JPS6316716B2 - - Google Patents

Info

Publication number
JPS6316716B2
JPS6316716B2 JP54059054A JP5905479A JPS6316716B2 JP S6316716 B2 JPS6316716 B2 JP S6316716B2 JP 54059054 A JP54059054 A JP 54059054A JP 5905479 A JP5905479 A JP 5905479A JP S6316716 B2 JPS6316716 B2 JP S6316716B2
Authority
JP
Japan
Prior art keywords
additives
nuclear fuel
tio
sintered
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54059054A
Other languages
Japanese (ja)
Other versions
JPS55151292A (en
Inventor
Toshuki Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5905479A priority Critical patent/JPS55151292A/en
Publication of JPS55151292A publication Critical patent/JPS55151292A/en
Publication of JPS6316716B2 publication Critical patent/JPS6316716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は発電用原子炉において金属被覆管内に
密封して使用する酸化物系核燃料素子に関する。 (従来の技術) 発電用原子炉では、電力需要量に応じて出力を
自由に調節し得る負荷追従運転が可能であること
が経済的観点から強く要求されている。しかし原
子炉出力を急激に変化させると、酸化物系核燃料
素子を金属被覆管との熱膨脹率の差に起因して機
械的相互作用(以下PCMIという)が発生するこ
とが知られている。照射されて脆化している被覆
管は、PCMIが発生すると破損する場合があり、
被覆管内に蓄積された高放射能の核***生成物を
放出する。 このような事態に至るのを避ける目的で、現在
軽水炉等で採用されている対策は、原子炉の出力
変動条件を厳しく制限することによつてPCMIの
発生を最小限に抑制する方法である。これによつ
て発電用原子炉では燃料の破損を低減することに
成功している。 しかしこのように原子炉の運転条件に制限を設
ければ、当然のことながら所定の出力レベルまで
上昇させるのに時間を要し、プラント効率が低下
し、そのために大きな経済的損失をこうむること
となる。まして前述のような負荷追従運転は望む
べくもなく、より根本的な解決策を見出すことが
核燃料分野における急務となつている。 これを解決する1つの方法として添加物による
改善法がある。これは焼結ペレツト型酸化物系核
燃料素子にある種の添加物を加えることによつ
て、その高温における強度を低減し、通常の燃料
においてはPCMIがおこる条件下で使用しても、
被覆管に与える損傷を軽微なものとする方法であ
る。 酸化物系核燃料素子の添加物として特に有効な
ものは、Al2O3、BeO、CaO、MgO、SiO2
Na2O、P2O5から選ばれた少なくとも2種類を含
む場合である。しかし被覆管の受ける損傷を無視
し得る程度まで改善するためには、最大5重量パ
ーセントまで添加する必要がある。 しかしながら核燃料物質の異物質の添加は、核
***性物質密度を低下させることになるので、そ
の添加量には制約がある。また中性子経済の観点
からも、添加物による中性子吸収をできる限り低
く抑えることが必要である。従つて少量の添加に
よつて所定の強度低下が達成できることが望まし
い。 (発明が解決しようとする問題点) このように従来の酸化物系核燃料素子にあつて
は、Al2O3、BeO、CaO、MgO、SiO2、Na2O、
P2O5から選ばれた少なくとも2種類を含む添加
物を5重量パーセントまで添加すれば被覆管の損
傷をかなり緩和できるが、異物質の添加は核***
性物質密度を低下させるため添加量を少量に抑え
なければならないという相反した問題点があつ
た。 本発明はこの点に着目してなされたもので、
Al2O3、DeO、CaO、MgO、SiO2、Na2O、P2O5
から選ばれた少なくとも2種類の添加物を含む焼
結ペレツト型酸化物系核燃料素子に第3の組成物
(補助添加物)を加えることによつて、前記添加
物の必要添加量を低減し、核***物質の密度の低
下を抑え、中性子吸収を低く抑えた酸化物系核燃
料素子を提供することを目的とする。 〔発明の構成〕 (問題点を解決するための手段) 本発明の酸化物系核燃料素子にあたつては、
Al2O3、BeO、CaO、MgO、SiO2、Na2O5
P2O5から選ばれた少なくとも2種類を添加物と
して含む焼結ペレツト型核燃料において、第3の
組成物としてTiO2を0.1重量パーセント以上1.0重
量パーセント以下添加している。 (作用) このようなものにあつては、TiO2の少ない添
加量で核燃料素子の強度低減効果が得られるた
め、核***物質の密度の低下を抑え中性子吸収を
低く押えることができる。 (実施例) 以下に本発明を詳細に説明する。添加物の効果
は、これが核燃料物質母材の結晶粒界に介在する
ことによる核燃料素子の見掛上の強度低減効果を
狙つたものであり、このためには母材の結晶粒が
粒界に介在する添加物によつてできるだけ完全に
分離されていることが望ましい。逆に添加物は、
母材の結晶粒を分離するに十分なだけ添加する必
要がある。従がつて、できるだけ少ない量で所定
の効果を得るためには、母材の結晶程度を大きく
しておくのが有利である。何故ならば、焼結ペレ
ツト型核燃料の結晶粒の形状をモデル的に球形と
考えれば、単位体積当りの結晶粒界面積の総和は
結晶粒度に逆比例して減少することが簡単な計算
によつて求められるからである。また、結晶粒界
に介在する添加物の総量は、概略結晶粒界面積の
総和に比例すると考えられるからである。 一方、二酸化ウラン等の焼結ペレツト型酸化物
系核燃料では、ある種の組成物を添加すると、母
材の結晶粒が粗大化することが知られている。 本発明は以下の関係を組合わせることによつて
なされたもので、その特徴は第3の組成物を添加
することによつて、結晶粒を粗大化させ、第3の
組成物を添加するにもかかわらず、結果的にはよ
り少ない添加物量によつて焼結ペレツト型酸化物
系核燃料素子の高温強度低減の目的を達成するこ
とにある。 以下に具体的な実施例を用いて本発明の内容を
さらに詳述する。 二酸化ウラン粉末に対して組成比が重量パーセ
ントでSiO2:47、Al2O3:38、CaO:14.5、
Fe2O3:0.5の添加物をそれぞれ0.2、1、5重量
パーセント混合した後、2ton/cm2の圧力で圧縮し
直径12.5mm、高さ12.5mm〜13.7mmの成形体を得た。
これを1700℃中2時間焼結して密度95.3、94.6お
よび91.8%TDの3種の焼結体を得た。 一方上記添加物を同一ロツトの二酸化ウラン粉
末に1.0重量パーセント添加混合した後、さらに
TiO2微粉末をそれぞれ0.05、0.1、0.3、1.0、3.0
重量ベーセント添加混場して調整した5種類の原
料粉末を用いて、2ton/cm2の圧力で圧縮し、直径
12.5mm、高さ12.7〜13.1mmの成形体とした。これ
を1700℃で2時間焼結して、密度94.9、95.2、
95.8、96.1、および95.9%TDの焼結体を得た。 これら合計7種の焼結体について、切断し研摩
後常温から1200℃までの硬度を測定したところ第
1図および第2図に示す結果が得られた。 第1図からわかる通り前記組成比を有する添加
物を二酸化ウランに添加すると、二酸化ウラン焼
結体の強度は低下し、5重量パーセント添加の場
合に最大約60%の強度低下が得られる。しかし添
加量が1重量パーセントでは約35%の強度低下し
か得られない。 第2図からわかる通りTiO2を第3の組成物と
して加えた場合の効果は明らかである。すなわ
ち、TiO2を0.3%含有するものでは、添加物量が
1重量パーセントであつてもTiO2を含有しない
場合の5重量パーセント添加に相当する強度低下
が得られている。尚、TiO2添加量は第1図と第
2図の結果を比較すれば0.1%以上1.0%以下が最
適である。またTiO2=0.05%以下あるいはTiO2
=3%以上では逆に二酸化ウラン焼結体の強度を
増大させる作用をもつことがわかる。 またTiO2を加えたものではいずれの場合でも
平均結晶粒度が粗大化しており、これらを含まな
いものに比較してTiO2の場合で4.5〜6.0倍に成長
していることが観察された。この観察結果から、
結晶粒の粗大化による結晶粒界面積の減少が、結
果的に少量の添加物で所定の強度低下をもたらす
のに有効であることを示している。 以上詳述の通りAl2O3、BeO、CaO、MgO、
SiO2、Na2O、P2O5から選ばれた少なくとも2種
類の添加物を含む酸化物系核燃料素子に第3の組
成物たとえばTiO2等の結晶粒度を粗大化する材
料を添加することにより、PCMIが通常の核燃料
素子では発生する条件下でも被覆管に与える損傷
が少なく、かつ核***性物質の密度の低下が押え
られ、中性子吸収が少なくてすむなどの効果が得
られる。 また次のような実験も行なつた。二酸化ウラン
粉末に先の実施例記載のものと同一の組成比を有
する添加物、すなわちSiO2:47、Al2O3:38、
CaO:14.5、Fe2O3:0.5の添加物を1.0重量パーセ
ント添加後さらにTiO2微粉末及びNb2O5微粉末
をそれぞれ表1に示す割合で添加混合して調整し
[Object of the Invention] (Industrial Application Field) The present invention relates to an oxide-based nuclear fuel element that is used in a power reactor by being sealed in a metal cladding tube. (Prior Art) Power reactors are strongly required from an economic standpoint to be capable of load-following operation in which the output can be freely adjusted depending on the amount of electricity demanded. However, it is known that when the reactor output is suddenly changed, mechanical interaction (hereinafter referred to as PCMI) occurs due to the difference in coefficient of thermal expansion between the oxide nuclear fuel element and the metal cladding. Irradiated and brittle cladding may be damaged when PCMI occurs;
Releases highly radioactive fission products accumulated in the cladding. In order to avoid such a situation, the measures currently adopted in light water reactors, etc. are to minimize the occurrence of PCMI by strictly limiting the conditions for fluctuations in the reactor's output. This has successfully reduced fuel damage in power reactors. However, if limits are placed on the operating conditions of a nuclear reactor in this way, it will naturally take time to increase the output to a predetermined level, reducing plant efficiency and causing large economic losses. Become. Furthermore, the load-following operation described above is undesirable, and finding a more fundamental solution has become an urgent task in the field of nuclear fuel. One way to solve this problem is to use additives. This is done by adding certain additives to the sintered pellet type oxide nuclear fuel element to reduce its strength at high temperatures.
This method minimizes damage to the cladding. Particularly effective additives for oxide nuclear fuel elements include Al 2 O 3 , BeO, CaO, MgO, SiO 2 ,
This is a case where at least two types selected from Na 2 O and P 2 O 5 are included. However, in order to improve the damage to the cladding to a negligible extent, it is necessary to add up to 5% by weight. However, since the addition of foreign substances to nuclear fuel material reduces the density of fissile material, there are restrictions on the amount of foreign substances added. Also, from the viewpoint of neutron economy, it is necessary to suppress neutron absorption by additives as low as possible. Therefore, it is desirable that a predetermined strength reduction can be achieved by adding a small amount. (Problems to be Solved by the Invention) As described above, in conventional oxide nuclear fuel elements, Al 2 O 3 , BeO, CaO, MgO, SiO 2 , Na 2 O,
Damage to the cladding can be considerably alleviated by adding up to 5% by weight of additives containing at least two types selected from P 2 O 5 , but the addition of foreign substances reduces the density of fissile material, so the amount added should be kept small. There was a contradictory problem in that it had to be kept to a minimum. The present invention was made with attention to this point,
Al2O3 , DeO, CaO, MgO , SiO2 , Na2O , P2O5
By adding a third composition (auxiliary additive) to a sintered pellet type oxide-based nuclear fuel element containing at least two types of additives selected from, the required amount of the additive is reduced, The purpose of the present invention is to provide an oxide-based nuclear fuel element that suppresses a decrease in the density of fissile material and suppresses neutron absorption. [Structure of the Invention] (Means for Solving the Problems) In the oxide-based nuclear fuel element of the present invention,
Al 2 O 3 , BeO, CaO, MgO, SiO 2 , Na 2 O 5 ,
In the sintered pellet type nuclear fuel containing at least two types selected from P 2 O 5 as additives, TiO 2 is added as a third composition of 0.1 to 1.0 weight percent. (Function) In such a device, since the strength reduction effect of the nuclear fuel element can be obtained by adding a small amount of TiO 2 , it is possible to suppress a decrease in the density of the fissile material and suppress neutron absorption to a low level. (Example) The present invention will be explained in detail below. The effect of the additive is to reduce the apparent strength of the nuclear fuel element by intervening at the grain boundaries of the nuclear fuel material base material. It is desirable that they be separated as completely as possible by intervening additives. On the other hand, additives
It is necessary to add enough to separate the crystal grains of the base material. Therefore, in order to obtain the desired effect with as little amount as possible, it is advantageous to increase the crystallinity of the base material. This is because if the shape of the crystal grains of sintered pellet nuclear fuel is modeled as spherical, a simple calculation shows that the total grain boundary area per unit volume decreases in inverse proportion to the crystal grain size. This is because it is required. This is also because the total amount of additives present at grain boundaries is considered to be approximately proportional to the total sum of grain boundary areas. On the other hand, in sintered pellet-type oxide nuclear fuels such as uranium dioxide, it is known that when certain compositions are added, the crystal grains of the base material become coarse. The present invention was made by combining the following relationships, and its characteristics are that by adding the third composition, the crystal grains are coarsened; Nevertheless, the goal is to reduce the high temperature strength of the sintered pellet type oxide nuclear fuel element with a smaller amount of additives. The content of the present invention will be explained in further detail below using specific examples. The composition ratio in weight percent to uranium dioxide powder is SiO 2 : 47, Al 2 O 3 : 38, CaO: 14.5,
After mixing additives of 0.2, 1, and 5 weight percent of Fe 2 O 3 :0.5, the mixture was compressed at a pressure of 2 tons/cm 2 to obtain a molded body having a diameter of 12.5 mm and a height of 12.5 mm to 13.7 mm.
This was sintered at 1700° C. for 2 hours to obtain three types of sintered bodies with densities of 95.3, 94.6, and 91.8% TD. On the other hand, after adding 1.0% by weight of the above additive to the same lot of uranium dioxide powder,
TiO2 fine powder 0.05, 0.1, 0.3, 1.0, 3.0 respectively
Using 5 types of raw material powder prepared by adding weight basis, it was compressed at a pressure of 2 tons/cm 2 to reduce the diameter.
The molded body was 12.5 mm and 12.7 to 13.1 mm in height. This was sintered at 1700℃ for 2 hours, and the density was 94.9, 95.2,
Sintered bodies with TD of 95.8, 96.1, and 95.9% were obtained. A total of seven types of sintered bodies were cut and polished, and then the hardness was measured from room temperature to 1200°C, and the results shown in Figures 1 and 2 were obtained. As can be seen from FIG. 1, when an additive having the above composition ratio is added to uranium dioxide, the strength of the uranium dioxide sintered body decreases, and when 5 weight percent is added, the strength decreases by about 60% at maximum. However, when the amount added is 1% by weight, only about a 35% decrease in strength can be obtained. As can be seen from FIG. 2, the effect of adding TiO 2 as the third composition is clear. That is, in the case of a material containing 0.3% TiO 2 , even if the additive amount was 1% by weight, a decrease in strength equivalent to the addition of 5% by weight in the case of not containing TiO 2 was obtained. In addition, when comparing the results shown in FIG. 1 and FIG. 2, the optimum amount of TiO 2 to be added is 0.1% or more and 1.0% or less. Also, TiO 2 = 0.05% or less or TiO 2
= 3% or more, it can be seen that it has the effect of increasing the strength of the uranium dioxide sintered body. Furthermore, it was observed that the average crystal grain size became coarse in all cases with the addition of TiO 2 , and the growth was 4.5 to 6.0 times larger in the case of TiO 2 than in the case of those without these. From this observation,
This shows that reducing the grain boundary area by coarsening the grains is effective in reducing the strength to a certain level with a small amount of additives. As detailed above, Al 2 O 3 , BeO, CaO, MgO,
Adding a third composition, such as a material that coarsens the crystal grain size, such as TiO 2 to an oxide-based nuclear fuel element containing at least two types of additives selected from SiO 2 , Na 2 O, and P 2 O 5 . As a result, even under conditions where PCMI occurs in normal nuclear fuel elements, there is less damage to the cladding tube, the density of fissile material is suppressed, and neutron absorption is reduced. We also conducted the following experiments. Additives having the same composition ratio as those described in the previous example were added to the uranium dioxide powder, i.e., SiO 2 :47, Al 2 O 3 :38,
After adding 1.0% by weight of additives of CaO: 14.5 and Fe 2 O 3 : 0.5, TiO 2 fine powder and Nb 2 O 5 fine powder were added and mixed in the proportions shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

Al2O3、BeO、CaO、MgO、SiO2、Na2O、
P2O5から選ばれた少なくとも2種類の添加物を
含む焼結ペレツト型酸化物系核燃料素子に第3の
組成物TiO2を加えることによつて、前記添加物
の必要添加量を低減し、核***物質の密度の低下
を抑え、中性子吸収を低く抑えた酸化物系核燃料
素子を得ることができる。
Al2O3 , BeO, CaO, MgO , SiO2 , Na2O ,
By adding a third composition TiO 2 to a sintered pellet type oxide nuclear fuel element containing at least two types of additives selected from P 2 O 5 , the required amount of the additives is reduced. , it is possible to obtain an oxide-based nuclear fuel element in which the density of fissile material is suppressed and neutron absorption is suppressed to a low level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種含有率で添加物を加えた二酸化ウ
ラン焼結体の温度に対する硬度を示す特性図、第
2図は、添加物を1重量パーセント含有する二酸
化ウランにさらに各種含有率でTiO2を加えたも
のにつき焼結体の温度に対する硬度を示す特性
図、第3図は、添加物を1重量パーセント含有す
る二酸化ウランにさらに表1における含有率で
TiO2とNb2O5を同時に加えたものにつき焼結体
の温度に対する硬度を示す特性図である。
Figure 1 is a characteristic diagram showing the hardness versus temperature of uranium dioxide sintered bodies containing additives at various concentrations, and Figure 2 is a graph showing the hardness versus temperature of uranium dioxide sintered bodies containing additives at various concentrations . Figure 3 is a characteristic diagram showing the hardness versus temperature of the sintered body for uranium dioxide containing 1% by weight of additives, and the addition of uranium dioxide at the content rate in Table 1.
FIG. 3 is a characteristic diagram showing the hardness versus temperature of a sintered body in which TiO 2 and Nb 2 O 5 are added at the same time.

Claims (1)

【特許請求の範囲】[Claims] 1 Al2O3、BeO、CaO、MgO、RiO2、Na2O5
P2O5から選ばれた少なくとも2種類を添加物と
して含む焼結ペレツト型核燃料において、第3の
組成物としてTiO2を0.1重量パーセント以上1.0重
量パーセント以下添加することを特徴とする酸化
物系核燃料素子。
1 Al 2 O 3 , BeO, CaO, MgO, RiO 2 , Na 2 O 5 ,
A sintered pellet type nuclear fuel containing at least two types selected from P 2 O 5 as additives, characterized in that 0.1 to 1.0 weight percent of TiO 2 is added as a third composition. Nuclear fuel element.
JP5905479A 1979-05-16 1979-05-16 Nuclear fuel element of oxide Granted JPS55151292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5905479A JPS55151292A (en) 1979-05-16 1979-05-16 Nuclear fuel element of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5905479A JPS55151292A (en) 1979-05-16 1979-05-16 Nuclear fuel element of oxide

Publications (2)

Publication Number Publication Date
JPS55151292A JPS55151292A (en) 1980-11-25
JPS6316716B2 true JPS6316716B2 (en) 1988-04-11

Family

ID=13102221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5905479A Granted JPS55151292A (en) 1979-05-16 1979-05-16 Nuclear fuel element of oxide

Country Status (1)

Country Link
JP (1) JPS55151292A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU88668A1 (en) * 1995-10-05 1997-04-05 Euratom Modified nuclear fuel to delay the development of the RIM effect
DE10115015C1 (en) * 2001-03-27 2003-05-15 Framatome Anp Gmbh Process for producing a nuclear fuel sintered body

Also Published As

Publication number Publication date
JPS55151292A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
US4671927A (en) Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber
US5882552A (en) Method for recycling fuel scrap into manufacture of nuclear fuel pellets
US6808656B2 (en) Method of producing a nuclear fuel sintered body
US5999585A (en) Nuclear fuel having improved fission product retention properties
KR101462738B1 (en) Fission products capture Uranium dioxide nuclear fuel containing ceramic microcell and method of manufacturing the same
US3117372A (en) Stabilized rare earth oxides for a control rod and method of preparation
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
US6221286B1 (en) Nuclear fuel having improved fission product retention properties
EP0842518A1 (en) Nuclear fuel pellets
US3715273A (en) Nuclear fuel element containing sintered uranium dioxide fuel with a fine particulate dispersion of an oxide additive therein,and method of making same
JPS6316716B2 (en)
JPH0132477B2 (en)
JPS60188881A (en) Manufacture of oxide nuclear fuel sintered body
US3140234A (en) Fast reactor core
Handwerk et al. Ceramic Nuclear Fuels in the System UO2‐ZrO2‐CaO
JP4614540B2 (en) Method for producing an oxide-based nuclear fuel element and material adapted to be sintered to an oxide-based nuclear fuel element
US3150099A (en) Vitreous materials and their application to nuclear reactors
US3213161A (en) Process for forming a uranium mononitride-uranium dioxide nuclear fuel
RU2339094C2 (en) Pellet of nuclear uranium-erbium ceramic fuel
JPS6136200B2 (en)
JPH01248092A (en) Manufacture of nuclear fuel pellet
JP2655908B2 (en) Method for producing nuclear fuel pellet containing gatolinium oxide having large crystal grain size
JP2860615B2 (en) Fuel assembly for plutonium firing
ES2324861T3 (en) PROCEDURE FOR PRODUCING NUCLEAR FUEL PADS OF THE MOX TYPE.
EP4036935A1 (en) Sintering additive for forming film capable of improving oxidation resistance of nuclear fuel pellets, and preparation method therefor