JPS63169320A - Production of low-sulfur steel - Google Patents

Production of low-sulfur steel

Info

Publication number
JPS63169320A
JPS63169320A JP31564686A JP31564686A JPS63169320A JP S63169320 A JPS63169320 A JP S63169320A JP 31564686 A JP31564686 A JP 31564686A JP 31564686 A JP31564686 A JP 31564686A JP S63169320 A JPS63169320 A JP S63169320A
Authority
JP
Japan
Prior art keywords
steel
slag
converter
ladle
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31564686A
Other languages
Japanese (ja)
Inventor
Yoshihisa Tsuda
津田 宣久
Jun Ogura
小倉 順
Youzou Yamada
容三 山田
Satohiro Yamada
山田 郷博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31564686A priority Critical patent/JPS63169320A/en
Publication of JPS63169320A publication Critical patent/JPS63169320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To efficiently and quickly smelt the titled steel to <=5ppm concn. of [S] therein by charging a desulfurizing material at the ratio determined by the concn. of [O] in the converter blowing out steel to control the component compsn. of slag and further, charging the desulfurizing agent into the molten steel while maintaining the specific compsn. of the slat at the time of tapping the steel into a ladle. CONSTITUTION:The charging amt. of the desulfurizing material for reforming the slag is determined from the concn. of [O] in the converter blowing out steel or is determined from the concn. of [O] in the converter blowing out steel and the amt. of the slag discharged from the converter if the amt. of the slag discharged from the converter is large at the time of tapping the steel from the converter into the ladle. The CaO in the slag prior to a ladle desulfurization process is controlled to 60-70%, Al2O3 to 15-25% and SiO2 to 5-15%; thereafter, the desulfurization treatment is executed while the desulfurizing agent essentially consisting of lime is blown into the molten steel. The slag compsn. is maintained at 60-70% CaO, 25-35% Al2O3 and <=10% SiO2 during this time. The easy adjustment of the slag having high desulfurization capacity is thereby permitted without removing the converter slag flowing out into the ladle and the quick and efficient smelting of the steel to <=5ppm [S] in the steel is permitted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は転炉出鋼後の取鍋溶鋼脱硫工程、特に減圧上粉
体吹込みにおける溶鋼の脱硫方法に関し、鋼中[5]濃
度を5ppm以下に短時間で容易に得ることが出来る溶
鋼の脱硫方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ladle molten steel desulfurization process after steel tapping in a converter, particularly a method for desulfurizing molten steel in powder injection under reduced pressure. The present invention relates to a method for desulfurizing molten steel that can easily obtain a concentration of 5 ppm or less in a short time.

[従来の技術] 最近、耐サワーラインパイプ材等の分野において、溶鋼
の清浄化や硫化物形態制御等を含めた品質要求の厳格化
は著しい。このような要求を満足させるためには、転炉
のみの脱[S]では不可能であり、転炉出鋼後に取鍋脱
硫処理を実施する必要がある。従来、取鍋溶鋼脱硫工程
においては、転炉から出鋼時スラグが取鍋内に流出し、
この流出スラグ中のFed、 MnOが脱硫を阻害する
ため、特願昭61−103121 、特開昭61−64
811.特開昭61−143510号公報で各々提案さ
れているように、下記の手段等によって実施されている
[Prior Art] Recently, in the field of sour-resistant line pipe materials, quality requirements including cleaning of molten steel, control of sulfide morphology, etc. have become significantly stricter. In order to satisfy such requirements, it is impossible to remove [S] only in the converter, and it is necessary to carry out ladle desulfurization treatment after tapping the steel in the converter. Conventionally, in the ladle molten steel desulfurization process, slag flows into the ladle when steel is tapped from the converter.
Since Fed and MnO in this outflow slag inhibit desulfurization,
811. As proposed in Japanese Unexamined Patent Publication No. 61-143510, these methods are implemented by the following means.

(1)転炉出鋼時のスラグ流にCaC,等を投入し、F
eO。
(1) Add CaC, etc. to the slag flow during steel tapping in the converter, and F
eO.

MnOを還元する方法 (2)取鍋内に流出した転炉スラグを除去した後、脱硫
フラックスを溶鋼上に添加し、アーク加熱等により脱硫
スラグを滓加させ、脱硫を行う方法。
Method for reducing MnO (2) After removing the converter slag that has flowed into the ladle, desulfurization flux is added onto the molten steel, and the desulfurization slag is added to the molten steel by arc heating or the like to perform desulfurization.

(3)浴面上のスラグを攪拌又は流動させることなく溶
鋼中に石灰を主成分とする脱硫材を添加する方法 [発明が解決しようとする問題点コ しかしく1)の方法では脱硫を阻害するFed、 Mn
Oは還元されるが、CaC,等は高価でありコスト負担
が大きいこと、(2)の方法では鋼中[S]濃度を5p
pm以下に短時間に効率的には得られないこと、(3)
の方法では吹込んだ脱硫材が十分滓化しない等の問題点
がある。
(3) A method of adding a desulfurization agent mainly composed of lime to molten steel without stirring or fluidizing the slag on the bath surface [Problems to be solved by the invention However, method 1) inhibits desulfurization. Fed, Mn
O is reduced, but CaC, etc. are expensive and the cost burden is large, and method (2) reduces the [S] concentration in the steel to 5p.
pm or less cannot be obtained efficiently in a short time; (3)
This method has problems such as the injected desulfurization material not turning into slag sufficiently.

本発明は鋼中[Sコ濃度を5ppm以下に短時間で効率
的かつ安定して溶製できることを目的とする溶鋼の精錬
法を提案するものである。
The present invention proposes a method for refining molten steel, which aims to efficiently and stably produce molten steel in a short period of time to reduce the S concentration in the steel to 5 ppm or less.

[問題点を解決するための手段] 本発明に係る溶鋼の脱硫法は、以上述べた従来技術が有
する多くの問題点を解決したもので、転炉出鋼時にスラ
グ改質用脱硫材投入量を転炉吹止鋼中[O]濃度から決
定するか、あるいは転炉流出スラグ量が多い場合は転炉
吹止鋼中[O]濃度と転炉流出スラグ量から決定し、取
鍋脱硫工程前のスラグ中CaOが60乃至75%、12
0.が15乃至25%。
[Means for Solving the Problems] The molten steel desulfurization method according to the present invention solves many of the problems of the conventional techniques described above. is determined from the [O] concentration in the converter blow-off steel, or if the amount of slag flowing out from the converter is large, it is determined from the [O] concentration in the converter blow-stop steel and the amount of slag flowing out from the converter, and then the ladle desulfurization process is performed. CaO in the previous slag is 60 to 75%, 12
0. is 15 to 25%.

SiO□が5乃至15%にコントロールし、しかる後石
灰を主成分とする脱硫材を溶鋼中に吹込みつつ脱硫処理
を行い、その間スラグ組成がCaOが60乃至70%、
AQ203が25乃至35%、 SiO□が10%以下
に維持することを特徴とする低硫鋼の製造法である。
After controlling the SiO□ content to 5 to 15%, desulfurization treatment is carried out while injecting a desulfurization material mainly composed of lime into the molten steel, during which time the slag composition is 60 to 70% CaO
This is a method for producing low sulfur steel characterized by maintaining AQ203 at 25 to 35% and SiO□ at 10% or less.

[作用] 粉体吹込みを行う取鍋精錬法において、脱硫−に最適な
スラグ組成は第1図のとと< 1600℃におけるCa
O−AQ 20.−3i0.3元系スラグ状態図ではC
aOが約65%、Al2O3が約30%、 SiO2が
約5%近傍(第2図A′部)のスラグ組成が脱硫能が高
い。
[Function] In the ladle refining method that involves powder injection, the optimum slag composition for desulfurization is as shown in Figure 1 and Ca at < 1600°C.
O-AQ 20. -3i0. In the ternary slag phase diagram, C
A slag composition of approximately 65% aO, approximately 30% Al2O3, and approximately 5% SiO2 (section A' in Figure 2) has a high desulfurization ability.

しかし出鋼時転炉から取鍋へ流出する転炉スラグを除去
しない本発明法では、取鍋精錬法でスラグ中Fed、 
MnOが還元されてスラグ中のAl220.が増加する
ため、取鍋精錬中にスラグ組成を第2図に示すA′の領
域に維持することは困難である。
However, in the method of the present invention, in which the converter slag flowing out from the converter to the ladle during tapping is not removed, the Fed in the slag is removed by the ladle refining method.
MnO is reduced and Al220. As a result, it is difficult to maintain the slag composition in the region A' shown in FIG. 2 during ladle refining.

そこで上記に示すように、取鍋精錬処理前のスラグ組成
を第1段階として第2図に示すAの領域にコントロール
し、取鍋精錬開始直後から取鍋精錬終了まで第2図に示
すA′の領域にスラグ組成を常にコントロールするよう
に、取鍋精錬で石灰ホタル石粉を鋼中に吹込み、脱硫能
の高いスラグと溶鋼の反応により溶鋼を脱硫するもので
ある。
Therefore, as shown above, the slag composition before the ladle refining treatment is controlled in the region A shown in Fig. 2 as the first step, and from immediately after the start of ladle refining to the end of ladle refining, the slag composition is controlled in the region A' shown in Fig. 2. Lime fluorite powder is injected into the steel during ladle refining so that the slag composition is constantly controlled within the range of 100 to 100%, and the molten steel is desulfurized by the reaction between the slag, which has a high desulfurization ability, and the molten steel.

[実施例コ 300トン転炉において脱炭、脱リン等の処理を行った
後、吹止鋼中酸素濃度を測定し、その後スラグボール等
を用いること等により転炉から出鋼中に取鍋中へ流出す
るスラグ量をコントロールし、第3図に示す基準に基づ
いて石灰を1500kg投入するとともに、石灰を滓化
する目的でホタル石を300kg投入した。出鋼後のス
ラグをサンプリングし、分析を行った所、CaOが68
%、AQ、0.が18%。
[Example 1] After decarburization, dephosphorization, etc. were carried out in a 300-ton converter, the oxygen concentration in the blow-stop steel was measured, and then a ladle was removed during tapping from the converter by using a slag ball, etc. The amount of slag flowing into the tank was controlled, and 1,500 kg of lime was added based on the standards shown in Figure 3, and 300 kg of fluorspar was added for the purpose of turning the lime into slag. When the slag after tapping was sampled and analyzed, the CaO content was 68.
%, AQ, 0. is 18%.

Sin、が14%であるスラグが得られた。A slag with a Sin of 14% was obtained.

その後減圧下で粉体吹込みが可能な取鍋精錬設備で脱ガ
スと同時に脱硫を行う目的で石灰を1000kg 。
After that, 1000 kg of lime was added for the purpose of degassing and desulfurization at the same time as degassing in a ladle refining facility that can inject powder under reduced pressure.

ホタル石を250kg投入し脱硫処理を行い、第1表に
示すような組成の鋼が得られた。このときのスラグ組成
はCaOが65%、AQ20.が3θ%、 Sin、が
5%であった。
250 kg of fluorspar was added and desulfurized, and steel having the composition shown in Table 1 was obtained. The slag composition at this time was 65% CaO and 20% AQ. was 3θ% and Sin was 5%.

第    1    表 第4図は脱硫処理後の溶鋼中[S]濃度を従来法と共に
示し、第5図は本発明による鋼中[S]の時間的推移を
示す。
Table 1, FIG. 4 shows the [S] concentration in molten steel after desulfurization treatment as well as the conventional method, and FIG. 5 shows the time course of [S] in steel according to the present invention.

[発明の効果] 本発明により取鍋内に流出する転炉スラグを除去するこ
となく、脱硫能の高いスラグを容易に調整することが可
能となり、短時間で効率的に鋼中[S]を5ppm+以
下に溶製することが出来る。
[Effect of the invention] The present invention makes it possible to easily prepare slag with high desulfurization ability without removing converter slag flowing into the ladle, and efficiently removes [S] in steel in a short time. It can be dissolved to 5 ppm+ or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は最適スラグ組成を示す状態図、第2図は本発明
による取鍋前後のスラグ組成、第3図は本発明による石
灰投入量、第4図は本発明の効果を示す鋼中[S]のグ
ラフ図、第5図は取鍋精錬での鋼中[:S]’の時間的
推移を示す図である。
Fig. 1 is a phase diagram showing the optimum slag composition, Fig. 2 is the slag composition before and after the ladle according to the present invention, Fig. 3 is the amount of lime input according to the present invention, and Fig. 4 is a phase diagram showing the effect of the present invention. Figure 5 is a graph showing the time course of [:S]' in steel during ladle refining.

Claims (2)

【特許請求の範囲】[Claims] (1)転炉から取鍋へ出鋼する際、石灰を主成分とする
脱硫材を投入するに際し、その投入量を転炉吹止鋼中[
O]濃度により決定し、投入後のスラグ組成がCaOが
60乃至75%、Al_2O_3が15乃至25%、S
iO_2が5乃至15%とし、しかる後石灰を主成分と
する脱硫材を溶鋼中に吹込みつつ脱硫処理を行い、その
間スラグ組成がCaOが60乃至70%、Al_2O_
3が25乃至35%、SiO_2が10%以下に維持す
ることを特徴とする低硫鋼の製造法。
(1) When tapping steel from the converter to the ladle, when adding desulfurization material whose main component is lime, the amount of desulfurization material in the converter blow-stopping steel [
O] determined by the concentration, and the slag composition after charging is 60 to 75% CaO, 15 to 25% Al_2O_3, S
iO_2 is set to 5 to 15%, and then desulfurization treatment is performed while injecting a desulfurization material mainly composed of lime into the molten steel, during which the slag composition is 60 to 70% CaO, Al_2O_
A method for producing low sulfur steel, characterized in that 3 is maintained at 25 to 35% and SiO_2 is maintained at 10% or less.
(2)前記脱硫材投入量を転炉吹止鋼中[O]濃度と転
炉流出スラグ量から決定することを特徴とする特許請求
の範囲第1項に記載の方法。
(2) The method according to claim 1, characterized in that the amount of desulfurization material input is determined from the [O] concentration in the converter blowstop steel and the amount of slag flowing out of the converter.
JP31564686A 1986-12-29 1986-12-29 Production of low-sulfur steel Pending JPS63169320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31564686A JPS63169320A (en) 1986-12-29 1986-12-29 Production of low-sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31564686A JPS63169320A (en) 1986-12-29 1986-12-29 Production of low-sulfur steel

Publications (1)

Publication Number Publication Date
JPS63169320A true JPS63169320A (en) 1988-07-13

Family

ID=18067870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31564686A Pending JPS63169320A (en) 1986-12-29 1986-12-29 Production of low-sulfur steel

Country Status (1)

Country Link
JP (1) JPS63169320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194113A (en) * 1989-01-23 1990-07-31 Kawasaki Steel Corp Method for reforming molten steel slag
JPH0310013A (en) * 1989-01-23 1991-01-17 Kawasaki Steel Corp Method for reforming slag on molten steel
CN102277472A (en) * 2011-08-22 2011-12-14 辽宁天和科技股份有限公司 Quick deep desulfurization method and deep desulfurizing agent for LF (Ladle Furnace) refining
JP2012017479A (en) * 2010-07-06 2012-01-26 Nippon Steel Corp Molten steel desulfurization method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194113A (en) * 1989-01-23 1990-07-31 Kawasaki Steel Corp Method for reforming molten steel slag
JPH0310013A (en) * 1989-01-23 1991-01-17 Kawasaki Steel Corp Method for reforming slag on molten steel
JP2012017479A (en) * 2010-07-06 2012-01-26 Nippon Steel Corp Molten steel desulfurization method
CN102277472A (en) * 2011-08-22 2011-12-14 辽宁天和科技股份有限公司 Quick deep desulfurization method and deep desulfurizing agent for LF (Ladle Furnace) refining

Similar Documents

Publication Publication Date Title
JPS63169320A (en) Production of low-sulfur steel
JP2000160233A (en) Method for desulfurize-refining stainless steel
US4214898A (en) Process for preventing the rephosphorization of electric steel
JPH09157732A (en) Method for desulfurizing and dehydrogenating molten steel with little erosion of refractory
JPH0245686B2 (en)
JP2976852B2 (en) Manufacturing method of low sulfur steel with reduced killing time.
JP2018178235A (en) Preliminary treatment method for molten iron
JP2653301B2 (en) Reusing method of low P converter slag
JP2833736B2 (en) Hot metal pretreatment method
JPS6353206A (en) Operational method for high manganese content at blow-end in top-bottom blowing converter
CN106521078A (en) Vanadium extracting converter slag adjusting method
JPH0841516A (en) Pre-refining method
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
KR970004986B1 (en) Making method of sulphur steel and mg system desulfurization materials
JPH111714A (en) Steelmaking method
JPS636606B2 (en)
JPS6212301B2 (en)
JPH0324215A (en) Pretreatment of molten iron with high efficiency of utilization of quick lime
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JPH02200715A (en) Method for dephosphorizing and desulfurizing molten iron
JPH01312021A (en) Method for increasing mn content in molten steel in converter
JPH08218109A (en) Treatment of molten iron
JPH08232009A (en) Preliminary refining method
JP2750048B2 (en) Ladle slag reforming method