JPS63167227A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPS63167227A
JPS63167227A JP30994386A JP30994386A JPS63167227A JP S63167227 A JPS63167227 A JP S63167227A JP 30994386 A JP30994386 A JP 30994386A JP 30994386 A JP30994386 A JP 30994386A JP S63167227 A JPS63167227 A JP S63167227A
Authority
JP
Japan
Prior art keywords
mirror
reflected
light
incident
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30994386A
Other languages
Japanese (ja)
Inventor
Katsuhiko Ichimura
市村 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30994386A priority Critical patent/JPS63167227A/en
Publication of JPS63167227A publication Critical patent/JPS63167227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To improve measurement ability and efficiency (S/N) by using all of incident luminous flux for measurement. CONSTITUTION:One of pieces of luminous flux split by a half-mirror 3 is reflected by fixed mirrors 4, 5, and 6 arranged in a roof shape while its optical axis is moved in parallel, and the other piece of luminous flux is reflected by a movable mirror 7 arranged in a roof shape while its optical axis is moved in parallel. Both pieces of luminous flux reflected by the fixed mirrors 4, 5, and 6 and movable mirror 7 are incident on the half-mirror 3 in an area different from the incidence area of the luminous flux incident on the half-mirror 3. Those pieces of luminous flux are reflected by converging mirrors 8 and 9 and converged on detecting elements (a) and (b). The movable roof-shaped mirror 7 is moved to obtain interferograms on the photodetecting elements (a) and (b), and those interferograms detected by the photodetecting elements (a) and (b) are opposite in phase, so the difference between the both is calculated to improve the utilization efficiency of the light twice.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、フーリエ変換分光光度計等に用いられる干渉
計の光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an optical system of an interferometer used in a Fourier transform spectrophotometer or the like.

口、従来の技術 第4図に示すように、通常のマイケルソン型干渉計を用
いたフーリエ変換分光光度計では、可動反射鏡13から
半透明鏡3を透過した光と、固定反射鏡4から半透明鏡
3で反射された光の干渉光を測定している。しかし、可
動反射鏡13から半透明鏡3に入射された光の全部が半
透明鏡3を透過するのではなく、その半分の光は半透明
jl 3に反射されて光源3方向に逆行する。また、固
定反射鏡4から半透明鏡3に照射された光も全部が半透
明鏡3で反射されるのではなく、その半分の光は半透明
鏡3を透過して光源3方向に逆行して、可動反射鏡13
から来た光と干渉する。これらの光源3方向に逆行する
光は、測定には全熱利用されていない。
Conventional technology As shown in FIG. 4, in a Fourier transform spectrophotometer using a normal Michelson interferometer, light transmitted from a movable reflector 13 through a semi-transparent mirror 3 and light from a fixed reflector 4 are separated. The interference light of the light reflected by the semi-transparent mirror 3 is measured. However, not all of the light incident on the semi-transparent mirror 3 from the movable reflecting mirror 13 passes through the semi-transparent mirror 3, but half of the light is reflected by the semi-transparent mirror 3 and travels back toward the light source 3. Furthermore, not all of the light irradiated from the fixed reflector 4 to the semi-transparent mirror 3 is reflected by the semi-transparent mirror 3, but half of the light passes through the semi-transparent mirror 3 and travels back toward the light source 3. The movable reflector 13
interferes with the light coming from. The total heat of the light traveling in the three directions of these light sources is not utilized for measurement.

ハ0発明が解決しようとする問題点 本発明は、上述したような問題点を解消し、光源側に戻
る干渉光をも測定に利用してS/N比を向上させること
を目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned problems and to improve the S/N ratio by also utilizing the interference light returning to the light source side for measurement.

二1問題点解決のための手段 フーリエ変換分光光度計等の干渉計において、半透明鏡
で分割された光束の一方を屋根形配置の固定鏡で光軸を
平行移動させて反射させ、他方の光束を屋根形配置され
た可動鏡で光軸を平行移動させて反射させ、固定鏡及び
可動鏡で反射された両光束を、上記半透明鏡上の入射光
束分割域とは異なる部分で夫々反射及び透過させ、これ
ら反JIt及び透過によって生じた二つの干渉光を夫々
検出するようにした。
21 Means for Solving Problems In an interferometer such as a Fourier transform spectrophotometer, one of the light beams split by a semitransparent mirror is reflected by moving the optical axis in parallel with a fixed mirror arranged in a roof shape, and the other beam is reflected by a fixed mirror arranged in a roof shape. The light beam is reflected by moving the optical axis in parallel with a movable mirror arranged in a roof shape, and both the light beams reflected by the fixed mirror and the movable mirror are reflected at different parts of the semi-transparent mirror from the incident light beam splitting area. and transmitted, and the two interference lights generated by the anti-JIt and transmission were respectively detected.

ホ3作用 半透明鏡に会合する2つの光束は最初入射光束を半透明
鏡で分割してできた2つの光束と夫々光軸が平行で向き
が反対になるようにする。半透明鏡に戻ってきた2つの
光束は夫々が再び2つの光束に分割される。この分割さ
れた4つの光束の内、従来は入射光束と垂直な方向に分
割される光束だけを検出していたが、それは他の2つの
光束は干渉計への入射光と同じ光路上を逆行するため、
光検出手段を置くことができず、そのため利用すること
が出来なかったのである0本発明は光源の方向に戻る方
の組の光束の光軸を入射光束の光軸とは平行であるが異
なるようにして、この光源の方向に戻る光束を入射光束
を遮蔽することなく集光及び検出ができるようにしたも
のである。
3. Effect The two light beams that meet on the semi-transparent mirror are made such that their optical axes are parallel and opposite to the two light beams created by dividing the incident light beam by the semi-transparent mirror. Each of the two light beams returning to the semi-transparent mirror is split into two light beams again. Of these four divided beams, conventionally only the beam split in the direction perpendicular to the incident beam was detected, but this meant that the other two beams traveled in the opposite direction on the same optical path as the incident beam to the interferometer. In order to
Therefore, it was not possible to install a light detecting means, and therefore it could not be used.The present invention makes the optical axis of the set of luminous fluxes returning toward the light source parallel to but different from the optical axis of the incident luminous flux. In this way, the light beam returning in the direction of the light source can be collected and detected without blocking the incident light beam.

へ、実施例 第1図に本発明の一実施例を示す、第1図において、1
は光源、2は光源1からの光を平行光束として半透明鏡
3に入射させるコリメータ鏡、半透明鏡3はコリメータ
鏡から送られてくる光束の光軸(入射光軸)に対して4
5度の角度に設置されており、コリメータ鏡から送られ
てくる光束の半分を透過させて可動屋根形鏡4に送り、
残り半分の光束を入射光軸に対して90度の方向に反射
させて固定反射鏡4に送る。固定反射鏡4は半透明鏡3
と平行に設置されており、半透明鏡3から送られてくる
光束を入射光軸と平行で入射光と同じ方向に反射させ、
固定反射鏡5に送る。固定反射鏡5は半透明鏡3と垂直
な向きに設置されており、固定反射鏡4からの光束を入
射光軸と垂直で固定反射鏡4への入射方向と逆な方向に
反射させ、固定反射鏡6に送る。固定反射鏡6は半透明
鏡3と同じ角度に設置されており、固定反射鏡5から送
られてくる光束を入射光軸と平行にずらせた光軸で入射
光束と逆の方向に反射させ、入射光束の入射域と異なる
領域で半透明鏡3に入射させる、このようにして半透明
鏡3で分割された光束の一方は方形のループを画いて、
半透明鏡の入射域とは異なる場所に戻って来る。このよ
うにして半透明鏡3に戻って来た光束の半分は入射光軸
に対して90度の方向で固定反射j14と反対方向に反
射されて集光鏡9に送られ、残り半分の光束は半透明鏡
を透過して集光鏡8に送られる。集光鏡9に送られた光
束は集光鏡9によって検出器10の受光素子すに集光さ
せられる。集光鏡8に送られた光束は集光鏡8によって
検出器10の受光素子aに集光させられる。半透明鏡3
を透過した入射光束の他の半分は、可動屋根形鑓7に入
射される、可動屋根形鏡7は内面鏡側を入射方向に向け
たL字形の反射鏡で、基準位置に設置した時にL字形の
内面鏡の面が夫々固定反射[15と固定反射鏡6の鏡面
と同一面になるように設置されており、入射光軸と平行
な方向に可動である。可動屋根形鏡7に入射された光束
は開鎖7によって2回反射され、入射した方向と逆で干
渉計への入射光軸と平行にずれた状態で反射されて、固
定反射鏡4に送られる。固定反射鏡4は可動屋根形鏡7
からの光束を固定!116からの反射光束と同じ領域で
干渉計への入射光軸と垂直な方向で半透明鏡3面に向け
て反射させる。半透明鏡3に送られた上記光束の半分は
透過されて集光鏡9に送られ、残り半分の光束は干渉計
入射光軸に対して平行で入射光束と逆の方向に反射され
て集光鏡8に送られる。集光鏡9に送られた光束は集光
鏡9によって検出器10の受光素子すに集光され、固定
反射鏡6から来た光束と干渉する。t&光鏡8に送られ
た光束は集光鏡8によって検出器10の受光素子aに集
光され、固定鏡6から来た光束と干渉する。
Embodiment FIG. 1 shows an embodiment of the present invention.
is a light source, 2 is a collimator mirror that makes the light from the light source 1 enter the semi-transparent mirror 3 as a parallel beam, and the semi-transparent mirror 3 is 4 with respect to the optical axis (incident optical axis) of the beam sent from the collimator mirror.
It is installed at an angle of 5 degrees, and transmits half of the luminous flux sent from the collimator mirror to the movable roof-shaped mirror 4.
The remaining half of the luminous flux is reflected in a direction 90 degrees to the incident optical axis and sent to a fixed reflecting mirror 4. Fixed reflector 4 is semi-transparent mirror 3
It is installed parallel to the semi-transparent mirror 3, and reflects the light beam sent from the semi-transparent mirror 3 in parallel to the incident optical axis and in the same direction as the incident light.
It is sent to the fixed reflector 5. The fixed reflector 5 is installed in a direction perpendicular to the semi-transparent mirror 3, and reflects the light beam from the fixed reflector 4 in a direction perpendicular to the incident optical axis and opposite to the direction of incidence on the fixed reflector 4. It is sent to reflector 6. The fixed reflecting mirror 6 is installed at the same angle as the semi-transparent mirror 3, and reflects the light beam sent from the fixed reflecting mirror 5 in the opposite direction to the incident light beam with an optical axis shifted parallel to the incident optical axis. One of the light fluxes divided by the semitransparent mirror 3 forms a rectangular loop, and is made to enter the semitransparent mirror 3 in a region different from the incident region of the incident light flux.
The light returns to a location different from the incident area of the semi-transparent mirror. Half of the luminous flux that has returned to the semi-transparent mirror 3 in this way is reflected in the direction opposite to the fixed reflection j14 at 90 degrees to the incident optical axis and sent to the condenser mirror 9, and the remaining half of the luminous flux is transmitted through the semi-transparent mirror and sent to the condenser mirror 8. The light beam sent to the condenser mirror 9 is focused by the condenser mirror 9 onto the light receiving element of the detector 10. The light beam sent to the condenser mirror 8 is condensed by the condenser mirror 8 onto the light receiving element a of the detector 10. semi-transparent mirror 3
The other half of the incident light flux that has passed through is incident on the movable roof mirror 7. The movable roof mirror 7 is an L-shaped reflector with the inner mirror side facing the incident direction. The surfaces of the letter-shaped internal mirrors are installed so as to be flush with the mirror surfaces of the fixed reflection mirror [15 and the fixed reflection mirror 6, respectively, and are movable in a direction parallel to the incident optical axis. The light flux incident on the movable roof-shaped mirror 7 is reflected twice by the open chain 7, reflected in a direction opposite to the direction of incidence and shifted parallel to the optical axis of incidence on the interferometer, and sent to the fixed reflecting mirror 4. . The fixed reflector 4 is a movable roof mirror 7
Fix the luminous flux from! It is reflected toward three semitransparent mirrors in the same area as the reflected light beam from 116 in a direction perpendicular to the optical axis of incidence on the interferometer. Half of the luminous flux sent to the semi-transparent mirror 3 is transmitted and sent to the condenser mirror 9, and the remaining half of the luminous flux is parallel to the interferometer incident optical axis and reflected in the opposite direction to the incident luminous flux and is focused. It is sent to the light mirror 8. The light beam sent to the condenser mirror 9 is focused by the condenser mirror 9 onto the light receiving element of the detector 10, and interferes with the light beam coming from the fixed reflecting mirror 6. The light beam sent to the t& light mirror 8 is focused by the condenser mirror 8 onto the light receiving element a of the detector 10, and interferes with the light beam coming from the fixed mirror 6.

このような構成で可動屋根形鏡7を移動させることによ
り、受光素子a、bで夫々インターフェログラムを得る
ことができる。受光素子a、bで検出されるインターフ
ェログラムは逆位相になるので、両者の差をとることに
より、光の利用効率が2倍になり高感度でインターフェ
ログラムが得られる。
By moving the movable roof-shaped mirror 7 with such a configuration, interferograms can be obtained at each of the light receiving elements a and b. Since the interferograms detected by the light receiving elements a and b have opposite phases, by taking the difference between the two, the light utilization efficiency is doubled and an interferogram can be obtained with high sensitivity.

上記実施例では、2つの干渉光を別々の検出素子を用い
て検出しているが、二つの干渉光路の一方に測定試料、
他方に標準試料を置き、受光素子a、bの出力の和をと
ると、2つの試料が全く同じなら、和の出力は0となり
、このため、2つの試料の違いが極めて敏感に検出でき
る。この場合、第2図に示すように、1つの検出素子に
集光させて検出することも可能である。
In the above embodiment, the two interference lights are detected using separate detection elements, but the measurement sample is placed in one of the two interference light paths.
When a standard sample is placed on the other side and the outputs of light receiving elements a and b are summed, if the two samples are exactly the same, the sum output will be 0, and therefore the difference between the two samples can be detected extremely sensitively. In this case, as shown in FIG. 2, it is also possible to detect the light by focusing it on one detection element.

第3図に変形一実施例を示す、第3図において、12は
分割された2つの光束の光路差を補償する半透明鏡3と
同じ大きさと向きに設置されたコンペンセーターである
。14及び15は90度の角度に2枚の反射鏡を接合し
たL字形の屋根望鏡で、入射光束を光軸をずらせて入射
光束と平行な方向に反射させる。15は内面鏡を干渉計
への入射光束に向け、入射光軸と平行な方向に移動可能
に設置された可動屋根射鏡である。14は内面鏡を干渉
計への入射光束に対して垂直に向けて固定された固定屋
根射鏡である。以下、光源1.コリメータ鏡2.半透明
#13.集光鏡8.集光鏡9゜検出器10.受光素子a
、受光素子すは第1図と同じ構成要素である。
A modified embodiment is shown in FIG. 3. In FIG. 3, reference numeral 12 denotes a compensator installed in the same size and direction as the semi-transparent mirror 3 for compensating for the optical path difference between the two divided beams. Reference numerals 14 and 15 are L-shaped roof mirrors having two reflecting mirrors joined at a 90 degree angle, and reflect the incident light beam in a direction parallel to the incident light beam with the optical axis shifted. Reference numeral 15 denotes a movable roof reflecting mirror which is installed so as to be movable in a direction parallel to the incident optical axis, with its inner mirror facing the incident light beam to the interferometer. Reference numeral 14 denotes a fixed roof reflecting mirror whose inner mirror is fixed so as to be oriented perpendicularly to the light beam incident on the interferometer. Below, light source 1. Collimator mirror 2. Translucent #13. Concentrating mirror 8. Condenser mirror 9° detector 10. Light receiving element a
, and the light receiving element are the same components as in FIG.

入射光束が半透明鏡3で分割され、半分の光束は透過し
て可動屋根射鏡15に送られ、半分の光束が入射光軸に
対して垂直に反射されて固定屋根射鏡14に送られる。
The incident light beam is split by the semi-transparent mirror 3, half of the light beam is transmitted and sent to the movable roof mirror 15, and half of the light beam is reflected perpendicularly to the incident optical axis and sent to the fixed roof mirror 14. .

ここまでは第1実施例と同じであるが、第1実施例と異
なる点は、第1実施例が2つの光束が異なる矩形ループ
を互いに逆行するように進行して、半透明鏡3上で分割
点と異なる会合点に会合するのに対し、この変形実施例
では、屋根射鏡13及び14によって分割された2つの
光束を入射光束を少しずらせて平行方向に反射させ、半
透明鏡3の上記分割点と異なる位置(会合点)に会合さ
せるようにしたものである。
Up to this point, it is the same as the first embodiment, but the difference from the first embodiment is that in the first embodiment, two light beams travel in different rectangular loops in opposite directions, In contrast, in this modified embodiment, the two light beams split by the roof mirrors 13 and 14 are reflected in a parallel direction with the incident light beams slightly shifted, and the two light beams are reflected in parallel directions by the semi-transparent mirror 3. They are made to meet at a different position (meeting point) from the above-mentioned dividing point.

もっともこの変形実施例と比較して、第1実施例は光路
差補償用のコンペンセーター12を必要としないから、
測定精度及び精度維持が容易である点が一段と優れてい
る。
However, compared to this modified embodiment, the first embodiment does not require the compensator 12 for optical path difference compensation.
It is even better in that it is easy to measure and maintain accuracy.

ト5効果 本発明によれば、入射光束の全部を測定に用いることが
出来るようになったので、測定能力及び効率(S/N比
〉が向上させることができる。
5. Effects According to the present invention, all of the incident light flux can be used for measurement, so measurement ability and efficiency (S/N ratio) can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は変形実施
例の説明図、第3図は変形実施例の構成図、第4図は従
来例の構成図である。 1・・・光源、2・・・コリメータ鏡、3・・・半透明
鏡、4・・・固定反射鏡、5・・・固定反射鏡、6・・
・固定反射鏡、7・・・可動屋根射鏡、8・・・集光鏡
、9・・・集光鏡。 10・・・検出器、a・・・受光素子、b・・・受光素
子。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a modified embodiment, FIG. 3 is a block diagram of a modified embodiment, and FIG. 4 is a block diagram of a conventional example. 1... Light source, 2... Collimator mirror, 3... Semi-transparent mirror, 4... Fixed reflecting mirror, 5... Fixed reflecting mirror, 6...
・Fixed reflecting mirror, 7... Movable roof reflecting mirror, 8... Condensing mirror, 9... Condensing mirror. 10... Detector, a... Light receiving element, b... Light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 半透明鏡で分割された光束の一方を屋根形配置の固定鏡
で光軸を平行移動させて反射させ、他方の光束を屋根形
配置の可動鏡で光軸を平行移動させて反射させ、固定鏡
及び可動鏡で反射された両光束を上記半透明鏡上の入射
光束分割域とは異なる部分で反射及び透過させ、これら
反射及び透過した二つの干渉光を夫々検出するようにし
たことを特徴とする干渉計。
One of the light beams split by a semi-transparent mirror is reflected by a fixed mirror arranged in a roof shape, moving the optical axis in parallel, and the other light beam is reflected by a movable mirror arranged in a roof shape, moving the optical axis in parallel, and then fixed. It is characterized in that both the light beams reflected by the mirror and the movable mirror are reflected and transmitted through a portion of the semi-transparent mirror that is different from the incident light beam splitting area, and the two reflected and transmitted interference lights are respectively detected. interferometer.
JP30994386A 1986-12-27 1986-12-27 Interferometer Pending JPS63167227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30994386A JPS63167227A (en) 1986-12-27 1986-12-27 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30994386A JPS63167227A (en) 1986-12-27 1986-12-27 Interferometer

Publications (1)

Publication Number Publication Date
JPS63167227A true JPS63167227A (en) 1988-07-11

Family

ID=17999214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30994386A Pending JPS63167227A (en) 1986-12-27 1986-12-27 Interferometer

Country Status (1)

Country Link
JP (1) JPS63167227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088474A1 (en) * 2000-05-15 2001-11-22 Nikon Corporation Interval measuring device and surface shape measuring device
JP2019530204A (en) * 2016-09-02 2019-10-17 サイマー リミテッド ライアビリティ カンパニー Adjustment of light beam coherence
JP2021071303A (en) * 2019-10-29 2021-05-06 横河電機株式会社 Fourier spectroscopic analyzer
WO2023171626A1 (en) * 2022-03-08 2023-09-14 株式会社島津製作所 Spectroscopic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088474A1 (en) * 2000-05-15 2001-11-22 Nikon Corporation Interval measuring device and surface shape measuring device
JP2019530204A (en) * 2016-09-02 2019-10-17 サイマー リミテッド ライアビリティ カンパニー Adjustment of light beam coherence
JP2021071303A (en) * 2019-10-29 2021-05-06 横河電機株式会社 Fourier spectroscopic analyzer
WO2021085442A1 (en) * 2019-10-29 2021-05-06 横河電機株式会社 Fourier spectrophotometer
WO2023171626A1 (en) * 2022-03-08 2023-09-14 株式会社島津製作所 Spectroscopic device

Similar Documents

Publication Publication Date Title
JP3594335B2 (en) Interferometer and optical wavelength measurement method
JPH08105708A (en) Interferometer
JPS61259127A (en) Static interference type elliptic polarimeter
US4027976A (en) Optical interferometer
JPS63167227A (en) Interferometer
CN111562001B (en) Double-path four-channel polarization interference imaging system and method
US3471239A (en) Interferometric apparatus
JPS59137802A (en) Interferometer measuring length
JPH0781817B2 (en) Position measuring device
US4346999A (en) Digital heterodyne wavefront analyzer
CN111006582B (en) Interference phase shift sensitivity enhancing method based on moire fringes
SU1168800A1 (en) Two-step interferometer
JPH01143925A (en) Michelson interferometer
JPH0463305A (en) Polarizing beam splitter and laser interference measuring meter
JPH0454405A (en) Optical displacement gauge
JPS6041287B2 (en) Small angle measurement method
JPH0336898Y2 (en)
JPH0599612A (en) Laser interferometer
JPS58100722A (en) Fourier conversion type spectrophotometer
JP3392898B2 (en) Lattice interference displacement measuring device
JPS61130816A (en) Linear encoder
JPH028703A (en) Phase detection of interference fringe
JP2505823Y2 (en) Laser displacement meter
JPS63309817A (en) Linear encoder
SU725500A1 (en) Device for measuring geometric parameters of objects