JPS63167807A - Permanent anchor structure - Google Patents

Permanent anchor structure

Info

Publication number
JPS63167807A
JPS63167807A JP31177486A JP31177486A JPS63167807A JP S63167807 A JPS63167807 A JP S63167807A JP 31177486 A JP31177486 A JP 31177486A JP 31177486 A JP31177486 A JP 31177486A JP S63167807 A JPS63167807 A JP S63167807A
Authority
JP
Japan
Prior art keywords
anchor
tensile
cracks
mortar
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31177486A
Other languages
Japanese (ja)
Inventor
Mikio Komatsu
小松 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AASUTETSUKU KK
NIPPON SOIRU KOGYO KK
Original Assignee
AASUTETSUKU KK
NIPPON SOIRU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AASUTETSUKU KK, NIPPON SOIRU KOGYO KK filed Critical AASUTETSUKU KK
Priority to JP31177486A priority Critical patent/JPS63167807A/en
Publication of JPS63167807A publication Critical patent/JPS63167807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To prevent the occurrence of cracks by a method in which a cylindrical reinforcement is set concentrically with a tension member in anchor mortar constituting the fixing portion of a permanent anchor so that the extension of the anchor mortar is suppressed by the reinforcement and the elongation amount is also lessened. CONSTITUTION:In the fixing portion 1b of anchor, a cylindrical reinforcing material 5 is set to surround partly the fixing portion 2b and free length portion 2a of a tension member 2. The material 5 is made of iron or steel and is designed to prevent the separation of the upper and lower parts by shearing resistance by providing strip-shaped holes for the upper and lower parts and by integrating the holes by inner and outer anchor mortars 3. The tension of the member 2 and tensile stress generated by friction with the ground in the fixing portion 1b are absorbed by the material 5 having a great tensile stress to lessen the elongation in them. The breakage of anchors can thus be prevented by a simplified constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地中に埋込んだ引張材の先端部にアンカーモ
ルタルを打設してアンカ一定着部を構成し、必要な引張
力を構造物等に与える永久アンカー構造体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an anchor mortar that is placed at the tip of a tensile member buried in the ground to form an anchor fixed portion, thereby applying the necessary tensile force. This invention relates to a permanent anchor structure that is attached to a structure, etc.

〔従来の技術〕[Conventional technology]

最近の建設工事では小規模な工法で大きな引張り抵抗力
が得られる地盤アンカー([ロックアンカー、アースア
ンカー)を構造物の一部として活用する傾向がある。こ
の種の工事においては一般に第7図[a)にみられる永
久アンカー構造体が用いられ、アンカーの定着部にアン
カーモルタルを打設して引張材を固定し、地盤との摩擦
力により必要な引張力を得るようにしている。
In recent construction work, there is a tendency to utilize ground anchors (rock anchors, earth anchors) as part of structures, which can provide large tensile resistance with small-scale construction methods. In this type of construction, a permanent anchor structure as shown in Figure 7 [a] is generally used, and anchor mortar is cast in the anchorage part to fix the tensile material, and the frictional force with the ground is used to secure the necessary I'm trying to get some tension.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成の永久アンカー構造体はその構成上アンカ一定
着部を構成するアンカーモルタルに太きな引張力が発生
する。この引張力がアンカーモルタルの耐力以下であっ
ても永年使用中にはクリープ現象その他によって引張亀
裂が生じ、その亀裂に地下水が浸透する。地下水が浸透
し続けると引張材は酸化によって腐食し、遂には破断す
る。そこで、永久アンカー構造体として腐食防止型のも
のが望まれている。
Due to the structure of the permanent anchor structure having the above structure, a large tensile force is generated in the anchor mortar that constitutes the fixed anchor part. Even if this tensile force is less than the proof strength of the anchor mortar, tensile cracks will occur due to creep phenomenon and other factors during long-term use, and groundwater will infiltrate into the cracks. As groundwater continues to permeate, the tensile material corrodes due to oxidation and eventually breaks. Therefore, a corrosion-resistant permanent anchor structure is desired.

本発明は上記要望に応えるものであって、主だる目的は
アンカーモルタルに亀裂を生じさせない、永久アンカー
構造体を提供することにある。
The present invention meets the above-mentioned needs, and its primary purpose is to provide a permanent anchor structure that does not cause cracks in the anchor mortar.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明は、永久アンカーの定
着部を構成するアンカーモルタル中に、      ′
引張材と同心的に筒状の補強材を配したことを特徴とす
る特 上記構成において補強材の適宜箇所に穴を設けこの穴を
介して内外のアンカーモルタルを一体化し、アンカーモ
ルタルと補強材との結び付きを強固にしてもよい。
In order to achieve the above object, the present invention provides the following features:
In the special structure described above, which is characterized by a cylindrical reinforcing material arranged concentrically with the tensile material, holes are provided at appropriate locations in the reinforcing material, and the inner and outer anchor mortar are integrated through these holes, and the anchor mortar and the reinforcing material are integrated. You can strengthen your ties with

〔作 用〕[For production]

本発明においては、アンカ一定着部に生じた引張材が主
として補強材に作用し、アンカーモルタルの伸びが補強
材により制限されるから伸び量が減少し、腐食の要因と
なる亀裂の発生を抑止する。
In the present invention, the tensile material generated at the anchor fixed part mainly acts on the reinforcing material, and the elongation of the anchor mortar is limited by the reinforcing material, so the amount of elongation is reduced and the occurrence of cracks, which can cause corrosion, is suppressed. do.

〔実施例〕〔Example〕

以下、図面を参照して実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は地盤Gの削孔Bに打設された本発明に係るアン
カー構造体1の縦断面図である。アンカー構造体1にお
いては一般にa−b、間がアンカーの非定着部1a、b
、−c間がアンカーの定着部1bとなっている。そして
構造物等において必要とする引張力Tはアンカー頭部の
引張材2に加わえられる。引張材2は、強い引張力Tが
得られるように網棒もしくはpc鋼より線により形成さ
れ、a−bz間が引張材2の自由長部2a、b2−0間
がアンカーモルタル3が付着する引張材2の定着部2b
となっている。自由長部2aにおいては第3図にみられ
るように引張材2とアンカーモルタルとが隔離され、シ
ース内に防錆油4が充填され、モルタルの付着力が断た
れている。従ってこの間の引張材2は引張力Tに対応し
た伸びを示す。また引張材2は防錆油4により保護され
ているから腐食が起らず、アンカーは破断しない。
FIG. 1 is a longitudinal sectional view of an anchor structure 1 according to the present invention, which is cast in a hole B in the ground G. In the anchor structure 1, generally a-b, the non-fixed portions 1a and b of the anchor are located between
, -c is the fixing portion 1b of the anchor. Then, the tensile force T required in the structure etc. is applied to the tensile member 2 of the anchor head. The tension member 2 is formed of a mesh rod or PC steel stranded wire so as to obtain a strong tensile force T, and the free length 2a of the tension member 2 is attached between a and bz, and the anchor mortar 3 is attached between b2 and 0. Fixing part 2b of tensile material 2
It becomes. In the free length portion 2a, as shown in FIG. 3, the tensile member 2 and the anchor mortar are separated, and the sheath is filled with rust preventive oil 4, thereby breaking the adhesive force of the mortar. Therefore, the tensile material 2 exhibits elongation corresponding to the tensile force T during this period. Further, since the tensile member 2 is protected by the rust preventive oil 4, corrosion does not occur and the anchor does not break.

一般にアンカーの破断が起こるのはアンカ一定着部1b
である。定着部1bにおいては、引張材2の緊張と地盤
Gの摩擦力により定着部1bに打設されたアンカーモル
タル3に引張力が生じる。
Generally, anchor breakage occurs at anchor fixed part 1b.
It is. In the anchoring part 1b, the tension of the tensile material 2 and the frictional force of the ground G generate a tensile force in the anchor mortar 3 cast in the anchoring part 1b.

アンカーモルタル3は圧縮耐力に比べ引張耐力が171
0と弱く、耐久性を見込んで安全率を2にとっても永年
使用中には、クリープ曲げ等によって周囲に亀裂が生じ
る。この亀裂から地下水がモルタル内部に浸透し、引張
材2を局部的に酸化させ腐食させる。初期のころは亀裂
が小さく従って地下水もあまり循環しないから、腐食は
進行しない。
Anchor Mortar 3 has a tensile strength of 171 compared to its compressive strength.
Even if a safety factor of 2 is set in consideration of durability, cracks will occur around the periphery due to creep bending, etc. during long-term use. Groundwater penetrates into the mortar through these cracks, locally oxidizing and corroding the tensile material 2. In the early stages, the cracks are small and underground water does not circulate much, so corrosion does not progress.

しかし亀裂が徐々に大きくなってくると、地下水が循環
し、それとともに酸素も供給され腐食が促進し、遂には
引張材2の有効断面積が小さくなり引張力Tに耐えきれ
なくなって破断する。
However, as the cracks gradually become larger, groundwater circulates and oxygen is also supplied, accelerating corrosion, and eventually the effective cross-sectional area of the tensile material 2 becomes smaller and it becomes unable to withstand the tensile force T, causing it to break.

アンカーの永久使用においては上記のような破断を防ぐ
必要がある。この対策として一般に引張材に耐食性を施
こし、亀裂を容認する考え方があるが、本発明において
は、亀裂の発注を抑止する構成が採られる。すなわち、
第1図及び第4図ないし第6図にみられるように、アン
カ一定着部1bには亀裂の発生を抑制する補強材5が引
張材2の定着部2bとその自由長部2aの一部を取り囲
む形で配置される。補強材5はアンカーモルタル3より
引張力の強い鉄もしくは鋼から成り、第2図にみられる
ように筒状に形成される。また、補強材5は引張力が大
きく作用する部分を除き、その上部と下部に短冊状の孔
5a、・・・が設けられている。短冊状の孔5a、・・
・は補強材5とアンカーモルタル3との付着力のほか補
強材5の内外のアンカーモルタル3をこの部分で合体さ
せ、その剪断抵抗力で分離を阻むため、アンカ一定着部
1bをより一体化させる役目を果たす。
For permanent use of anchors, it is necessary to prevent breakage as described above. As a countermeasure against this problem, there is generally a concept of applying corrosion resistance to the tensile material and allowing cracks to occur, but in the present invention, a configuration is adopted that prevents cracks from forming. That is,
As shown in FIG. 1 and FIGS. 4 to 6, a reinforcing material 5 for suppressing the occurrence of cracks is provided in the anchor fixed part 1b of the tensile member 2 at the fixed part 2b and part of its free length part 2a. arranged in a manner that surrounds the The reinforcing material 5 is made of iron or steel, which has a stronger tensile strength than the anchor mortar 3, and is formed into a cylindrical shape as shown in FIG. Moreover, the reinforcing material 5 is provided with strip-shaped holes 5a, . Rectangular hole 5a,...
・In addition to the adhesive force between the reinforcing material 5 and the anchor mortar 3, the anchor mortar 3 inside and outside the reinforcing material 5 are combined at this part, and their shearing resistance prevents separation, so the anchor fixed part 1b is made more integrated. fulfill the role of

アンカ一定着部1bにおいては、引張材2の緊張と、地
盤Gとの摩擦により引張応力が生じるが、アンカーモル
タル3よりも引張耐力の大きい補強材5が抵抗し、その
間の伸びを小さくして亀裂の発生を抑止する。また、地
震等でアンカ一定着部1bに曲げモーメントが作用して
も補強材5が筒状で曲げに強い形状をなしているから、
曲げモーメントに抵抗し、アンカ一定着部1bの周囲に
生じた引張応力を小さなものとして亀裂の発生を抑制す
る。
In the anchor fixed part 1b, tensile stress is generated due to the tension of the tensile material 2 and friction with the ground G, but the reinforcing material 5, which has a higher tensile strength than the anchor mortar 3, resists and reduces the elongation. Prevents cracks from forming. In addition, even if a bending moment is applied to the anchor fixed portion 1b due to an earthquake or the like, the reinforcing material 5 is cylindrical and has a shape that is resistant to bending.
It resists the bending moment and reduces the tensile stress generated around the anchor fixed portion 1b to suppress the occurrence of cracks.

次いで従来のアンカー構造体と比較しながら、応力と歪
との関係より本発明の作用を更に詳しく説明する。
Next, the operation of the present invention will be explained in more detail from the relationship between stress and strain, while comparing with a conventional anchor structure.

図において第7図山)〜(dlが従来のアンカー構造体
10(〔第7図(alに示されたもの)の応力、歪及び
摩擦力を示したもので、第8図(ト))〜(dlが本発
明の永久アンカー構造体1((第8図(alに示すもの
)のそれらを示したものである。一般に引張材2に作用
する引張応力δは第7図+bi及び第8図fb+にみら
れるように構造体には影響ないから、従来の永久アンカ
ー構造体10も本発明の永久アンカー構造体1も区別な
くその分布形態が同じとなる。しかし、本発明において
は定着部1bに補強材5が加えられているため、定着部
1bの歪δC5δtは第8図(C1にみられるように剛
性が強くなった分だけ歪が平均化し、従来の永久アンカ
ー構造体10の歪(第7図(C))よりも小さくなる。
In the figure, Fig. 7 (mountain) to (dl indicate the stress, strain, and frictional force of the conventional anchor structure 10 ([the one shown in Fig. 7 (al)], and Fig. 8 (g)). ~(dl shows those of the permanent anchor structure 1 of the present invention ((shown in FIG. 8 (al)). In general, the tensile stress δ acting on the tensile member 2 is shown in FIG. As shown in Fig. Since the reinforcing material 5 is added to the anchoring part 1b, the strain δC5δt of the anchoring part 1b is averaged by the increased rigidity, as shown in FIG. 8 (C1), and the strain of the conventional permanent anchor structure 10 is (FIG. 7(C)).

特に引張材2の定着部2bにおける伸びδtが小さく、
腐食をもたらす亀裂の発生を抑制する。
In particular, the elongation δt of the tensile material 2 at the fixing portion 2b is small;
Suppresses the occurrence of cracks that lead to corrosion.

また、定着地盤Gにおいては、アンカ一定着部1bの伸
び・縮みによって第7図Fdl及び第8図(d)にみら
れるような摩擦抵抗力τが生じる。この摩擦抵抗力はほ
ぼ歪みに比例するから、本発明においては、図にみられ
るように平均した分布形態となっている。
Further, in the anchoring ground G, a frictional resistance force τ as shown in FIG. 7Fdl and FIG. 8(d) is generated due to the expansion and contraction of the anchor fixed portion 1b. Since this frictional resistance force is approximately proportional to strain, the present invention has an average distribution form as shown in the figure.

一般にb2−b3間のように引張力が大きく作用する部
分では引張りに対応する歪も大きくなり、亀裂が入り易
くなる。そこでb2−b、間を拡大し、第9図に示して
説明すると、地盤Gは一般に引張力に弱いから、引張力
T、Tがある大きさに達すると、引張り亀裂O3が生じ
る。従来のアンカー構造体10においては引張り亀裂G
Sのある部分で摩擦抵抗力が零となるから第10図(a
)にみられるようにその部分のアンカーモルタル3の伸
びが更に大きくなり、耐えきれなくなって第10図中)
のように多数の亀裂3a、・・・が発生する。従来にお
いてはこの亀裂3a、・・・に地下水が浸透し、引張材
2が腐食するため、破断の原因となっていた。第7図t
c+では上記歪を平滑な曲線で示しているが詳細は亀裂
が生じて第10図(blのようになっている。
Generally, in a portion where a large tensile force acts, such as between b2 and b3, the strain corresponding to the tensile force is also large, making it easier for cracks to occur. Therefore, b2-b will be enlarged and explained as shown in FIG. 9. Since the ground G is generally weak in tensile force, when the tensile forces T and T reach a certain magnitude, a tensile crack O3 occurs. In the conventional anchor structure 10, the tensile crack G
Since the frictional resistance force becomes zero at a certain part of S, Fig. 10 (a
), the elongation of the anchor mortar 3 in that part became even greater, and it became unbearable (see Figure 10).
A large number of cracks 3a, . . . are generated. In the past, groundwater penetrated into the cracks 3a, . . . and corroded the tensile material 2, causing breakage. Figure 7
In c+, the above distortion is shown as a smooth curve, but in detail, cracks have occurred, as shown in Figure 10 (bl).

次いで本発明の説明にあたって第11図にb2−b3間
の拡大図を示して説明すると、従来の永久アンカー構造
体10と異なり、本発明においては引張力の強い補強材
5か弱いアンカーモルタル3と一体的に組み合わされて
いるため、その伸びが小さく平均化され、第10図のよ
うにはならず、第12図において実線で示すように平坦
な分布となる。この分布形態をみると、本発明において
も現実には伸びが発生し、亀裂が発生しないとは言い難
い。そこで腐食を発生する亀裂の大きさについて考察す
ると、その大きさは一般に0.2龍以上と言われている
。0.2 mm以下の亀裂では亀裂内に浸透した地下水
がその粘性と表面張力のため流出しにくく、引張材2を
腐食させる酸素が断たれるため腐食に対して安全である
と言われている。
Next, in explaining the present invention, an enlarged view between b2 and b3 is shown in FIG. 10, the distribution is flat as shown by the solid line in FIG. 12. Looking at this distribution form, it can be seen that elongation actually occurs in the present invention, and it is difficult to say that cracks do not occur. Considering the size of the cracks that cause corrosion, it is generally said that the size is 0.2 dragon or more. It is said that cracks of 0.2 mm or less are safe from corrosion because groundwater that has penetrated into the cracks is difficult to flow out due to its viscosity and surface tension, and the oxygen that corrodes the tensile material 2 is cut off. .

一般に引張材2の伸びは、設計時の許容荷重で計算して
1m当たり5.6 +uとされているが、地盤アンカー
では定着地盤の摩擦力が抵抗するため、定着部は上記は
どには伸びない。また、定着地盤として堅牢な地盤が選
ばれるのが一般的であるから、伸びは更に小さくなる。
In general, the elongation of the tensile material 2 is calculated to be 5.6 + u per 1 m based on the allowable load at the time of design, but since the frictional force of the anchoring ground resists ground anchors, It doesn't grow. Furthermore, since a solid ground is generally selected as the anchoring ground, the elongation becomes even smaller.

本発明においてはアンカ一定着部1bを補強材5で補強
し、剛性を高めでいるので、伸びが第8図(C1にみら
れるように上部の抵抗力の増大した圧縮部の抵抗で押え
込まれ、引張部の伸びも剛性のため下部にまで拡散して
分担されるので、最大伸び5.6nの175以下となる
。この程度の伸び量は補強材5の存在効果で均等に分散
されるのでアンカーモルタル3に亀裂を発生させること
がない。
In the present invention, the anchor fixed part 1b is reinforced with the reinforcing material 5 to increase the rigidity, so that the elongation is suppressed by the resistance of the compression part with increased resistance at the upper part, as shown in Fig. 8 (C1). In rare cases, the elongation of the tensile part is also diffused and distributed to the lower part due to its rigidity, so the maximum elongation is 5.6n, which is 175 or less.This amount of elongation is evenly distributed due to the presence of the reinforcing material 5. Therefore, cracks are not generated in the anchor mortar 3.

従来のアンカー構造体では補強材がなく1m当り1龍の
伸びであっても伸びが不均一となり数ケ所に集中するた
め、0.2 tmを越す亀裂が多数発生し、いずれ腐食
してアンカーが破断する。本発明においては、集中した
伸びがないため、0.2 mlを越える亀裂が発生しに
くい。
In conventional anchor structures, there is no reinforcing material, and even if the elongation is 1 yen per meter, the elongation becomes uneven and concentrates in several places, resulting in many cracks exceeding 0.2 tm, which eventually corrode and destroy the anchor. break. In the present invention, since there is no concentrated elongation, cracks exceeding 0.2 ml are unlikely to occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、簡単な構造で、
腐食によるアンカーの破断を防止することができる。
As explained above, according to the present invention, with a simple structure,
Breakage of the anchor due to corrosion can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す永久アンカー構造体の
縦断面図、第2図は補強材の正面図、第3図は第1図の
m−m断面図、第4図は第1図の1’1−IV断面図、
第5図は第1図のV−V断面図、第6図は第1図のVl
−Vl断面図、第7図(a)は従来のアンカ一定着部の
縦断面図、第7図fblは第7図(a)の応力分布図、
第7図(C1は第7図(a)の歪分布図、第7図(dl
は第7図(alの摩擦力分布図、第8図falは本発明
のアンカ一定着部の縦断面図、第8図(b)は第8図T
alの応力分布図、第8図(C)は第8図(alの歪分
布図、第8図(dlは第8図(alの摩擦力分布図、第
9図は第7図fa)のb2−b、間の拡大断面図、第1
0図fa)は第9図の歪分布図、第10図(blは第1
0図(a)の状態から更に進行した状態を示す歪分布図
、第11図は第8図falのす、−b、間の拡大断面図
、第12図は第11図の歪分布図である。 ■・・・アンカー構造体、1a・・・アンカー非定着部
、1b・・・アンカ一定着部、2・・・引張材、2a・
・・引張材の自由長部、2b・・・引張材の定着部、3
・・・アンカーモルタル、4・・・防錆油、5・・・補
強材、5a・・・孔、G・・・地盤、T・・・引張力、
GS・・・地盤の亀裂。 特許出願人  日本ソイル工業株式会社アースチック株
式会社
Fig. 1 is a longitudinal cross-sectional view of a permanent anchor structure showing an embodiment of the present invention, Fig. 2 is a front view of a reinforcing member, Fig. 3 is a cross-sectional view taken along line mm in Fig. 1, and Fig. 4 is a longitudinal cross-sectional view of a permanent anchor structure showing an embodiment of the present invention. 1'1-IV sectional view of Figure 1,
Fig. 5 is a cross-sectional view taken along the line V-V in Fig. 1, and Fig. 6 is a Vl sectional view in Fig. 1.
-Vl sectional view, FIG. 7(a) is a longitudinal sectional view of the conventional anchor fixed part, FIG. 7fbl is the stress distribution diagram of FIG. 7(a),
Figure 7 (C1 is the strain distribution diagram of Figure 7 (a), Figure 7 (dl
is a frictional force distribution diagram of FIG. 7 (al), FIG.
al stress distribution diagram, Figure 8 (C) is Figure 8 (al strain distribution diagram, Figure 8 (dl is Figure 8 (al friction force distribution diagram, Figure 9 is Figure 7 fa) b2-b, enlarged cross-sectional view, 1st
Figure 0 fa) is the strain distribution diagram of Figure 9, Figure 10 (bl is the strain distribution diagram of Figure 1).
Figure 0 is a strain distribution diagram showing a state that has progressed further from the state in (a), Figure 11 is an enlarged sectional view between Figure 8 fal, -b, and Figure 12 is the strain distribution diagram of Figure 11. be. ■... Anchor structure, 1a... Anchor non-fixed part, 1b... Anchor fixed part, 2... Tensile material, 2a...
...Free length part of tensile material, 2b...Fixed part of tensile material, 3
... Anchor mortar, 4... Rust preventive oil, 5... Reinforcement material, 5a... Hole, G... Ground, T... Tensile force,
GS: Cracks in the ground. Patent applicant Nippon Soil Kogyo Co., Ltd. Earthtic Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)永久アンカーの定着部を構成するアンカーモルタ
ル中に、引張材と同心的に筒状の補強材を配したことを
特徴とする永久アンカー構造体。
(1) A permanent anchor structure characterized in that a cylindrical reinforcing material is arranged concentrically with a tensile material in the anchor mortar constituting the anchoring part of the permanent anchor.
JP31177486A 1986-12-27 1986-12-27 Permanent anchor structure Pending JPS63167807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31177486A JPS63167807A (en) 1986-12-27 1986-12-27 Permanent anchor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31177486A JPS63167807A (en) 1986-12-27 1986-12-27 Permanent anchor structure

Publications (1)

Publication Number Publication Date
JPS63167807A true JPS63167807A (en) 1988-07-11

Family

ID=18021309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31177486A Pending JPS63167807A (en) 1986-12-27 1986-12-27 Permanent anchor structure

Country Status (1)

Country Link
JP (1) JPS63167807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444517A (en) * 1990-06-11 1992-02-14 Komao Miwa Reinforcing method of bedrock
JP2002038477A (en) * 2000-07-23 2002-02-06 Okabe Co Ltd Stabilizing method for slope face

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444517A (en) * 1990-06-11 1992-02-14 Komao Miwa Reinforcing method of bedrock
JP2002038477A (en) * 2000-07-23 2002-02-06 Okabe Co Ltd Stabilizing method for slope face

Similar Documents

Publication Publication Date Title
US7574840B1 (en) Connector for reinforcing the attachment among structural components
EP1029138B1 (en) Cellular stirrups and ties for structural members, structural members comprising said stirrups or ties and method of construction of said structural members.
AU2018218297B2 (en) Anchor device for prestressed diaphragm wall
KR101750908B1 (en) System of the shotcrete lining reinforced the adhesion/tension by wire mesh and assembly structure thereof and method setting up the wire mesh to the steel rib for tunnel
KR101155930B1 (en) Reinforcing structure of slab-column junction having improved punching shear capacity and reinforcing method of slab-column junction
JPS63167807A (en) Permanent anchor structure
JP5091343B1 (en) Seismic isolation structure
JPH0324665Y2 (en)
KR0159680B1 (en) Setting method of bridge stiffner
JPH0647822B2 (en) High strength concrete pile
JPH07317087A (en) Connecting structure of wall made of steel and reinforced concrete floor slab
CN211340824U (en) Concrete uplift pile with pressed pile body
JP2005307676A (en) Connection structure of foundation pile head and upper foundation
KR102063040B1 (en) Hubrid permanent anchor structure and Earth anchor method using the same
JP2021177064A (en) Hybrid type permanent anchor
JPS6233926A (en) Pile foundation of pile-up structure
JP3681367B2 (en) Joint structure of steel column and foundation concrete
JP2005082995A (en) Pile head connection structure
JP2001254317A (en) Structure for fixing hanging member to bridge girder material in hanging type bridge
JP3616321B2 (en) Ground anchor
JPS6325134B2 (en)
JP3755118B2 (en) Cast-in-place reinforced concrete piles resisting drawing and compressive forces and methods of construction
EP3964661A1 (en) Post-tensioned concrete with fibers for slabs on supports
JP2014214457A (en) Load resistant body and ground anchor
JPS61229018A (en) Pile head securing high strength concrete composite pile