbing
US5400159A (en) Liquid crystal device having alignment film with particular surface energy difference before and after rubbing
US6627269B2 (en) Photo-alignment material and liquid crystal display device
JPS63172122A (en) Field effect type liquid crystal display element
JPH02310524A (en) Liquid crystal display device
JPH0264525A (en) Tn type liquid crystal panel
JPS6377024A (en) Field effect type liquid crystal display element
JPH03293325A (en) Liquid crystal display device
JP3780082B2 (en) Active matrix liquid crystal display device
JP3780063B2 (en) Active matrix liquid crystal display device
JPS6377016A (en) Field effect type liquid crystal display element
JPH11222593A (en) Liquid crystal composition and liquid crystal element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2012108252A (en) Liquid crystal display element and manufacturing method for the same