JPS63166931A - Manufacture of high tension hot rolled steel sheet having high magnetic flux density - Google Patents

Manufacture of high tension hot rolled steel sheet having high magnetic flux density

Info

Publication number
JPS63166931A
JPS63166931A JP61315806A JP31580686A JPS63166931A JP S63166931 A JPS63166931 A JP S63166931A JP 61315806 A JP61315806 A JP 61315806A JP 31580686 A JP31580686 A JP 31580686A JP S63166931 A JPS63166931 A JP S63166931A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
steel sheet
strength
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61315806A
Other languages
Japanese (ja)
Inventor
Masahiko Oda
昌彦 織田
Hiroshi Kubo
久保 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61315806A priority Critical patent/JPS63166931A/en
Publication of JPS63166931A publication Critical patent/JPS63166931A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To accurately manufacture a high tension hot rolled steel sheet having high magnetic flux density by subjecting a steel slab having a specified compsn. consisting of C, Si, Mn, P, S, Al, N, Ti, B and Fe to specified hot rolling, cooling and coiling. CONSTITUTION:A steel slab consisting of 0.05-0.15% C, <=0.50% Si, 0.70-2.00% Mn, <=0.020% P, <=0.010% S, 0.010-0.10% sol.Al, <=0.0050% N, 0.10-0.30% Ti, 0.0015-0.0050% B and the balance Fe with inevitable impurities is heated to >=1,200 deg.C, hot rolled at a hot rolling finish temp. between the Ar3 transformation point and 950 deg.C, cooled at 30-<70 deg.C/sec cooling rate and coiled at <=500 deg.C. Thus, a high strength hot rolled steel sheet having >=about 80kg/mm<2> yield point, >=about 100kg/mm<2> tensile strength and >=about 1.7 T magnetic flux density B100 is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高磁束密度を有する高張力熱延鋼板の製造方法
に係り、特に近時発電機の高性能化に即応せしめ降伏点
8Qkg/mm”以上、引張強さ100kg / w 
2以上の磁極用高強度熱延鋼板に好適な高張力熱延鋼板
の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a high-strength hot-rolled steel sheet having a high magnetic flux density, and particularly to a method for producing a high-strength hot-rolled steel sheet having a yield point of 8 Q kg/mm, which is particularly suitable for the recent high performance of power generators. ” or more, tensile strength 100kg/w
The present invention relates to a method for manufacturing a high-strength hot-rolled steel sheet suitable for use as a high-strength hot-rolled steel sheet for two or more magnetic poles.

(従来の技術) 近年における石油危機に端を発して世界的に脱石油エネ
ルギーの傾向が強まっているが、電力についても水力発
電が見立される傾向にある。これに伴っt発電能力の向
上が要求されるようになり、発電機の高回転、高出力化
が進められており、このような背景のものに回転子の一
部であるローターリムやポールピースに使用される鋼板
についてもより強度の高いものが必要とされるようにな
った。
(Prior Art) The recent oil crisis has led to a worldwide trend toward a shift away from petroleum energy, and there is also a trend toward hydroelectric power generation as a source of electricity. Along with this, there has been a demand for improved power generation capacity, and generators are being made to have higher rotation speeds and higher outputs. Steel plates with higher strength are now required for use in automobiles.

従来引張強さ80kg/1m”以上の高強度熱延鋼板は
主に自動車、建設機械に用いられる冷間での加工性が良
好であるものが検討されており、以下の特許文献に示さ
れる物がある。
Conventionally, high-strength hot-rolled steel sheets with a tensile strength of 80 kg/1 m'' or more have been considered that have good cold workability and are mainly used in automobiles and construction machinery, and the ones shown in the following patent documents are There is.

特公昭53−43884号公報、特公昭54−1404
6号公報。
Special Publication No. 53-43884, Special Publication No. 54-1404
Publication No. 6.

特公昭58−21010号公報、特開昭53−8862
0号公報。
Japanese Patent Publication No. 58-21010, Japanese Patent Publication No. 53-8862
Publication No. 0.

特開昭59−1632号公報、特開昭59−15001
8号公報 しかし、これらはいずれも冷間での加工性が良好である
ことを狙ったもので、本発明のように磁束密度と強度を
合わせ持つことを狙ったものではない。
JP-A-59-1632, JP-A-59-15001
Publication No. 8 However, all of these are aimed at having good cold workability, and are not aimed at having both magnetic flux density and strength like the present invention.

一方、高磁束密度を有する高強度熱延鋼板として特開昭
58−91121号公報に示されているようなものがあ
るが、その強度レベルは降伏点80kg/1m”以下、
引張強さ100kg/n+”以下のもので、上記したよ
うな発電機の高性能化に伴い高速回転でも磁極を保持で
きるように降伏点、引張強さの何れもがより高いものを
満足するものではない。
On the other hand, there is a high-strength hot-rolled steel sheet with a high magnetic flux density, such as that shown in Japanese Patent Application Laid-Open No. 58-91121, but its strength level is below the yield point of 80 kg/1 m'',
A material with a tensile strength of 100 kg/n+" or less, which satisfies both the yield point and tensile strength to be higher so that the magnetic pole can be maintained even at high speed rotation as the performance of generators increases as mentioned above. isn't it.

また、特公昭61−11288号公報では降伏点70〜
110kg/鶴茸、引張強さ80〜120kg/鶴2の
ものが提案されている。しかし、この方法は熱延鋼板の
形状および強靭性の観点からのみ検討されていて、要求
される磁束密度についてはなんら考慮されていない。
In addition, in Japanese Patent Publication No. 61-11288, the yield point is 70~
One with a tensile strength of 110 kg/Tsurutake and a tensile strength of 80 to 120 kg/Tsuru2 has been proposed. However, this method has been studied only from the viewpoint of the shape and toughness of the hot rolled steel sheet, and no consideration has been given to the required magnetic flux density.

(発明が解決しようとする問題点) 本発明は、降伏点80kg/鶴”以上、引張強さ100
 kg/ w”以上、磁束密度B1+o1.7Tesl
a以上を有する高強度熱延鋼板を的確に製造し得る新し
い方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has a yield point of 80 kg/Tsuru” or more and a tensile strength of 100
kg/w” or more, magnetic flux density B1+o1.7Tesl
It is an object of the present invention to provide a new method that can accurately produce a high-strength hot-rolled steel sheet having a strength of at least a.

(問題点を解決するための手段) 本発明の要旨とするところは、重量比にてC;0.05
〜0.15%、Si:0.50%以下、Mn : 0.
70〜2.00%、P : 0.020%以下、S :
 0.010%以下、s’ol Aj ;0.010〜
0.10%、N : 0.0050%以下、Ti:0.
10〜0630%、B:0.0015〜0.0050%
を含み、残部はFeおよび不可避的不純物より成る鋼ス
ラブを、加熱温度1200℃以上に加熱し、熱延仕上温
度Ar、変態点以上950℃以下で熱間圧延し、冷却速
度30℃/sec以上70℃/sec未満で冷却し、5
00℃以下で巻取ることを特徴とする高磁束密度を有す
る高張力熱延鋼板の製造方法にある。
(Means for Solving the Problems) The gist of the present invention is that the weight ratio of C; 0.05
~0.15%, Si: 0.50% or less, Mn: 0.
70-2.00%, P: 0.020% or less, S:
0.010% or less, s'ol Aj; 0.010~
0.10%, N: 0.0050% or less, Ti: 0.
10-0630%, B: 0.0015-0.0050%
A steel slab containing Fe and the remainder consisting of Fe and unavoidable impurities is heated to a heating temperature of 1200°C or higher, hot-rolled at a hot-rolling finishing temperature Ar, above the transformation point and below 950°C, and at a cooling rate of 30°C/sec or above. Cool at less than 70°C/sec,
The present invention provides a method for producing a high-tensile hot-rolled steel sheet having a high magnetic flux density, which is characterized by winding at a temperature of 00°C or lower.

以下、本発明の詳細について説明する。The details of the present invention will be explained below.

本発明の目的である高磁束密度を得るためには鋼中の不
純物を減少して純鉄に近付けるのが効果的であることは
公知であるが、それでは高強度を確保し得ない0本発明
のように降伏点801qr/n+”以上、引張強さ10
0 kg/va”以上の高強度熱延鋼板を得るには固溶
体強化だけでは無理で、析出強化あるいは変態組織強化
をも組あわせる必要がある。これらの強化機構を磁束密
度を劣化させないで使うことが本発明の主旨である。
It is well known that it is effective to reduce impurities in steel to make it closer to pure iron in order to obtain a high magnetic flux density, which is the objective of the present invention, but this does not ensure high strength. Yield point 801qr/n+" or higher, tensile strength 10
In order to obtain high-strength hot-rolled steel sheets with a strength of 0 kg/va" or higher, solid solution strengthening alone is not possible, and it is necessary to combine precipitation strengthening or transformation structure strengthening. These strengthening mechanisms must be used without deteriorating the magnetic flux density. This is the gist of the present invention.

不純物のうちで最も磁束密度に悪影響を及ぼすのはC,
N等の侵入型原子である。これらはFeの結晶格子内に
侵入して格子ひずみを増大させ、磁区の移動を妨げる*
 St+ Mnの置換型原子も結晶格子を歪ませるがC
,N等の侵入型原子よりもその影響は少ない。一方、析
出強化元素として知られるTt、 Nb+ V、 Zr
は微細炭化物もしくは窒化物として鋼中に析出し転位の
移動を妨げ鋼を強化するが、磁区の移動は妨げないと考
えられている。これらの元素はCを炭化物として固定し
鋼を強化するので本発明の目的に効果的である。特にT
iは安価であって、かつ少量で強度を向上でき、しかも
Nを固定するので磁束密度を高くし、かつ焼き入れ性の
向上を狙って添加するBが有効に作用するので、極めて
有効な元素である。即ち、第1図、第2図に示されるよ
うにBが添加され、熱間圧延後のランナウトテーブル上
の冷却速度が速いと磁束密度を低下させる合金元素を大
量に添加せずに有効に強化することが可能である。
Among the impurities, C has the most negative effect on magnetic flux density.
These are interstitial atoms such as N. These penetrate into the crystal lattice of Fe, increase lattice strain, and impede movement of magnetic domains*
Substituted atoms of St+ Mn also distort the crystal lattice, but C
The effect is less than that of interstitial atoms such as , N, etc. On the other hand, Tt, Nb+V, Zr, which are known as precipitation strengthening elements
It is thought that they precipitate in steel as fine carbides or nitrides and strengthen the steel by hindering the movement of dislocations, but do not impede the movement of magnetic domains. These elements are effective for the purpose of the present invention because they fix C as carbide and strengthen the steel. Especially T
i is an extremely effective element because it is inexpensive, can improve strength with a small amount, and fixes N to increase magnetic flux density, and B, which is added to improve hardenability, works effectively. It is. That is, as shown in Figures 1 and 2, when B is added and the cooling rate on the runout table after hot rolling is fast, it is effectively strengthened without adding large amounts of alloying elements that reduce magnetic flux density. It is possible to do so.

本発明における上記鋼成分の限定理由は次の如くである
The reasons for limiting the above-mentioned steel components in the present invention are as follows.

C: Cは高い引張強さを得るために最も効果的な元素であっ
て、この目的のために少なくとも0.05%を必要とす
る。しかし、Cの増加と共に磁化特性が劣化するので、
その上限を0.15%とし、0.05〜0.15%の範
囲に限定した。
C: C is the most effective element for obtaining high tensile strength and requires at least 0.05% for this purpose. However, as the magnetization characteristics deteriorate as C increases,
The upper limit was set to 0.15%, and the range was limited to 0.05 to 0.15%.

Si: Siは強化元素として有用であるが、磁化特性を劣化さ
せるので少ない方が望ましい。しかし、強化元素として
最小限の添加によって鋼を経済的に製造するために0.
50%を上限として添加することとした。
Si: Si is useful as a reinforcing element, but it degrades the magnetization properties, so it is desirable to have a small amount. However, in order to economically produce steel with minimal addition of reinforcing elements, 0.
It was decided to add up to 50%.

Mn: Mnも強度の向上には効果的な元素であるが、磁化特性
を劣化させる。しかし、Siに比較すると劣化程度は小
さい。そのため強化元素として少なくとも0.70%を
必要とする。しかし、2.00%を越すと磁化特性の劣
化が大となるので上限を2.00%とし、0.70〜2
.00%の範囲に限定した。
Mn: Mn is also an effective element for improving strength, but it deteriorates magnetization characteristics. However, compared to Si, the degree of deterioration is small. Therefore, at least 0.70% of the reinforcing element is required. However, if it exceeds 2.00%, the deterioration of the magnetization characteristics will be significant, so the upper limit is set at 2.00%, and 0.70 to 2.
.. 00% range.

5oZAf: 5olklは脱酸上0.010%以上必要であるが、0
.10%を越すと結晶粒の粗大化を来たし強度を劣化さ
せると共に磁化特性の劣化も大となるので0.10%以
下に限定した。
5oZAf: 5olkl is required for deoxidation at 0.010% or more, but 0
.. If it exceeds 10%, the crystal grains become coarse and the strength deteriorates, and the magnetization characteristics also deteriorate significantly, so it is limited to 0.10% or less.

P、S: P、Sは何れも不純物元素であって、鋼の延性や靭性を
害するので少ないほど好ましいものでPは0.020%
以下、Sは0.010%以下にする必要がある。
P, S: Both P and S are impurity elements, and since they impair the ductility and toughness of steel, it is preferable to have as little as possible, and P is 0.020%.
Hereinafter, S needs to be 0.010% or less.

N : Nは侵入型原子として結晶格子を歪ませ磁化特性を劣化
させるほか、本発明でとくに添加したBと結合してBN
を形成して、焼き入れ性向上に対し有効に作用しなくな
る。この防止策としてTiを添加するのであるが、Nが
多量にあるとBNを形成し焼き入れ性向上効果を減少さ
せてしまうので上限を0.0050%に限定した。
N: N acts as an interstitial atom, distorting the crystal lattice and deteriorating the magnetization properties, and also combines with B, which is especially added in the present invention, to form BN.
is formed, and the hardenability is no longer effectively improved. To prevent this, Ti is added, but if a large amount of N is present, BN will be formed and the effect of improving hardenability will be reduced, so the upper limit was limited to 0.0050%.

Ti: Tiは安価で、しかも少量の添加によってCと結合して
TiCを形成し鋼を強化するので少なくとも0.10%
を必要とする。Tiが多くなると表面疵の原因になるの
で上限を0.30%とした。
Ti: Ti is inexpensive, and when added in small amounts, it combines with C to form TiC and strengthens steel, so it should be at least 0.10%.
Requires. If Ti increases, it causes surface flaws, so the upper limit was set at 0.30%.

B: Bは熱間圧延終了後の冷却速度が30°C/sec以上
の急冷下において焼き入れ性を向上させ、ヘイナイト組
織を得やすくする作用があるが、0.0015%未満で
は前記作用に所望の効果が得られず、一方0.0050
%を超えて含有させてもその効果が飽和してしまうこと
から、その含有量を0.0015〜o、 o o s 
o%に限定した。
B: B improves hardenability under rapid cooling at a cooling rate of 30°C/sec or more after hot rolling, and has the effect of making it easier to obtain a haynite structure, but if it is less than 0.0015%, the above effect is impaired. The desired effect was not obtained, while 0.0050
Since the effect will be saturated even if the content exceeds 0.0015 to 0.0015 o, o o s
o%.

熱延条件ニ スラブの加熱は一度冷片としたもの、もしくは熱片のま
まのものも1200℃以上に加熱する。通常1200℃
〜1400℃の温度範囲に加熱した後圧延する。
Hot rolling conditions The varnish slab is heated to 1200° C. or higher once it has been turned into a cold piece, or even if it is still a hot piece. Normally 1200℃
It is heated to a temperature range of ~1400°C and then rolled.

加熱温度を1200℃以上としたのはTiの固溶を促進
するためであって1200℃未満の加熱温度ではTiが
十分固溶されないからである。上限は特に限定しないが
、スケールロスの防止、省エネルギーの観点から140
0℃を越す加熱は不必要である。
The reason why the heating temperature is set to 1200° C. or higher is to promote solid solution of Ti, and this is because Ti is not sufficiently dissolved at a heating temperature of less than 1200° C. The upper limit is not particularly limited, but from the perspective of preventing scale loss and saving energy, it is 140
Heating above 0°C is unnecessary.

上記1200℃以上に加熱したスラブを熱延圧延し、そ
の仕上温度をAr3変態点以上としたのは、TiCの析
出による強度確保と残留歪による透磁率劣化を防止する
ためであって、Ar3変態点未満の仕上圧延温度ではこ
の目的が達成されないからである。
The reason why the slab heated above 1200°C was hot-rolled and the finishing temperature was set at above the Ar3 transformation point was to ensure strength due to TiC precipitation and to prevent magnetic permeability deterioration due to residual strain. This is because this objective cannot be achieved if the finish rolling temperature is below this point.

また、950℃を越す仕上圧延温度では高温過ぎて鋼板
の結晶粒が粗大化し、必要な強度が得られない。
Further, if the finish rolling temperature exceeds 950°C, the temperature is too high and the crystal grains of the steel sheet become coarse, making it impossible to obtain the necessary strength.

冷却・巻取条件: 熱間圧延終了してからの冷却速度は成分とともに鋼板の
組織制御に不可欠の条件である。引張強さ100kg/
f12以上の高強度熱延鋼板を得るには固溶体強化だけ
では無理で、析出強化あるいは変態組織強化をも組あわ
せる必要があり、冷却制御によって微細なフェライト組
織を狙う。冷却速度が30℃/see以下ではフェライ
ト)Jl織が粗大化して必要な強度が得られない。また
、引張強さ100 kg/mm2(7)高強度t!iJ
[jテも伸びハフ %以上必要であるが、冷却速度が7
0℃/sec以上ではマルテンサイト組織になり伸びが
低下して使用目的にあわない。
Cooling and coiling conditions: The cooling rate after hot rolling is an essential condition for controlling the structure of the steel sheet, as well as the composition. Tensile strength 100kg/
In order to obtain high-strength hot-rolled steel sheets with f12 or higher, solid solution strengthening alone is not possible; it is necessary to combine precipitation strengthening or transformation structure strengthening, and a fine ferrite structure is aimed at through cooling control. If the cooling rate is less than 30° C./see, the ferrite (Jl) weave becomes coarse and the necessary strength cannot be obtained. In addition, the tensile strength is 100 kg/mm2 (7) high strength t! iJ
[j Te also requires elongation huffing % or more, but if the cooling rate is 7
If it exceeds 0° C./sec, it becomes a martensitic structure and elongation decreases, which is not suitable for the purpose of use.

巻取温度が高いと変態が完了しないうちに巻き取られ、
巻取後の保温中に変態するので結晶粒が粗大化し、目的
の強度が得られないので、500℃以下と限定した。
If the winding temperature is high, it will be rolled up before the transformation is completed,
The temperature was limited to 500° C. or lower because the crystal grains would become coarse due to transformation during heat retention after winding and the desired strength could not be obtained.

かくの如き製造方法によって磁束密度の高い高張力熱延
鋼板を得ることが出来る。
A high tensile strength hot rolled steel sheet with a high magnetic flux density can be obtained by such a manufacturing method.

(実施例) 第1表に示される化学成分組成の鋼を転炉で溶製し、連
続鋳造により鋳片とした。化学成分についてみると、A
、B、C,D鋼は本発明の要旨を満足するものである。
(Example) Steel having the chemical composition shown in Table 1 was melted in a converter and made into slabs by continuous casting. Looking at the chemical components, A
, B, C, and D steels satisfy the gist of the present invention.

E、F、G鋼は比較のためのものである。第2表に熱間
圧延条件とそのとき得られた鋼板の機械的性質および磁
束密度が示されている。これによると、鋼板11m1〜
5は本発明の要旨を満足するものである。しかし、隘6
は化学成分は満足しているが熱間圧延後の冷却速度が遅
く結晶粒が大きく目的の強度が得られていない。
E, F, and G steels are for comparison. Table 2 shows the hot rolling conditions and the mechanical properties and magnetic flux density of the steel sheets obtained. According to this, steel plate 11m1 ~
No. 5 satisfies the gist of the present invention. However, 6th
Although the chemical composition is satisfactory, the cooling rate after hot rolling is slow and the crystal grains are large, making it impossible to obtain the desired strength.

また、患7も化学成分は満足しているが巻取温度が高く
結晶粒が大きく目的の強度が得られていない。NIIL
8は強度は満足しているが0%が高く目的の磁束密度が
得られていない。Na9.Na1OはBの添加量が少な
いために変態組織強化がなされず、隘11はTiの添加
量が少ないため析出強化がおこなわれず、いずれも目的
の強度が得られていない。
In addition, although the chemical composition of sample No. 7 is satisfactory, the coiling temperature is high and the crystal grains are large, making it impossible to obtain the desired strength. NIIL
No. 8 has satisfactory strength, but 0% is high and the desired magnetic flux density cannot be obtained. Na9. In Na1O, the transformation structure was not strengthened because the amount of B added was small, and in No. 11, precipitation strengthening was not performed because the amount of Ti added was small, and the desired strength was not obtained in either case.

第1図はA鋼およびF鋼について冷却速度と引張試験値
との関係が示されており、これによると強度を高めるた
めにはB添加と冷却速度を速くすることが有効であるこ
とが判る。このように、h+Bを適量添加し、0%は出
来るだけ低くした化学成分の鋼を冷却速度を速くするこ
とによって、磁束密度の高い高張力熱延鋼板を得ること
が出来る。
Figure 1 shows the relationship between cooling rate and tensile test value for A steel and F steel, and it shows that adding B and increasing the cooling rate are effective in increasing strength. . In this way, by adding an appropriate amount of h+B and increasing the cooling rate of steel whose chemical composition is as low as possible with 0%, a high-tensile hot-rolled steel sheet with a high magnetic flux density can be obtained.

(発明の効果) 以上説明したように本発明によるときは、降伏点80k
g/mm2以上、引張強さ100 k+r/mu”以上
、磁束密度B1゜。1.7Tesla以上を有する高強
度熱延鋼板を的確に製造し得るものであるから工業的に
その効果は大きい。
(Effect of the invention) As explained above, according to the present invention, the yield point is 80k.
It is possible to accurately produce high-strength hot-rolled steel sheets having a tensile strength of 100 k+r/mu" or more, a magnetic flux density of B1°.1.7 Tesla or more, and therefore has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi添加鋼のB添加の有無および冷却速度と引
張試験値との関係を示したもので第2図はTi添加鋼の
B添加の有無、C量および冷却速度と磁束密度との関係
を示したものである。 第1図 第2図 冷却遣度功ec
Figure 1 shows the relationship between the presence or absence of B addition in Ti-added steel, the cooling rate, and the tensile test value, and Figure 2 shows the relationship between the presence or absence of B addition, C content, cooling rate, and magnetic flux density in Ti-added steel. This shows the relationship. Figure 1 Figure 2 Cooling efficiency EC

Claims (1)

【特許請求の範囲】 C:0.05〜0.15% Si:0.50%以下 Mn:0.70〜2.00% P:0.020%以下 S:0.010%以下 solAl:0.010〜0.10% N:0.0050%以下 Ti:0.10〜0.30% B:0.0015〜0.0050% を含み、残部はFeおよび不可避的不純物より成る鋼ス
ラブを、加熱温度1200℃以上に加熱し、熱延仕上温
度Ar_3変態点以上950℃以下で熱間圧延し、冷却
速度30℃/sec以上70℃/sec未満で冷却し、
500℃以下で巻取ることを特徴とする高磁束密度を有
する高張力熱延鋼板の製造方法。
[Claims] C: 0.05-0.15% Si: 0.50% or less Mn: 0.70-2.00% P: 0.020% or less S: 0.010% or less solAl: 0 A steel slab containing .010 to 0.10% N: 0.0050% or less Ti: 0.10 to 0.30% B: 0.0015 to 0.0050%, with the remainder consisting of Fe and unavoidable impurities, Heating to a heating temperature of 1200° C. or higher, hot rolling at a hot rolling finishing temperature Ar_3 transformation point or higher and 950° C. or lower, cooling at a cooling rate of 30° C./sec or higher and lower than 70° C./sec,
A method for producing a high-tensile hot-rolled steel sheet having a high magnetic flux density, which comprises winding at a temperature of 500°C or less.
JP61315806A 1986-12-27 1986-12-27 Manufacture of high tension hot rolled steel sheet having high magnetic flux density Pending JPS63166931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315806A JPS63166931A (en) 1986-12-27 1986-12-27 Manufacture of high tension hot rolled steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315806A JPS63166931A (en) 1986-12-27 1986-12-27 Manufacture of high tension hot rolled steel sheet having high magnetic flux density

Publications (1)

Publication Number Publication Date
JPS63166931A true JPS63166931A (en) 1988-07-11

Family

ID=18069779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315806A Pending JPS63166931A (en) 1986-12-27 1986-12-27 Manufacture of high tension hot rolled steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS63166931A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632295B2 (en) 1999-09-28 2003-10-14 Nkk Corporation High tensile strength hot-rolled steel sheet and method for manufacturing the same
JP2010150667A (en) * 2004-02-17 2010-07-08 Nippon Steel Corp Electromagnetic steel sheet and method for manufacturing the same
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
WO2014148001A1 (en) 2013-03-19 2014-09-25 Jfeスチール株式会社 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
KR20170072312A (en) 2014-12-05 2017-06-26 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for magnetic pole and method for manufacturing same, and rim member for hydroelectric power generation
KR20170072311A (en) 2014-11-28 2017-06-26 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for magnetic pole and method for manufacturing same, and rim member for hydroelectric power generation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632295B2 (en) 1999-09-28 2003-10-14 Nkk Corporation High tensile strength hot-rolled steel sheet and method for manufacturing the same
EP1170390A4 (en) * 1999-09-28 2005-02-23 Jfe Steel Corp Hot-rolled steel sheet having high tensile strength and method for production thereof
JP2010150667A (en) * 2004-02-17 2010-07-08 Nippon Steel Corp Electromagnetic steel sheet and method for manufacturing the same
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
KR20140108713A (en) 2012-01-31 2014-09-12 제이에프이 스틸 가부시키가이샤 Hot-rolled steel for power generator rim and method for manufacturing same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
WO2014148001A1 (en) 2013-03-19 2014-09-25 Jfeスチール株式会社 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
EP2977481A4 (en) * 2013-03-19 2016-06-22 Jfe Steel Corp HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
KR20170069307A (en) 2013-03-19 2017-06-20 제이에프이 스틸 가부시키가이샤 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
US10400316B2 (en) 2013-03-19 2019-09-03 Jfe Steel Corporation High strength hot rolled steel sheet having tensile strength of 780 MPa or more
KR20170072311A (en) 2014-11-28 2017-06-26 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for magnetic pole and method for manufacturing same, and rim member for hydroelectric power generation
KR20170072312A (en) 2014-12-05 2017-06-26 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for magnetic pole and method for manufacturing same, and rim member for hydroelectric power generation

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
US7094295B2 (en) Ferritic stainless steel sheet having good workability and manufacturing method thereof
JP2012077336A (en) High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP5304435B2 (en) Hot-rolled steel sheet with excellent hole-expandability and manufacturing method thereof
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JPH0536481B2 (en)
US3673007A (en) Method for manufacturing a high toughness steel without subjecting it to heat treatment
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPS63166931A (en) Manufacture of high tension hot rolled steel sheet having high magnetic flux density
JPH073328A (en) Production of high strength hot rolled steel sheet excellent in processability
JP4273768B2 (en) Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof
JPS6054374B2 (en) Method for manufacturing austenitic steel plates and steel strips
JPH04272130A (en) Production of high mn nonmagnetic steel having superior drillability
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
JPS5891121A (en) Production of high-tensile hot-rolled steel plate having high magnetic flux density
KR970009089B1 (en) Method for manufacturing a hot rolled steel sheet
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JP2562964B2 (en) Manufacturing method of hot rolled high strength steel sheet for heavy working
KR950003547B1 (en) Making method of low temperature ni-steel
JPH04143218A (en) Production of high mn nonmagnetic steel excellent in local deformability
JP2023539649A (en) High strength low carbon martensitic high hole expandability steel and its manufacturing method
KR100401167B1 (en) Bainite-based high strength steel with excellent weld toughness and manufacturing method