JPS6316868A - Low electric current welding method - Google Patents

Low electric current welding method

Info

Publication number
JPS6316868A
JPS6316868A JP15978586A JP15978586A JPS6316868A JP S6316868 A JPS6316868 A JP S6316868A JP 15978586 A JP15978586 A JP 15978586A JP 15978586 A JP15978586 A JP 15978586A JP S6316868 A JPS6316868 A JP S6316868A
Authority
JP
Japan
Prior art keywords
welding
arc
constant
short circuit
setting level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15978586A
Other languages
Japanese (ja)
Other versions
JPH0342997B2 (en
Inventor
Tsuneo Mita
常夫 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP15978586A priority Critical patent/JPS6316868A/en
Publication of JPS6316868A publication Critical patent/JPS6316868A/en
Publication of JPH0342997B2 publication Critical patent/JPH0342997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To stabilize the welding with a low electric current by detecting the generation of a short-circuit and an arc and controlling a constant current and the constant voltage of a power source in combination for every shortened period in the arc welding to generate the short-circuit and the arc alternately. CONSTITUTION:The decision reference voltage Vj of the short-circuit/arc is set and the welding voltage is compared with the voltage Vj to decide whether a short-circuited state or an arcing state according to its size. First, after the short-circuit is generated, the power source is controlled with the constant current for the time Td to uniformize the short-circuited state of a molten pool. After the lapse of the time Td, a constant current setting level is increased to release the short-circuit with the minimum electric current. After the arc is generated, the power source is controlled with the constant voltage for the time Tc and next, a constant voltage setting level is made high and the constant current setting level is made low and the arc force is reduced to stabilize the arc. The welding with the low electric current of an extremely thin sheet and galvanized sheet iron can be stabilized by this method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、消耗性電極を用いたアーク溶接法に係り、特
に極低電流においても安定なアーク状態を維持し、板厚
0.6mm以下の極薄板や亜鉛メッキ鋼板等を溶接する
のに好適な小電流溶接方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an arc welding method using a consumable electrode, which maintains a stable arc state even at extremely low currents, and in particular, welds a welding material with a thickness of 0.6 mm or less. This invention relates to a low current welding method suitable for welding ultra-thin plates, galvanized steel plates, etc.

(従来の技術〕 CO2アーク溶接における適正電流範囲は、ワイヤ径に
よって異なり、盤木・岡田;″半自動・自動アーク溶接
″′ (産報出版、1978年7月) P、96に表3
・5として記載された第7図のようであることは良く知
られている。
(Prior art) The appropriate current range for CO2 arc welding varies depending on the wire diameter, and Table 3 is shown in Banki Okada; "Semi-automatic/automatic arc welding" (Sanpo Publishing, July 1978) P. 96.
・It is well known that the situation is as shown in Fig. 7, which is indicated as 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上図に示されるように、ワイヤ径が細いものほど下限電
流値を低下させることができるが、細径ワイヤは座屈な
どを生じやすく、送給性は悪くなる。またワイヤの価格
も高い。
As shown in the above figure, the smaller the wire diameter, the lower the lower limit current value, but the smaller diameter wire is more likely to buckle, resulting in poor feeding performance. Also, the cost of wire is high.

一般に広く用いられているφ0 、9mmワイヤでは6
0Aが、φ1 、2mmワイヤでは80Aが、安定なア
ーク状態を維持できる下限電流値である。
The commonly used φ0, 9mm wire is 6
0A is the lower limit current value at which a stable arc state can be maintained for a φ1, 2mm wire.

この下限電流値をさらに低下させることができれば、極
薄板の溶接において、価格が高くかつ送給性の悪い細径
ワイヤを敢えて使用する必要はなくなり、経済性・作業
性の面における効果が大きい。
If this lower limit current value can be further lowered, there will be no need to intentionally use small diameter wires that are expensive and have poor feedability when welding ultra-thin plates, which will have a significant effect in terms of economy and workability.

また、従来の溶接電源を用いて亜鉛メッキ鋼板を溶接す
る際、アークによって亜鉛が溶融・気化し、その蒸気が
アーク雰囲気を乱し、アーク不安定、多量の母材付着ス
パッタの発生あるいはビード外観不良などを生じるとさ
れているが、この問題も、電流値を低くシ、溶接速度を
遅くして、亜鉛をその蒸気がアーク雰囲気中に混入する
以前に十分気化させるだけの時間的余裕を持たせること
で解消できる。
In addition, when welding galvanized steel sheets using a conventional welding power source, the arc melts and vaporizes the zinc, and the vapor disturbs the arc atmosphere, resulting in unstable arcs, the occurrence of a large amount of spatter adhering to the base metal, or the appearance of beads. This problem is also solved by keeping the current low and slowing down the welding speed to give enough time to vaporize the zinc before its vapor gets mixed into the arc atmosphere. This can be resolved by setting

本発明は上記の点にかんがみなされたもので、ワイヤ径
によって決まる適正電流範囲の下限値を低下させ、極低
電流で安定したアーク状態を維持し、かつスパッタの発
生が極めて少ない溶接が可能なアーク溶接方法を提供す
ることを目的とする。
The present invention was developed in consideration of the above points, and it lowers the lower limit of the appropriate current range determined by the wire diameter, maintains a stable arc state with extremely low current, and enables welding with extremely low spatter generation. The purpose is to provide an arc welding method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、消耗性電極をほぼ定速度で送給し、消耗性電
極と母材との間で短絡とアークを交互に繰り返し発生さ
せて行なうアーク溶接において、短絡発生とアーク発生
を検出し、短絡周期ごとに下記(A)〜(n)の各過程
を順次実行することを特徴とする小電流溶接方法である
The present invention detects the occurrence of short circuits and arcs in arc welding in which a consumable electrode is fed at a substantially constant speed and short circuits and arcs are alternately and repeatedly generated between the consumable electrode and the base metal, This is a small current welding method characterized by sequentially performing the following steps (A) to (n) every short circuit cycle.

(A)短絡発生後、所定の時間Tdの間、溶接電流を短
絡直前の定電流設定レベルTmに保持するように溶接電
源出力を定電流制御する過程。
(A) After a short circuit occurs, a process of controlling the welding power source output at a constant current so as to maintain the welding current at the constant current setting level Tm immediately before the short circuit for a predetermined time Td.

(R)所定の時間Td経過したとき、溶接電流を所定の
定電流設定レベルTuまで急激に増加させ。
(R) When a predetermined time Td has elapsed, the welding current is rapidly increased to a predetermined constant current setting level Tu.

その後、短絡を開放するのに十分なより高い定電流設定
レベルIsに向かって所定の時定数Suで徐々に増加さ
せて、短絡を開放する過程。
Thereafter, the process of opening the short circuit by gradually increasing with a predetermined time constant Su towards a higher constant current set level Is sufficient to open the short circuit.

(C)アーク発生後、所定の時間Tcの間、溶接電圧を
定電圧設定レベルVa近傍に保持するように溶接電源出
力を定電圧制御し、消耗性電極の先端に溶滴を形成・成
長させる過程。
(C) After the arc is generated, the welding power source output is controlled at a constant voltage to maintain the welding voltage near the constant voltage setting level Va for a predetermined time Tc, and a droplet is formed and grown at the tip of the consumable electrode. process.

(r))所定の時間Tc経過後、溶接電圧の最大値を規
制する定電圧設定レベルを」二記Vaよりも高いレベル
vI11に変化させるとともに、定電流設定レベルを所
定の低レベルI■に向かって、比較的速い所定の時定数
Sdで減少させ、アーク力を低下させるとともに消耗性
電極の溶融を抑制し、短絡を促進する過程。
(r)) After a predetermined time Tc has elapsed, change the constant voltage setting level that regulates the maximum value of the welding voltage to a level vI11 higher than Va in ``2'', and change the constant current setting level to a predetermined low level I■. On the other hand, the process of decreasing the arc force with a relatively fast predetermined time constant Sd reduces the arc force, suppresses melting of the consumable electrode, and promotes short circuit.

〔作用〕[Effect]

第1図は本発明の詳細な説明するための溶接電圧・電流
波形図である。時々刻々変化する溶接型圧を短絡/アー
クの判定基準電圧vjと比較し、その大小によって短絡
状態かアーク状態かを判定する。Vjは15V程度に設
定するのが適当である。
FIG. 1 is a welding voltage/current waveform diagram for explaining the present invention in detail. The welding mold pressure, which changes from moment to moment, is compared with a short circuit/arc determination reference voltage vj, and a short circuit state or an arc state is determined based on the magnitude of the voltage vj. It is appropriate to set Vj to about 15V.

第1図中、■の区間は、溶滴を溶融池の短終状態を均一
化するための区間である。溶滴の一部が溶融池に接触し
た瞬間から電流が増加すると、電流増加にともなうアー
ク力の増加のために溶滴が押し上げられ、溶滴が溶融池
に十分に移行する前に、短絡が破れることがある。この
ような現象が生じると、電極先端にはかなりの量の溶滴
が残り、次の短絡までにさらに溶滴が成長し、過大な溶
滴となって短絡する。その結果、短絡を破るためには過
大な短絡電流が必要になり、アーク状態が乱れるばかり
でなく、スパッタの発生も多くなる。
In FIG. 1, the section (■) is a section for uniformizing the short final state of the droplet and the molten pool. If the current increases from the moment a part of the droplet contacts the molten pool, the droplet will be pushed up due to the increase in arc force with the increase in current, and a short circuit will occur before the droplet has fully transferred into the molten pool. It may break. When such a phenomenon occurs, a considerable amount of droplets remain at the tip of the electrode, and the droplets grow further until the next short circuit, resulting in an excessive droplet and a short circuit. As a result, an excessive short circuit current is required to break the short circuit, which not only disturbs the arc state but also increases the occurrence of spatter.

そこで、溶接電圧がVjよりも小さくなり、短絡状態で
あると判定されたとき、溶接電流をその直前の定電流設
定レベルである、低電流ll11に所定時間Tdの間保
持して、電流の増加を抑制し、溶滴を確実に溶融池に短
絡させる。このようにすると、その後電流が増加し短絡
を開放しても、溶滴が溶融池に十分移行しないといった
現象を生じない。
Therefore, when the welding voltage becomes smaller than Vj and it is determined that there is a short circuit, the welding current is held at the previous constant current setting level, low current ll11, for a predetermined time Td, and the current is increased. to ensure that droplets are short-circuited to the molten pool. In this way, even if the current increases and the short circuit is opened, the phenomenon that the droplets are not sufficiently transferred to the molten pool will not occur.

■の区間は、短絡を開放するための区間であり、短絡検
出後、所定時間Td経過したとき、電流を所定の定電流
設定レベルIu迄急激に増加させ、その後最大電流値を
規制するより高い定電流設定レベルTsに向かって、所
定の時定数Suで電流を徐々に増加させて短絡を開放す
る。
The section (3) is a section for opening a short circuit, and when a predetermined time Td has elapsed after the detection of a short circuit, the current is rapidly increased to a predetermined constant current setting level Iu, and then the maximum current value is regulated to a higher The short circuit is opened by gradually increasing the current with a predetermined time constant Su toward the constant current setting level Ts.

通常の短絡では第1図■のように、Isに達する前に短
絡が破れ、アークが発生するが、比較的短絡時間が長く
なる場合は、Tsに到達してから短絡が開放される。
In a normal short circuit, the short circuit is broken and an arc is generated before reaching Is, as shown in Figure 1, but if the short circuit time is relatively long, the short circuit is opened after reaching Ts.

今仮に、短絡が開放される迄一定の電流値Ipに保持す
るものとすると、適正条件でIpを選定した場合はスパ
ッタの発生等は抑制できるが、ワイヤ送給変動などに起
因する大きい短絡が生じた場合、Tpでは対処できず、
アーク切れなどのアーク不安定を生じる。逆にTpを十
分大きい値に設定すると、アーク不安定は防止できるが
、短絡時に過大な電流が流れるため、スパッタやヒレ発
生の原因となる。
Now, if we assume that the current value Ip is held at a constant value until the short circuit is released, if Ip is selected under appropriate conditions, it is possible to suppress the occurrence of spatter, but a large short circuit due to wire feed fluctuations etc. can be suppressed. If this occurs, Tp cannot deal with it,
This causes arc instability such as arc breakage. On the other hand, if Tp is set to a sufficiently large value, arc instability can be prevented, but an excessive current flows during a short circuit, causing spatter and fins.

しかし、第1図■のように、短絡時間に応じて電流を増
加させ、短絡を開放するようにすると、短絡状態に応じ
た必要最小限の電流値で短絡が開放されるので、スパッ
タやヒレの発生が少なく。
However, if you open the short circuit by increasing the current according to the short circuit time, as shown in Figure 1 (■), the short circuit will be opened with the minimum necessary current value depending on the short circuit condition, which will cause spatter and fins. occurrence is low.

平均電流値も低く抑えられる。The average current value can also be kept low.

◎の空間は、電極先端に溶滴を形成するための区間であ
り、溶接電圧がvjよりも大きくなり、アーク状態であ
ると判定されてから所定の時間Tcの間、溶接電圧を電
圧レベルVa近傍に保持するように溶接電源出力を定電
圧制御し、定電圧特性によるアーク長制御を行ないなが
ら溶滴を形成・成長させる。なお、図ではこの区間の最
大電流値な規制する定電流設定レベル(破線で示す)を
Isとしているが、必要に応じて、もっと低いレベルに
設定したり、あるいは所定レベルTRに向かって徐々に
減少させるといった手法を用いてもよい。
The space ◎ is a section for forming a droplet at the tip of the electrode, and the welding voltage is kept at voltage level Va for a predetermined time Tc after the welding voltage becomes larger than vj and it is determined that an arc state exists. The output of the welding power source is controlled at a constant voltage so that the welding power source is maintained close to the arc length, and droplets are formed and grown while controlling the arc length using constant voltage characteristics. In the figure, Is is the constant current setting level (indicated by a broken line) that regulates the maximum current value in this section, but if necessary, it can be set to a lower level, or it can be set gradually toward the predetermined level TR. You may use the method of decreasing.

0の区間は、アーク力を低下させるとともに電極の溶融
を抑制し、短絡を促進するための区間であり、◎の区間
終了後、すなわちアーク発生からTc経過後、定電流設
定レベルをTsから所定の設定低レベルIRに変化させ
、その後さらに低い所定のレベルImに向かって比較的
小さい所定の時定数Sdで減少させるとともに、溶接電
圧の最大値を規制する定電圧設定レベルをVaから、さ
らに高い所定のレベルV+nに変化させる。
The 0 section is a section for reducing the arc force, suppressing melting of the electrode, and promoting short circuits. After the ◎ section ends, that is, after Tc has elapsed since arc generation, the constant current setting level is changed from Ts to a predetermined value. The setting is changed to a low level IR, and then is decreased by a relatively small predetermined time constant Sd toward an even lower predetermined level Im, and the constant voltage setting level that regulates the maximum value of the welding voltage is changed from Va to an even higher value. to a predetermined level V+n.

定電圧設定レベルをVmとするのは、低いレベルの電流
Imにおけるアーク切れを防止するためである。vIl
lを50V程度にすると、CO2アーク溶接において、
lm=2OAとしてもアーク切れのない安定なアーク状
態が得られる。In+をできるだけ低くすることが、下
限電流値の低下にとって重要な事項である。なお、シー
ルドガスにCO2より電位傾度の低いArガスを添加す
ることにより、上述のLmの下限値(20A)をさらに
低下できることは言うまでもない。
The reason why the constant voltage setting level is set to Vm is to prevent arc breakage at a low level of current Im. vIl
When l is about 50V, in CO2 arc welding,
Even when lm=2OA, a stable arc state without arc breakage can be obtained. It is important to lower In+ as much as possible in order to lower the lower limit current value. It goes without saying that by adding Ar gas, which has a lower potential gradient than CO2, to the shielding gas, the above-mentioned lower limit value of Lm (20 A) can be further lowered.

以上■〜◎の各区間を順次経過して溶接を行なうことに
より、短絡の開放および溶滴の形成・成長に必要な最小
限の電流値が、アーク゛を維持するのに必要な最小電流
値Tmに重畳され、極低電流域でも安定なアーク状態が
得られる。
By performing welding after passing through each section of the above ■ to ◎ sequentially, the minimum current value necessary for opening the short circuit and forming and growing the droplet can be changed to the minimum current value Tm necessary to maintain the arc. A stable arc condition can be obtained even in the extremely low current range.

第2図は、上記■〜◎の過程を再度、溶接電源外部特性
との関連で説明するための図である。
FIG. 2 is a diagram for explaining the above steps ◎ to ◎ again in relation to the external characteristics of the welding power source.

(1)短絡発生後Tdの間は、定電圧設定レベルVm・
定電流設定レベルImである外部特性上の点■に保持さ
れる。
(1) During Td after a short circuit occurs, the constant voltage setting level Vm・
It is held at point (3) on the external characteristic, which is the constant current setting level Im.

(2)Td経過後、外部特性は定電圧設定レベルVa・
定電流設定レベルIuに切り換わり、動作点は■に移動
する。
(2) After Td elapses, the external characteristics change to the constant voltage setting level Va.
The constant current setting level is switched to Iu, and the operating point moves to ■.

(3)次に、定電圧設定レベルVaはそのままで、定電
流設定レベルをIuからTsまで時定数Suで増加させ
る。今、IuからIsに向かう途中の定電流設定レベル
をI□上の点■で短絡が開放されたとすると、アーク発
生に伴う電圧の上昇によって、動作点は■→A→■と移
動する。
(3) Next, while the constant voltage setting level Va remains unchanged, the constant current setting level is increased from Iu to Ts by a time constant Su. Now, if the short circuit is opened at a point ■ on I□ at the constant current setting level on the way from Iu to Is, the operating point moves from ■→A→■ due to the voltage increase due to arc generation.

(4)アーク発生後、所定時間Tcの間は定電圧設定レ
ベルVaで定電圧制御された状態に保持され、動作点は
アーク長に応じて■の近傍を移動する。
(4) After the arc occurs, a constant voltage control state is maintained at the constant voltage setting level Va for a predetermined time Tc, and the operating point moves in the vicinity of (2) according to the arc length.

(5)アーク発生からTc経過後、定電流設定レベルは
IsからTRまで急激に低下するので、動作点は定電流
設定レベル上の点■となる。なお、定電流設定レベルが
IsからTRまで低下するのと同時に、定電圧設定レベ
ルはVaからVmに増加し、この時の外部特性はVm−
B−TRである。
(5) After Tc has elapsed since the occurrence of the arc, the constant current setting level rapidly decreases from Is to TR, so the operating point becomes point (3) above the constant current setting level. Note that at the same time as the constant current setting level decreases from Is to TR, the constant voltage setting level increases from Va to Vm, and the external characteristics at this time are Vm-
It is B-TR.

(6)その後、定電流設定レベルのTRからImへの時
定数Sdでの減少により規制されて溶接電流は減少し、
外部特性Vm−C−Im上の点■に動作点を持つに至る
(6) Thereafter, the welding current is regulated by a decrease in the time constant Sd from the constant current setting level TR to Im, and the welding current decreases.
The operating point is found at point (3) on the external characteristic Vm-C-Im.

(7)時間の経過とともに、動作点はC−1m上を下降
し、次の短絡が生じると■に戻り、以後、上述の動作を
繰り返す。
(7) As time passes, the operating point descends above C-1m, and when the next short circuit occurs, it returns to ■, and the above-mentioned operation is repeated thereafter.

〔実施例〕〔Example〕

第3図は本発明を実施するための溶接電源の一例を示す
回路ブロック図である。
FIG. 3 is a circuit block diagram showing an example of a welding power source for carrying out the present invention.

1は交流を直流に変換するための一次整流回路、2は出
力を制御するためのインバータ回路、3は溶接トランス
、4は高周波交流を直流に変換するための二次整流回路
である。5は、母材7を溶接するために送給ローラ6で
送給される溶接ワイヤ、11は分流器8の出力によって
電流を検出する溶接電流検出器、12は溶接電圧検出器
である。
1 is a primary rectifier circuit for converting alternating current into direct current, 2 is an inverter circuit for controlling output, 3 is a welding transformer, and 4 is a secondary rectifier circuit for converting high frequency alternating current into direct current. 5 is a welding wire fed by a feeding roller 6 to weld the base material 7; 11 is a welding current detector that detects current based on the output of the shunt 8; and 12 is a welding voltage detector.

27は短絡/アーク判定回路であり、判定基準電圧Vj
の設定器24の出力を溶接電圧検出器12の出力の大小
を比較し、短絡であるかアークであるかの判定信号をT
dタイマ21および入出力装置(ilo)22に送る。
27 is a short circuit/arc determination circuit, and the determination reference voltage Vj
The output of the setting device 24 is compared with the output of the welding voltage detector 12, and a judgment signal indicating whether it is a short circuit or an arc is generated at T.
d timer 21 and input/output device (ilo) 22.

Tdタイマ21は短絡が発生した時点から動作を開始し
、所定の時間Tdが経過しても短絡が続いている場合に
割り込み信号1RQ2をマイクロプロセッサ(MPU)
23に送る。11022は、短絡からアークに移行した
際に、割り込み信号1RQ3をMPU23に送る。
The Td timer 21 starts operating from the moment a short circuit occurs, and if the short circuit continues even after a predetermined time Td has elapsed, an interrupt signal 1RQ2 is sent to the microprocessor (MPU).
Send to 23rd. 11022 sends an interrupt signal 1RQ3 to the MPU 23 when the short circuit changes to an arc.

25は溶接に使用する出力バタンを指定するための条件
選定器、26はアーク長を微調整すために定電圧設定レ
ベルVaを増減させる設定器であり、25.26からの
信号はA/D変換器28.29および11030を介し
て、MPU23に入力される。
25 is a condition selector for specifying the output button used for welding, 26 is a setting device for increasing/decreasing the constant voltage setting level Va to finely adjust the arc length, and the signal from 25.26 is an A/D It is input to MPU 23 via converters 28, 29 and 11030.

19は、ワイヤ送給速度あるいはワイヤ径などに11一 応じた出力バタンの波形因子のデータを記憶しているメ
モリであり、条件選定器25および微調整設定器26か
らの信号に応じて所定の波形因子のデータをMPU23
に送る。
Reference numeral 19 denotes a memory that stores data on the waveform factor of the output slam depending on the wire feeding speed or the wire diameter, etc.; Waveform factor data to MPU23
send to

20はTcを制御するためのタイマであり、アークが発
生したことを知らせる割り込み信号1RQ3がMPU2
3に入力されると動作を開始し、所定時間Tc経過後、
割り込み信号i、 RQ 1をMPU23に送る。
20 is a timer for controlling Tc, and an interrupt signal 1RQ3 notifying that an arc has occurred is sent to the MPU 2.
3, the operation starts, and after the predetermined time Tc has elapsed,
Send interrupt signal i, RQ 1 to MPU23.

ワイヤ送給の制御指令は、MPU23からi / 。The wire feeding control command is sent from the MPU 23 to i/.

18およびD/A変換器14を介して送給ローラ駆動回
路13に入力され、電圧制御指令はMPU23から11
018およびD/A変換器17を介してパルス幅制御回
路10に入力される。電流制御指令はMPU23から1
1018およびD/A変換器16を介してCR積分回路
15に入力される。CR積分回路15は、所定の時定数
で電流の設定レベルを変化させるスロープ制御を行なう
ためのもので、いずれの時定数を選択するかの指令は別
途11018から送られる。
18 and the D/A converter 14 to the feeding roller drive circuit 13, and the voltage control command is input from the MPU 23 to the 11
018 and the D/A converter 17 to the pulse width control circuit 10. Current control command is 1 from MPU23
1018 and the D/A converter 16 to the CR integration circuit 15. The CR integration circuit 15 is for performing slope control to change the current setting level with a predetermined time constant, and a command as to which time constant to select is separately sent from 11018.

第4図はCR積分回路15の構成例を示す図で、抵抗R
1〜Rnとアナログスイッチ81〜Snをラダー形に接
続した回路と積分コンデンサC工とで構成され、各抵抗
に並列接続されたアナログスイッチをnビットの時定数
選択信号で開閉することにより、時定数を可変にしてい
る。
FIG. 4 is a diagram showing an example of the configuration of the CR integration circuit 15, in which the resistor R
It consists of a circuit in which 1 to Rn and analog switches 81 to Sn are connected in a ladder shape, and an integrating capacitor C, and the time is determined by opening and closing the analog switches connected in parallel to each resistor using an n-bit time constant selection signal. Constants are made variable.

電流制御用CR積分回路15から出た電流設定信号は、
加算器31で溶接電流検出器11からの電流フィードバ
ック信号との差分をとってパルス幅制御回路10に入力
される。
The current setting signal output from the current control CR integration circuit 15 is
An adder 31 calculates the difference from the current feedback signal from the welding current detector 11 and inputs the result to the pulse width control circuit 10.

パルス幅制御回路10では、電流制御指令と電圧制御指
令を比較し、パルス幅が狭くなる方のどちらか一方のパ
ルス幅を選択し、パルス幅制御信号としてインバータ駆
動回路9に送る。
The pulse width control circuit 10 compares the current control command and the voltage control command, selects one of the pulse widths with a narrower pulse width, and sends the selected pulse width to the inverter drive circuit 9 as a pulse width control signal.

第5図はパルス幅制御回路10の構成例を示す図で、入
力された電流設定信号を増幅器33で増幅した制御バイ
アスと鋸歯状波発生器32からの鋸歯状波とを比較器3
5で比較して得られる電流設定信号に対応したパルス幅
のパルス列P^をNAND回路37の一方の入力とし、
電圧設定信号を増幅器34で増幅した制御バイアスと鋸
歯状波発生器32からの鋸歯状波とを比較器36で比較
して得られる電圧設定信号に対応したパルス幅のパルス
列PHをNAND回路37の他方の入力として、どちら
か幅狭い方のパルス列をNAND回wt37、NOT回
路38により選択し、パルス幅制御信号としてインバー
タ駆動回路9へ送る。インバータ回路2のスイッチング
素子であるMOSFETの導通幅は印加されるパルス幅
制御信号のパルス幅で決まり、それによって溶接電源の
出力が制御される。
FIG. 5 is a diagram showing an example of the configuration of the pulse width control circuit 10, in which the control bias obtained by amplifying the input current setting signal by the amplifier 33 and the sawtooth wave from the sawtooth wave generator 32 are connected to the comparator 3.
The pulse train P^ of the pulse width corresponding to the current setting signal obtained by comparison in step 5 is inputted to one side of the NAND circuit 37,
The control bias obtained by amplifying the voltage setting signal by the amplifier 34 and the sawtooth wave from the sawtooth wave generator 32 are compared by the comparator 36, and a pulse train PH having a pulse width corresponding to the voltage setting signal obtained is generated by the NAND circuit 37. As the other input, the narrower pulse train is selected by the NAND circuit wt37 and the NOT circuit 38, and is sent to the inverter drive circuit 9 as a pulse width control signal. The conduction width of the MOSFET, which is a switching element of the inverter circuit 2, is determined by the pulse width of the applied pulse width control signal, and the output of the welding power source is controlled thereby.

第3図において、短絡/アーク判定回路27より短絡が
発生したことを検知する信号が出力されると、Tdタイ
マ21が動作を開始し、所定時間Td経過後に割り込み
信号i RQ 2を発生する。それまで、電圧・電流の
設定レベルは短絡前の設定レベルに維持される。
In FIG. 3, when the short circuit/arc determination circuit 27 outputs a signal detecting the occurrence of a short circuit, the Td timer 21 starts operating and generates an interrupt signal i RQ 2 after a predetermined time Td has elapsed. Until then, the set voltage and current levels are maintained at the set levels before the short circuit.

割り込み信号i RQ 2が発生すると、定電流設定レ
ベルはIuに、定電圧設定レベルはVaになり、その後
、定電圧設定レベルはVaのままで、定電流設定レベル
のみTuからIsに向かって、MPU23で設定された
CR積分回路15の時定数Suで徐々に増加する。次に
、短絡/アーク判定回路27からの信号に基づいて、ア
ークが発生したことを知らせる割り込み信号i RQ 
3がMPU23に入力されると、MPU23からの指令
によりタイマ20が動作を開始し、所定時間Tc経過後
、割り込み信号i RQ 1を発生する。割り込み信号
i RQ 1がMPU23に入力されると、定電流設定
レベルはIsからIRに急激に低下し、その後、IRか
らI+。
When the interrupt signal i RQ 2 is generated, the constant current setting level becomes Iu and the constant voltage setting level becomes Va. After that, the constant voltage setting level remains Va and only the constant current setting level changes from Tu to Is. It gradually increases with the time constant Su of the CR integration circuit 15 set by the MPU 23. Next, based on the signal from the short circuit/arc determination circuit 27, an interrupt signal iRQ is sent to notify that an arc has occurred.
3 is input to the MPU 23, the timer 20 starts operating according to a command from the MPU 23, and after a predetermined time Tc has elapsed, generates an interrupt signal i RQ 1. When the interrupt signal i RQ 1 is input to the MPU 23, the constant current setting level rapidly decreases from Is to IR, and then from IR to I+.

に向いMPU23で設定されるCR積分回路15の時定
数Sdで徐々に減少する。また、定電流設定レベルがI
sからIRに低下するのと同時に、定電圧設定レベルは
Vaからvilに増加し、次の短絡が発生ずまで定電圧
設定レベルVm、定電流設定レベルll11の状態に維
持される。
It gradually decreases with the time constant Sd of the CR integration circuit 15 set by the MPU 23. Also, the constant current setting level is I
At the same time as the constant voltage setting level decreases from s to IR, the constant voltage setting level increases from Va to vil, and the constant voltage setting level Vm and constant current setting level ll11 are maintained until the next short circuit occurs.

次に、第3図に示すインバータ制御溶接電源を用いて極
薄鋼板(板厚0.6mm)の溶接を行なった実験例を示
す。
Next, an experimental example will be shown in which an ultra-thin steel plate (thickness: 0.6 mm) was welded using the inverter-controlled welding power source shown in FIG.

(A)φ0.9+am、 Y G W12ワイヤを用い
、ワイヤ送給量2 m / 1Iinで、各波形因子を
、■u=100A、l8=400A、TR=10OA、
 lm=2OA、Va=28V、 V m = 50 
VTd=1.5ms、  Tc=5ms、  SLL=
20ms、  Sd=2msに設定した場合、平均溶接
電流I ave、平均溶接電圧Vavsは、 Iave=35A、Vave=18.5Vであった。
(A) Using φ0.9+am, Y G W12 wire, wire feed rate 2 m / 1 Iin, each waveform factor is: ■ u = 100 A, l8 = 400 A, TR = 10 OA,
lm=2OA, Va=28V, Vm=50
VTd=1.5ms, Tc=5ms, SLL=
20 ms and Sd=2 ms, the average welding current Iave and the average welding voltage Vavs were Iave=35A and Vave=18.5V.

(B)φ1.2mm、 Y G Wllワイヤを用い、
ワイヤ送給量2m/lll1nで、各波形因子を、Iu
 =150A%l5=550A、IR=150A、ll
1=2OA。
(B) φ1.2mm, using YG Wll wire,
With a wire feed rate of 2 m/lll1n, each waveform factor is Iu
=150A%l5=550A, IR=150A, ll
1=2OA.

Va=27V、Vm=50V Td=1ms、 Tc=5ms、 SLL:20118
. Sd==3msに設定した場合、平均溶接電流I 
ave、平均溶接電圧Vaveは、 Iave=6OA、 Wave=19Vであった。
Va=27V, Vm=50V Td=1ms, Tc=5ms, SLL:20118
.. When setting Sd==3ms, the average welding current I
ave, and the average welding voltage Vave were: Iave=6OA, Wave=19V.

いずれの場合も、第7図に示す従来の適正電流範囲の下
限値より、平均溶接電流値Iaνeを20〜25A低下
させることができるとともに、アーク状態が安定で、ス
パッタの発生も極めて少なく、良好な溶接結果が得られ
ることが実証された。なお、本実験に用いたシールドガ
スはCO□(流量10Q/ll1n)、溶接電源出力回
路中の直流リアクタのインダクタンスは55μHである
In either case, the average welding current value Iaνe can be lowered by 20 to 25 A from the lower limit of the conventional appropriate current range shown in Fig. 7, and the arc condition is stable and the occurrence of spatter is extremely small, which is good. It has been demonstrated that accurate welding results can be obtained. The shielding gas used in this experiment was CO□ (flow rate 10Q/ll1n), and the inductance of the DC reactor in the welding power source output circuit was 55 μH.

また、他の実験例として、板厚3.2+am、亜鉛付着
量90g/m”の溶融亜鉛メッキ鋼板の重ね隅肉継手を
、上記(A)の条件で、溶接速度150mm / wi
nで溶接したところ、アーク不安定は生ぜず、スパッタ
の発生も極く微量で、母材への付着は全くなく、良好な
ビード外観、溶接結果が得られた。
In addition, as another experimental example, a lap fillet joint of hot-dip galvanized steel sheets with a plate thickness of 3.2+am and a zinc deposit of 90 g/m'' was welded at a welding speed of 150 mm/wi under the conditions (A) above.
When welding was carried out at n, arc instability did not occur, only a very small amount of spatter was generated, there was no adhesion to the base metal, and good bead appearance and welding results were obtained.

上記(B)の条件で、溶接速度200mm/winで同
様の溶接を行なった場合も、(A)の条件による場合に
比べ若干スパッタ発生量が増加するものの、従来に比べ
れば極めて少なく、母材への付着は全くなかった。
When similar welding is performed under the conditions (B) above at a welding speed of 200 mm/win, the amount of spatter generated increases slightly compared to the case under conditions (A), but it is extremely small compared to the conventional method, and the base metal There was no adhesion at all.

その理由を第6図により説明すると、39は溶接ワイヤ
、40はアーク、41は母材、42は溶接部、43はビ
ード、白抜き矢印は溶接進行方向を示しており、電流値
を低くし、溶接速度を遅くすると、熱伝尊によるアーク
前方の溶融部の長さQが長くなるので、この間で母材表
面の亜鉛が溶融・気化して、亜鉛蒸気がアーク雰囲気中
に混入する以前に亜鉛を十分気化させるだけの時間的余
裕がとれ、その結果、亜鉛蒸気によりアーク雰囲気が乱
されることがなくなるものと考えられる。
The reason for this is explained with reference to Fig. 6. 39 is the welding wire, 40 is the arc, 41 is the base metal, 42 is the welding part, 43 is the bead, and the white arrow indicates the direction of welding progress. When the welding speed is slowed down, the length Q of the molten zone in front of the arc due to heat transfer becomes longer, so during this time the zinc on the surface of the base metal melts and vaporizes, and the zinc vapor is released before it enters the arc atmosphere. It is thought that sufficient time is provided for sufficient vaporization of the zinc vapor, and as a result, the arc atmosphere is not disturbed by the zinc vapor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下述べるような効果が得られる。 According to the present invention, the following effects can be obtained.

(1)ワイヤ径によって決まる適正電流範囲の下限値を
従来より20〜25A程度低下させることができるので
、極薄板の溶接において、ワイヤ送給性が悪く、かつ価
格の高い細径ワイヤを使用しなくてもよくなり、経済性
、作業性の面で有利となる。
(1) The lower limit of the appropriate current range determined by the wire diameter can be lowered by about 20 to 25 A compared to conventional methods, making it possible to use small diameter wires that have poor wire feedability and are expensive when welding ultra-thin plates. This is advantageous in terms of economy and workability.

(2)極低電流で、安定したアーク状態を維持し、かつ
スパッタの発生が極めて少ない溶接が可能となるので、
極薄板(板厚0 、6mm以下)への適用範囲が拡大す
る。
(2) It is possible to weld with extremely low current, maintain a stable arc state, and generate extremely little spatter.
The range of application to ultra-thin plates (plate thickness 0, 6 mm or less) is expanded.

(3)電流値を低くして、溶接速度を遅くすることがで
きるので、亜鉛メッキ鋼板の溶接では、亜鉛蒸気がアー
ク雰囲気中に混入する以前に溶融池の熱伝導によって母
材表面の亜鉛を十分気化させるだけの時間的余裕がとれ
、スパッタの発生がほとんどない、安定な溶接が可能と
なる。
(3) Since the current value can be lowered and the welding speed can be slowed down, when welding galvanized steel sheets, the zinc on the surface of the base metal is removed by heat conduction from the molten pool before the zinc vapor enters the arc atmosphere. This allows enough time for sufficient vaporization, allowing stable welding with almost no spatter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための溶接電圧・電流
波形図、第2図は同溶接電源外部特性図、第3図は本発
明を実施するための溶接電源の構成例を示す回路ブロッ
ク図、第4図は第3図中のCR積分回路の詳細図、第5
図は同パルス幅制御回路の詳細図、第6図は溶接状態を
説明するための溶接部断面略図、第7図は従来知られて
いるワイヤ径と溶接電流範囲の関係を示す図表である。 代理人弁理士  中 村 純之助 タ   〉−m− 伊1)  1 −田
Fig. 1 is a welding voltage/current waveform diagram for explaining the present invention in detail, Fig. 2 is an external characteristic diagram of the welding power source, and Fig. 3 is a circuit showing an example of the configuration of a welding power source for carrying out the present invention. Block diagram, Figure 4 is a detailed diagram of the CR integration circuit in Figure 3, and Figure 5 is a detailed diagram of the CR integration circuit in Figure 3.
The figure is a detailed diagram of the same pulse width control circuit, FIG. 6 is a schematic cross-sectional view of a welded part for explaining the welding state, and FIG. 7 is a chart showing the conventionally known relationship between wire diameter and welding current range. Representative Patent Attorney Junnosuke Nakamura 〉-m- I1) 1-da

Claims (1)

【特許請求の範囲】 1、消耗性電極をほぼ定速度で送給し、消耗性電極と母
材との間で短絡とアークを交互に繰り返し発生させて行
なうアーク溶接において、短絡発生とアーク発生を検出
し、短絡周期ごとに下記(A)〜(D)の各過程を順次
実行することを特徴とする小電流溶接方法。 (A)短絡発生後、所定の時間Tdの間、溶接電流を短
絡直前の定電流設定レベルImに保持するように溶接電
源出力を定電流制御する過程。 (B)所定の時間Td経過したとき、溶接電流を所定の
定電流設定レベルIuまで急激に増加させ、その後、短
絡を開放するのに十分なより高い定電流設定レベルIs
に向かって所定の時定数Suで徐々に増加させて、短絡
を開放する過程。 (C)アーク発生後、所定の時間Tcの間、溶接電圧を
定電圧設定レベルVa近傍に保持するように溶接電源出
力を定電圧制御し、消耗性電極の先端に溶滴を形成・成
長させる過程。 (D)所定の時間Tc経過後、溶接電圧の最大値を規制
する定電圧設定レベルを上記Vaよりも高いレベルVm
に変化させるとともに、定電流設定レベルを所定の低レ
ベルImに向かって比較的速い所定の時定数Sdで減少
させ、アーク力を低下させるとともに消耗性電極の溶融
を抑制し、短絡を促進する過程。
[Claims] 1. In arc welding, in which a consumable electrode is fed at a substantially constant speed and short circuits and arcs are alternately and repeatedly generated between the consumable electrode and the base material, short circuit occurrence and arc occurrence A small current welding method characterized in that the following steps (A) to (D) are sequentially executed at each short circuit cycle. (A) After a short circuit occurs, a process of controlling the welding power source output at a constant current so as to maintain the welding current at the constant current setting level Im immediately before the short circuit for a predetermined time Td. (B) When a predetermined time Td has elapsed, the welding current is rapidly increased to a predetermined constant current setting level Iu, and then a higher constant current setting level Is sufficient to open the short circuit.
The process of opening the short circuit by gradually increasing the amount of time toward Su with a predetermined time constant Su. (C) After the arc is generated, the welding power source output is controlled at a constant voltage to maintain the welding voltage near the constant voltage setting level Va for a predetermined time Tc, and a droplet is formed and grown at the tip of the consumable electrode. process. (D) After a predetermined time Tc has passed, the constant voltage setting level that regulates the maximum value of the welding voltage is set to a level Vm higher than the above Va.
and decreasing the constant current setting level toward a predetermined low level Im with a relatively fast predetermined time constant Sd, reducing the arc force, suppressing melting of the consumable electrode, and promoting short circuit. .
JP15978586A 1986-07-09 1986-07-09 Low electric current welding method Granted JPS6316868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15978586A JPS6316868A (en) 1986-07-09 1986-07-09 Low electric current welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15978586A JPS6316868A (en) 1986-07-09 1986-07-09 Low electric current welding method

Publications (2)

Publication Number Publication Date
JPS6316868A true JPS6316868A (en) 1988-01-23
JPH0342997B2 JPH0342997B2 (en) 1991-06-28

Family

ID=15701219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15978586A Granted JPS6316868A (en) 1986-07-09 1986-07-09 Low electric current welding method

Country Status (1)

Country Link
JP (1) JPS6316868A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219086A (en) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd Apparatus and method for arc welding
JP2006150423A (en) * 2004-11-30 2006-06-15 Daihen Corp Polarity change short-circuit arc welding method
JP5170321B2 (en) * 2009-11-25 2013-03-27 パナソニック株式会社 Welding method and welding apparatus
WO2014054261A1 (en) * 2012-10-01 2014-04-10 パナソニック株式会社 Arc welding control method
WO2014073184A1 (en) * 2012-11-07 2014-05-15 パナソニック株式会社 Arc welder and method for controlling arc welding
US10099308B2 (en) * 2006-02-09 2018-10-16 Illinois Tool Works Inc. Method and apparatus for welding with battery power
US10919100B2 (en) 2016-03-29 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10974338B2 (en) 2016-03-29 2021-04-13 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219086A (en) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd Apparatus and method for arc welding
JP2006150423A (en) * 2004-11-30 2006-06-15 Daihen Corp Polarity change short-circuit arc welding method
US10099308B2 (en) * 2006-02-09 2018-10-16 Illinois Tool Works Inc. Method and apparatus for welding with battery power
US10058947B2 (en) 2009-11-25 2018-08-28 Panasonic Intellectual Property Management Co., Ltd. Welding method and welding device
JP5170321B2 (en) * 2009-11-25 2013-03-27 パナソニック株式会社 Welding method and welding apparatus
US10850340B2 (en) 2009-11-25 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Welding device
US10610945B2 (en) 2012-10-01 2020-04-07 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
WO2014054261A1 (en) * 2012-10-01 2014-04-10 パナソニック株式会社 Arc welding control method
CN104582888B (en) * 2012-11-07 2016-08-17 松下知识产权经营株式会社 Arc-welding apparatus and arc welding control method
CN104582888A (en) * 2012-11-07 2015-04-29 松下知识产权经营株式会社 Arc welder and method for controlling arc welding
WO2014073184A1 (en) * 2012-11-07 2014-05-15 パナソニック株式会社 Arc welder and method for controlling arc welding
US10625358B2 (en) 2012-11-07 2020-04-21 Panasonic Intellectual Property Management Co., Ltd. Arc welder and method for controlling arc welding
US10919100B2 (en) 2016-03-29 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10974338B2 (en) 2016-03-29 2021-04-13 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Also Published As

Publication number Publication date
JPH0342997B2 (en) 1991-06-28

Similar Documents

Publication Publication Date Title
US11267064B2 (en) Arc welding control method
US8338750B2 (en) AC pulse arc welding control method
US8993927B2 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
US8993926B2 (en) Method for arc welding
EP0043589B1 (en) Pulse arc welding machine
KR100475516B1 (en) Pulse arc welding method and apparatus
JP4652825B2 (en) Arc start control method for AC arc welding
KR102124223B1 (en) Output control method of pulse arc welding
CN108883486B (en) Arc welding control method
RU2345873C2 (en) Synergetic system of welding
JPS6316868A (en) Low electric current welding method
Chae et al. A novel mixed current and voltage control scheme for inverter arc welding machines
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
WO2020075791A1 (en) Arc welding control method
JPS6240974A (en) Welding control method
JP5706710B2 (en) 2-wire welding control method
JPH01299769A (en) Output control method for gas shielded arc welding power source
JPH08267238A (en) Method for controlling output of power source for consumable electrode gas shielded pulsed arc welding
JP2610819B2 (en) Hot wire TIG welding equipment
JPS60223661A (en) Arc welding method
JPS58224070A (en) Arc welding
JP4663309B2 (en) Arc length control method for pulse arc welding
JP2012061477A (en) Arc start control method for plasma mig welding
JP2023040450A (en) arc welding method