JPS63165726A - Method for measuring structure of optical fiber - Google Patents

Method for measuring structure of optical fiber

Info

Publication number
JPS63165726A
JPS63165726A JP62017506A JP1750687A JPS63165726A JP S63165726 A JPS63165726 A JP S63165726A JP 62017506 A JP62017506 A JP 62017506A JP 1750687 A JP1750687 A JP 1750687A JP S63165726 A JPS63165726 A JP S63165726A
Authority
JP
Japan
Prior art keywords
fiber
cladding
inspected
core
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62017506A
Other languages
Japanese (ja)
Other versions
JPH0797064B2 (en
Inventor
Susumu Inoue
享 井上
Yasuji Hattori
服部 保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to CA000543994A priority Critical patent/CA1295476C/en
Priority to AU76894/87A priority patent/AU585728B2/en
Priority to US07/085,598 priority patent/US4882497A/en
Priority to EP87111831A priority patent/EP0256539A3/en
Priority to KR1019870008958A priority patent/KR900005642B1/en
Publication of JPS63165726A publication Critical patent/JPS63165726A/en
Publication of JPH0797064B2 publication Critical patent/JPH0797064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To perform highly accurate measurement, by allowing the optical axis connecting a light source and an image pickup system to cross the longitudinal direction of an optical fiber. CONSTITUTION:The optical axis 2 connecting the light source 1 and an image pickup system consisting of an image pickup lens 4 and a TV camera 5 is allowed to cross the longitudinal direction of an optical fiber 3 to be inspected at a right angle and arranged at the position passing the center of the fiber 3 to be inspected. Then, the fiber 3 to be inspected is rotated around the axis thereof by a fiber setting stage 6 equipped with a rotary mechanism or rotated thereby so that the optical axis passes the measuring point on the fiber 3 to be inspected and crosses the axis of the fiber 3 to be inspected at a right angle. The relative positions of the clad outer edge part of the fiber 3 to be inspected and core-clad boundary part thereof at least at two or more angles of rotation at the time of rotation are confirmed and the correction of the lens effect on the surface of the fiber 3 to be inspected is performed on the basis of the positional data of an observation surface and the real position of the core-clad boundary part at an observation angle is calculated to make it possible to simply measure the structural parameter of the fiber to be inspected with high accuracy without cutting the fiber to be inspected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバの構造測定法に関し、とくに被測定
光ファイバを切断することなく光ファイバ内部構造を測
定する光ファイバ構造測定法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring the structure of an optical fiber, and in particular to a method for measuring the internal structure of an optical fiber without cutting the optical fiber to be measured. be.

〔従来の技術〕[Conventional technology]

従来、光ファイバの内部構造を測定する方法としては、
被測定光ファイバを切断し、その切断断面を顕微鏡また
はテレビカメラを通して観察し、測定を行うという手法
が採られている。
Conventionally, methods for measuring the internal structure of optical fibers include:
A method is adopted in which the optical fiber to be measured is cut and the cut cross section is observed through a microscope or a television camera to perform measurements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の技術による測定法には、次のような問題点がある
The conventional measurement methods have the following problems.

第一に、従来の切断による方法では、常に被測定対象と
なる光ファイバを切断し、その切断面での構造パラメー
タを観測するので、被測定対象となる光ファイバは必ず
破壊されてしまう。
First, in the conventional cutting method, the optical fiber to be measured is always cut and the structural parameters at the cut surface are observed, so the optical fiber to be measured is always destroyed.

第二に、従来の方法では切断面においてのみ光ファイバ
の断面観測ができるので、光ファイバの光軸方向に沿っ
て連続的に構造パラメータを測定することができない。
Second, in the conventional method, the cross section of the optical fiber can be observed only at the cut surface, and therefore the structural parameters cannot be measured continuously along the optical axis direction of the optical fiber.

そのため、光ファイバの一部分に生じている局所的な構
造パラメータの変動などは測定対象になりにり<、光フ
ァイバの全長について正確な測定ができない。
Therefore, local variations in structural parameters that occur in a portion of the optical fiber are subject to measurement, making it impossible to accurately measure the entire length of the optical fiber.

第三に、光ファイバの切断には高度な精密性を要するが
、それによっても切断時に生じる光ファイバの傷や欠け
、切断面の傾きなどによって測定精度が低下するので、
構造パラメータを正確に測定することが難かしい。
Third, cutting optical fibers requires a high degree of precision, but even this reduces measurement accuracy due to scratches and chips on the optical fiber that occur during cutting, as well as the inclination of the cut surface.
It is difficult to accurately measure structural parameters.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決し、光ファイバの構造パラ
メータを高精度で、かつ簡便に測定する方法を提供する
ため、光源と、画像処理機能を結合した撮像レンズおよ
びテレビカメラを含む撮像系とを、光・源と撮像系を結
ぶ光軸が被検ファイバの長手方向に対して直交し、かつ
被検ファイバの中心を通る位置に配置し、被検ファイバ
をファイバの軸を中心に回転させるか、または光源と撮
像系を結ぶ光軸が被検ファイバ上の測定点を通過し、か
つ被検ファイバの軸に直交するように回転させ、前記回
転させたときの少くとも二つ以上の回転角における被検
ファイバのクラッド外縁部およびコア・クラッド境界部
の相対位置を認識し、観測面の位置情報を基に被検ファ
イバ表面のレンズ効果の補正を行い、前記ttitsし
た角度におけるコア・クラッド境界部の真の位置を求め
ることにより、前記二つ以上の測定角度における偏心量
・クラッド径およびコア径を求め、偏心量については正
弦波関数をフィッティングし、クラッド径・コア径につ
いては平均化処理を加えることにより、被検ファイバの
構造パラメータを規定する偏心量・クラッド径・コア径
およびクラッド非円率を求めることを特徴としている。
The present invention solves the conventional problems and provides a method for easily and highly accurately measuring the structural parameters of an optical fiber. is placed in a position where the optical axis connecting the light/source and the imaging system is perpendicular to the longitudinal direction of the fiber under test and passes through the center of the fiber under test, and the fiber under test is rotated around the axis of the fiber. or rotate it so that the optical axis connecting the light source and the imaging system passes through the measurement point on the test fiber and is perpendicular to the axis of the test fiber, and at least two or more The relative positions of the outer cladding edge and the core-cladding boundary of the fiber under test at the rotation angle are recognized, and the lens effect on the surface of the fiber under test is corrected based on the position information of the observation plane. By determining the true position of the cladding boundary, the eccentricity, cladding diameter, and core diameter at the two or more measurement angles are determined, and a sine wave function is fitted for the eccentricity, and the average cladding diameter and core diameter are calculated. The method is characterized by calculating the eccentricity, cladding diameter, core diameter, and cladding noncircularity that define the structural parameters of the fiber under test.

〔作 用〕[For production]

本発明による光フー?イバ構造測定法においては、被検
ファイバを、フー?イバの側面から観測するため、被検
ファイバを切断する必要がなく、ファイバ切断端面の状
態が測定値に影響を与えることはない。従って光ファイ
バの構造測定を非破壊で高精度に、かつ簡便に行うこと
ができる。
Light fu according to the invention? In the fiber structure measurement method, the fiber under test is Since the measurement is performed from the side of the fiber, there is no need to cut the fiber under test, and the condition of the cut end of the fiber does not affect the measured value. Therefore, it is possible to measure the structure of an optical fiber non-destructively, with high precision, and easily.

また、被検ファイバまたは光源および撮像系を回転させ
て観測を行うことにより、被検ファイバの円周方向にお
けるクラッド径・コア径・偏心量の変化を知ることが可
能で、これらのデータを処理することにより被検ファイ
バの真のクラッド径・コア径・偏心量およびクラッド非
円率を精度よく測定することができる。と(に偏心量に
ついては、正弦波関数をフィッティングするという手法
により、各回転角度における偏心測定量の中から真の偏
心成分のみを抽出するため、電気的または機械的な測定
誤差要因を受は難い。
In addition, by rotating and observing the fiber under test or the light source and imaging system, it is possible to determine changes in the cladding diameter, core diameter, and eccentricity in the circumferential direction of the fiber under test, and these data can be processed. By doing so, the true cladding diameter, core diameter, eccentricity, and cladding noncircularity of the fiber under test can be measured with high accuracy. Regarding the amount of eccentricity in hard.

たとえば、撮像系の拡大倍率が上下方向に異なる場合、
第2図aに示すように、従来の測定法においては、測定
される偏心量は撮像系の拡大倍率の歪の影響を受けるた
め、偏心のない被検ファイバに対しても、上記の歪みに
対応する量εが偏心量として測定される。第2図aで2
0はクラッド、1はコア、22は真のコア、真のクラッ
ド、測定されるコアそれぞれの中心、23は測定される
クラッド中心である。本発明による光ファイバ構造測定
法においては、被検ファイバの偏心量は、被検ファイバ
の円周方向における偏心測定量の変化にもとづいて求め
られることから、上記の歪の影響を受は難い。第2図す
およびCに、偏心のない被検ファイバを測定する例とし
て、本発明による観測角度O°および180°における
描像系の拡大倍率の歪の影響を示す。本発明による測定
方法では、観測角度を変えても測定偏心量が変化しない
ので被検ファイバの偏心量は零と判定される。偏心のな
い被検ファイバを測定する場合も、描像系の拡大倍率に
歪が存在しても、被検ファイバの円周方向における偏心
量の変化に対しては影響がなく、正弦波関数のフィッテ
ィングを行った場合、その振幅が零とになり、被検ファ
イバの偏心量は零と測定される。以下図面にもとづき実
施例について説明する。
For example, if the magnification of the imaging system differs in the vertical direction,
As shown in Figure 2a, in the conventional measurement method, the amount of eccentricity measured is affected by the distortion of the magnification of the imaging system. The corresponding quantity ε is measured as the eccentricity quantity. 2 in Figure 2 a
0 is the cladding, 1 is the core, 22 is the center of each of the true core, true cladding, and core to be measured, and 23 is the center of the cladding to be measured. In the optical fiber structure measurement method according to the present invention, the amount of eccentricity of the fiber to be tested is determined based on the change in the measured amount of eccentricity in the circumferential direction of the fiber to be tested, so it is hardly affected by the above-mentioned distortion. FIGS. 2A and 2C show the effect of distortion on the magnification of the imaging system at observation angles of 0° and 180° according to the present invention, as an example of measuring a test fiber without eccentricity. In the measurement method according to the present invention, the measured eccentricity does not change even if the observation angle is changed, so the eccentricity of the fiber under test is determined to be zero. Even when measuring a test fiber without eccentricity, even if there is distortion in the magnification of the imaging system, it has no effect on the change in eccentricity in the circumferential direction of the test fiber, and fitting of a sine wave function is possible. When this is done, the amplitude becomes zero, and the amount of eccentricity of the fiber under test is measured as zero. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図は本発明の光ファイバ構造測定法を用いた光ファ
イバ構造測定装置の実施例の構成概要図である。lは光
源、3は被検ファイバ、4は撮像レンズ、5はテレビカ
メラ(TVカメラと略記)、6は被検ファイバ3をファ
イバの軸を中心として回転させる回転機構付のファイバ
セットステージ、2は光源l、被検ファイバ3、撮像レ
ンズ4およびTVカメラ5を結ぶ光軸であり、光軸2は
被検ファイバ3の軸に直交する位置に配置する。7は画
像処理装置、8はTVモニタ、9はホス)CPU110
はプリンタである。
FIG. 1 is a schematic diagram of the configuration of an embodiment of an optical fiber structure measuring apparatus using the optical fiber structure measuring method of the present invention. 1 is a light source, 3 is a fiber to be tested, 4 is an imaging lens, 5 is a television camera (abbreviated as TV camera), 6 is a fiber set stage with a rotation mechanism that rotates the fiber to be tested 3 around the fiber axis, 2 is an optical axis connecting the light source 1, the fiber under test 3, the imaging lens 4, and the TV camera 5, and the optical axis 2 is arranged at a position perpendicular to the axis of the fiber under test 3. 7 is an image processing device, 8 is a TV monitor, 9 is a host) CPU 110
is a printer.

第3図は、第1図に示した光ファイバ構造測定装置を用
いてシングルモード光ファイバを側面から観測した場合
のモニタ画像の一例である。11は被検ファイバのクラ
ッド部、12はコア部を示す。
FIG. 3 is an example of a monitor image when a single mode optical fiber is observed from the side using the optical fiber structure measuring device shown in FIG. Reference numeral 11 indicates a cladding portion of the fiber to be tested, and reference numeral 12 indicates a core portion.

第4図は第3図に示したモニタ画像の直線77Lにおけ
る輝度分布を示したものである。被検ファイバをある回
転角度から見たときの、見かけの構造パラメータ、すな
わちクラッド径・コア径・偏心量は第4図の輝度分布の
データを処理することにより得られる。第4図において
、クラッド外縁部の位置P、、Pzは定められたスライ
ス・レベルを用いて求められ、クラッド中心の位置M 
+はPlとP2の中点として求められる。コア・クラッ
ド境界部の位置Q+ 、Qzおよびコア中心の位71 
M 、は、輝度分布特性のR+、Rt間の輝度データを
処理することにより求められる。またコア・クラッド境
界部の位置Q+ 、 Qzおよびコア中心の位ffMz
は、被検ファイバ表面のレンズ効果のため観測面の位置
、すなわち描像系の焦点と被検ファイバとの相対位置に
よって変化するが、これは明暗比t=R,R2/P、p
オの値をもとに補正を加えることによって、真のコア・
クラッド境界の位置QIQtおよび真のコア中心位置M
gに変換される。このとき当該観測角度におけるクラッ
ド径・コア径・偏心量はそれぞれP+Pt。
FIG. 4 shows the brightness distribution along the straight line 77L of the monitor image shown in FIG. When the test fiber is viewed from a certain rotation angle, the apparent structural parameters, ie, the cladding diameter, core diameter, and eccentricity, can be obtained by processing the brightness distribution data shown in FIG. In FIG. 4, the positions P, , Pz of the outer edge of the cladding are determined using a predetermined slice level, and the position M of the cladding center is
+ is determined as the midpoint between Pl and P2. Core-cladding boundary position Q+, Qz and core center position 71
M is obtained by processing the luminance data between R+ and Rt of the luminance distribution characteristic. Also, the core-cladding boundary position Q+, Qz and the core center position ffMz
varies depending on the position of the observation plane, that is, the relative position between the focal point of the imaging system and the fiber under test due to the lens effect on the surface of the fiber under test, but this depends on the contrast ratio t=R, R2/P, p
By adding corrections based on the value of
Cladding boundary position QIQt and true core center position M
converted to g. At this time, the cladding diameter, core diameter, and eccentricity at the relevant observation angle are P+Pt, respectively.

また、光源と描像系を結ぶ光軸が被検ファイバの軸に直
交していない場合、たとえば第5図に示すように光源1
3の位置がAからBに変化した場合には、被検ファイバ
14を通し、対物レンズ15を介してテレビカメラ16
により観測される輝度分布のパターンは第6図に示すよ
うに変化する。第6図の輝度分布において、IAは第5
図の光源13がAの位置で光源ずれのないときの輝度分
布であり、Isは光源13がBの位置で光源ずれのある
ときの輝度分布である。この輝度分布から求められる構
造パラ−メータは、光源の位置ずれの影響の加ゎ検ファ
イバの軸に直交しているので、光源ずれの影響を受ける
ことはない。
In addition, if the optical axis connecting the light source and the imaging system is not perpendicular to the axis of the fiber under test, for example, as shown in FIG.
3 changes from A to B, the test fiber 14 is passed through the objective lens 15, and the TV camera 16
The brightness distribution pattern observed changes as shown in FIG. In the brightness distribution in Figure 6, IA is the fifth
This is the brightness distribution when the light source 13 in the figure is at position A and there is no light source shift, and Is is the brightness distribution when the light source 13 is at position B and there is light source shift. The structural parameters determined from this luminance distribution are not affected by the light source misalignment because they are perpendicular to the fiber axis.

被検ファイバを30度ずつ回転させながら第1図の測定
装置を用いてシングルモード光ファイバのクラッド径、
コア径、偏心量を測定した結果を第7図乃至第9図に示
す。
While rotating the fiber under test by 30 degrees, the cladding diameter of the single mode optical fiber was determined using the measuring device shown in Figure 1.
The results of measuring the core diameter and eccentricity are shown in FIGS. 7 to 9.

第7図はクラッド径りの測定結果である。各観測角度に
おけるクラッド径の測定値の平均が被検ファイバのクラ
ッド径となる。また、各観測角度におけるクラッド径の
最大値と最小値の差を平均クラッド径で除した値、すな
わちδ/DX100がクラッド非円率となる。
FIG. 7 shows the measurement results of the clad diameter. The average of the measured values of the cladding diameter at each observation angle becomes the cladding diameter of the test fiber. Further, the value obtained by dividing the difference between the maximum value and the minimum value of the cladding diameter at each observation angle by the average cladding diameter, that is, δ/DX100, becomes the cladding noncircularity.

第8図はコア径dの測定結果である。各観測角度におけ
るコア径の測定値の平均が被検ファイバのコア径となる
FIG. 8 shows the measurement results of the core diameter d. The average of the core diameter measurements at each observation angle is the core diameter of the test fiber.

第9図は偏心量の測定結果である。各観測角度における
偏心量の測定値に対して正弦波函数をフィッティングし
た結果が実線で示されている。この正弦波関数の振幅A
が被検ファイバの偏心量、初期位相が被検ファイバの偏
心の方向角θとなる。
FIG. 9 shows the measurement results of eccentricity. The solid line shows the result of fitting a sine wave function to the measured value of eccentricity at each observation angle. The amplitude A of this sine wave function
is the amount of eccentricity of the fiber under test, and the initial phase is the direction angle θ of the eccentricity of the fiber under test.

第1図の測定装置を用いて測定を行った測定値再現性と
従来の測定法による測定値再現性を比較した結果を次表
に示す。ここで測定値再現性は繰返し回数20での標準
偏差で示す値である。次表から解るとおり、本発明によ
ると、クラッド径、コア径、コア/クラッド偏心量、ク
ラッド非円率各項目とも従来法による測定に比べて、繰
返し測定を行った場合の測定値標準偏差が小さく、イ3
頼性の高い測定が行われている。
The following table shows the results of a comparison between the reproducibility of measured values measured using the measuring device shown in FIG. 1 and the reproducibility of measured values measured using the conventional measuring method. Here, the measurement value reproducibility is a value indicated by the standard deviation after 20 repetitions. As can be seen from the following table, according to the present invention, the standard deviation of the measured values when repeated measurements are made is lower than when measured using the conventional method for each item of cladding diameter, core diameter, core/cladding eccentricity, and cladding non-circularity. small, i3
Highly reliable measurements are being taken.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による光ファイバ構造測定
法においては、次に述べる二つの理由、すなわち、 第1に、光ファイバの切断面を用いるのではなく、側面
を用いて測定を行うため、被検ファイバの切断を必要と
せず、被検ファイバの切断面の不整および傾きに起因す
る測定誤差が生じない。
As explained above, in the optical fiber structure measurement method according to the present invention, there are two reasons as follows: First, measurement is performed using the side surface of the optical fiber instead of using the cut surface. There is no need to cut the fiber under test, and measurement errors due to irregularities and inclinations of the cut surface of the fiber under test do not occur.

第2に、被検ファイバまたは光源と撮像系を回転させて
測定を行い、各観測角度において得られた測定値に対し
て平均化および正弦波関数のフィッティングを行うこと
により、被検ファイバの構造パラメータを求める方法で
あることから、再現性に優れたデータが得られる。
Second, measurements are performed by rotating the fiber under test or the light source and the imaging system, and the measured values obtained at each observation angle are averaged and fitted with a sinusoidal function to determine the structure of the fiber under test. Since it is a method for determining parameters, data with excellent reproducibility can be obtained.

という理由により、非破壊で、高精度かつ簡便に光ファ
イバの内部構造の測定を行うことができ、その効果が大
きい。
For this reason, the internal structure of an optical fiber can be measured nondestructively, with high precision, and easily, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定法を行うのに用いる光ファイバ構
造測定装置の実施例の構成概要図、第2図a乃至Cは偏
心のないファイバを測定する際の撮像系の拡大倍率の歪
の影響を説明する図で、第2図aは従来の測定法、第2
図す、cはそれぞれ観測角度O°および180°におけ
る本発明の測定法による観測結果を示す図、第3図は第
1図の測定装置を用いてシングルモード光ファイバを観
測した場合のモニタ画像、第4図は第3図のモニタ画像
の線a−a′上における輝度分布、第5図は光源の位置
ずれを説明する図、第6図は第5図における光源の位置
ずれによる輝度分布のパターンの変化を示す図、第7図
乃至第9図はそれぞれ第1図の測定装置を用いてシング
ルモード光ファイバのクラッド径、コア径および偏心量
を測定した結果である。 ■・・・光源、2・・・光軸、3・・・被検ファイバ、
4・・・撮像レンズ、5・・・テレビカメラ、6・・・
回転機構付ファイバセットステージ、7・・・画像処理
装置、8・・・テレビモニタ、9・・・ホストCPU、
10・・・プリンタ、11・・・クラッド部、12・・
・コア部、I3・・・光源、I4・・・被検ファイバ、
15・・・対物レンズ、16・・・テレビカメラ、20
・・・クラッド、21・・・コア、22・・・真のコア
中心、真のクラッド中心および測定されるコア中心、2
3・・・測定されるクラッド中心 特許出願人  住友電気工業株式会社 代理人 弁理士 玉 蟲 久 五 部 +54物レンズ 第  5  図 覗囮 液横ファイノく回転角度(deg) クラッド径測定結果 第  7  図 篤 8  図 A:イ4Lu量−1,05(、Llm)θ:偏心方向角
= 261.3 (deg)偏lム量測定結果 第 9 図
Fig. 1 is a schematic diagram of the configuration of an embodiment of the optical fiber structure measuring device used to perform the measurement method of the present invention, and Fig. 2 a to C show the distortion of the magnification of the imaging system when measuring a fiber without eccentricity. Figure 2a is a diagram explaining the influence of the conventional measurement method;
Figures 3 and 3 are diagrams showing observation results using the measurement method of the present invention at observation angles of 0° and 180°, respectively, and Figure 3 is a monitor image when a single mode optical fiber is observed using the measuring device shown in Figure 1. , Fig. 4 shows the brightness distribution on the line a-a' of the monitor image in Fig. 3, Fig. 5 shows the positional deviation of the light source, and Fig. 6 shows the brightness distribution due to the positional deviation of the light source in Fig. 5. 7 to 9 show the results of measuring the cladding diameter, core diameter, and eccentricity of a single mode optical fiber using the measuring device shown in FIG. 1, respectively. ■...Light source, 2...Optical axis, 3...Test fiber,
4...Imaging lens, 5...TV camera, 6...
Fiber set stage with rotation mechanism, 7... Image processing device, 8... Television monitor, 9... Host CPU,
10...Printer, 11...Clad part, 12...
・Core part, I3... light source, I4... test fiber,
15...Objective lens, 16...TV camera, 20
... cladding, 21 ... core, 22 ... true core center, true cladding center and measured core center, 2
3... Center of the cladding to be measured Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Tama Mushi Hisa 5 + 54 object lens Figure 5 Rotation angle (deg) of horizontal angle of decoy liquid Cladding diameter measurement results Figure 7 Atsushi 8 Figure A: A4 Lu amount - 1,05 (, Llm) θ: Eccentric direction angle = 261.3 (deg) Eccentricity amount measurement results Fig. 9

Claims (1)

【特許請求の範囲】 光ファイバの内部構造を測定する方法において、光源と
、画像処理機能を結合した撮像レンズおよびテレビカメ
ラを含む撮像系とを、前記光源と撮像系を結ぶ光軸が被
検ファイバの長手方向に対して直交し、かつ被検ファイ
バの中心を通る位置に配置し、 前記被検ファイバをファイバの軸を中心に回転させるか
、または前記光源と撮像系を結ぶ光軸が前記被検ファイ
バ上の測定点を通過し、かつ被検ファイバの軸に直交す
るように回転させ、 前記回転させたときの少くとも二つ以上の回転角におけ
る前記被検ファイバのクラッド外縁部およびコア・クラ
ッド境界部の相対位置を認識し、観測面の位置情報を基
に前記被検ファイバ表面のレンズ効果の補正を行い、 前記観測した角度におけるコア・クラッド境界部の真の
位置を求めることにより、前記二つ以上の測定角度にお
ける偏心量・クラッド径およびコア径を求め、 偏心量については正弦波関数をフィッティングし、 クラッド径・コア径については平均化処理を加えること
により、 前記被検ファイバの構造パラメータを規定する偏心量・
クラッド径・コア径およびクラッド非円率を求める ことを特徴とする光ファイバ構造測定法。
[Claims] In a method for measuring the internal structure of an optical fiber, a light source and an imaging system including an imaging lens and a television camera combined with an image processing function are arranged such that an optical axis connecting the light source and the imaging system is to be measured. The fiber is placed at a position perpendicular to the longitudinal direction of the fiber and passes through the center of the fiber to be tested, and the fiber to be tested is rotated around the axis of the fiber, or the optical axis connecting the light source and the imaging system is Passing through a measurement point on the fiber to be tested and rotating it perpendicular to the axis of the fiber to be tested, the outer edge of the cladding and the core of the fiber to be tested at at least two or more rotation angles during said rotation. - By recognizing the relative position of the cladding boundary, correcting the lens effect on the surface of the fiber to be tested based on the position information of the observation plane, and finding the true position of the core-cladding boundary at the observed angle. , find the eccentricity, cladding diameter, and core diameter at the two or more measurement angles, fit a sine wave function for the eccentricity, and apply averaging processing to the cladding diameter and core diameter to obtain the fiber under test. The amount of eccentricity that defines the structural parameters of
An optical fiber structure measurement method characterized by determining the cladding diameter, core diameter, and cladding noncircularity.
JP1750687A 1986-08-15 1987-01-28 Optical fiber structure measurement method Expired - Lifetime JPH0797064B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA000543994A CA1295476C (en) 1986-08-15 1987-08-07 Method and apparatus of measuring outer diameter and structure of optical fiber
AU76894/87A AU585728B2 (en) 1986-08-15 1987-08-14 Method and apparatus of measuring outer diameter and structure of optical fiber
US07/085,598 US4882497A (en) 1986-08-15 1987-08-14 Method and apparatus of measuring outer diameter and structure of optical fiber
EP87111831A EP0256539A3 (en) 1986-08-15 1987-08-14 Method and apparatus of measuring outer diameter and structure of optical fiber
KR1019870008958A KR900005642B1 (en) 1986-08-15 1987-08-14 Checking machine of dia-meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-191534 1986-08-15
JP19153486 1986-08-15

Publications (2)

Publication Number Publication Date
JPS63165726A true JPS63165726A (en) 1988-07-09
JPH0797064B2 JPH0797064B2 (en) 1995-10-18

Family

ID=16276263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1750687A Expired - Lifetime JPH0797064B2 (en) 1986-08-15 1987-01-28 Optical fiber structure measurement method

Country Status (1)

Country Link
JP (1) JPH0797064B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271131A (en) * 1988-09-07 1990-03-09 Sumitomo Electric Ind Ltd Optical fiber observation apparatus
JP2001215169A (en) * 1999-10-28 2001-08-10 Lucent Technol Inc Method and apparatus for measuring diameter and/or eccentricity of coating layer of coated optical fiber
WO2020162409A1 (en) * 2019-02-04 2020-08-13 日東電工株式会社 Plastic optical fiber core diameter measuring method and plastic optical fiber core diameter measuring device used therefor, and plastic optical fiber defect detecting method and plastic optical fiber defect detecting device used therefor
WO2020162410A1 (en) * 2019-02-04 2020-08-13 日東電工株式会社 Core diameter measuring method of plastic optical fiber and core diameter measuring device of plastic optical fiber used therefor
JP2020126050A (en) * 2019-02-04 2020-08-20 日東電工株式会社 Method for measuring core diameter of plastic optical fiber and device for measuring core diameter of plastic optical fiber used therefor, method for detecting defect of plastic optical fiber, and device for detecting defect of plastic optical fiber used therefor
CN113048901A (en) * 2021-03-05 2021-06-29 中国建筑材料科学研究总院有限公司 Method for measuring nanoscale three-dimensional deformation under microscope based on optical flow algorithm
JP2021156761A (en) * 2020-03-27 2021-10-07 Kddi株式会社 Measuring device of refractive-index distribution of optical fiber, and processor therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271131A (en) * 1988-09-07 1990-03-09 Sumitomo Electric Ind Ltd Optical fiber observation apparatus
JP2001215169A (en) * 1999-10-28 2001-08-10 Lucent Technol Inc Method and apparatus for measuring diameter and/or eccentricity of coating layer of coated optical fiber
WO2020162409A1 (en) * 2019-02-04 2020-08-13 日東電工株式会社 Plastic optical fiber core diameter measuring method and plastic optical fiber core diameter measuring device used therefor, and plastic optical fiber defect detecting method and plastic optical fiber defect detecting device used therefor
WO2020162410A1 (en) * 2019-02-04 2020-08-13 日東電工株式会社 Core diameter measuring method of plastic optical fiber and core diameter measuring device of plastic optical fiber used therefor
JP2020125961A (en) * 2019-02-04 2020-08-20 日東電工株式会社 Method for measuring core diameter of plastic optical fiber and device for measuring core diameter of plastic optical fiber used therefor
JP2020126050A (en) * 2019-02-04 2020-08-20 日東電工株式会社 Method for measuring core diameter of plastic optical fiber and device for measuring core diameter of plastic optical fiber used therefor, method for detecting defect of plastic optical fiber, and device for detecting defect of plastic optical fiber used therefor
CN113518892A (en) * 2019-02-04 2021-10-19 日东电工株式会社 Method for measuring core diameter of plastic optical fiber, device for measuring core diameter of plastic optical fiber used for the method, method for detecting defect of plastic optical fiber, and device for detecting defect of plastic optical fiber used for the method
CN113518892B (en) * 2019-02-04 2023-09-12 日东电工株式会社 Method and device for measuring core diameter of plastic optical fiber, and method and device for detecting defects
US12025529B2 (en) 2019-02-04 2024-07-02 Nitto Denko Corporation Plastic optical fiber core diameter measuring method, plastic optical fiber core diameter measuring apparatus used therefor, plastic optical fiber defect detecting method, and plastic optical fiber defect detecting apparatus used therefor
JP2021156761A (en) * 2020-03-27 2021-10-07 Kddi株式会社 Measuring device of refractive-index distribution of optical fiber, and processor therefor
CN113048901A (en) * 2021-03-05 2021-06-29 中国建筑材料科学研究总院有限公司 Method for measuring nanoscale three-dimensional deformation under microscope based on optical flow algorithm

Also Published As

Publication number Publication date
JPH0797064B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JP4774332B2 (en) Eccentricity measurement method
US9228858B2 (en) Rotation angle detecting apparatus
JP4764040B2 (en) A method for measuring the eccentricity of the aspherical axis of a lens
WO2010039951A1 (en) Method of aligning polarization-maintaining optical fiber by image profile analysis
JP3464835B2 (en) Hole diameter and concentricity measuring device for micro cylindrical parts
JPS63165726A (en) Method for measuring structure of optical fiber
JP2009122065A (en) Calibration tool and calibration method
JP3127003B2 (en) Aspherical lens eccentricity measurement method
JPH01277731A (en) Method and apparatus for measuring eccentricity of waveguide buried in cylindrical connector pin
US20020017030A1 (en) Process and device for determining the alignment of a body with regard to a reference direction
CN117119173B (en) Camera internal reference verification method
JPH0792422B2 (en) Extinction ratio measuring method in assembly process of polarization maintaining optical fiber and semiconductor laser
JP2592906B2 (en) Measuring device for connector structural parameters
JPH07117427B2 (en) Measuring accuracy of measuring instruments
JP3633132B2 (en) Die sorting method for optical fiber coating
JP4570227B2 (en) Method for detecting and adjusting the position of stress applying part in panda fiber
JP3268877B2 (en) Aspherical lens measurement method
JPH08105715A (en) Optical axis aligning method for laser thickness measuring instrument
US11959852B2 (en) Method for determining properties of a sample by ellipsometry
JPH05215636A (en) Method for measuring eccentricity of aspherical lens
JPH04340406A (en) Measurement of aspherical surface
JPS6324243B2 (en)
JPH08189816A (en) Die hole shape measuring apparatus and measuring method
JPH11108793A (en) Lens eccentricity measuring method and lens eccentricity measuring device
CN115326195A (en) Laser beam stereo uniformity detection device and detection method thereof