JPS6316556A - Manufacture of non-sintered type electrode - Google Patents

Manufacture of non-sintered type electrode

Info

Publication number
JPS6316556A
JPS6316556A JP61159002A JP15900286A JPS6316556A JP S6316556 A JPS6316556 A JP S6316556A JP 61159002 A JP61159002 A JP 61159002A JP 15900286 A JP15900286 A JP 15900286A JP S6316556 A JPS6316556 A JP S6316556A
Authority
JP
Japan
Prior art keywords
nickel
tank
salt
nickel hydroxide
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61159002A
Other languages
Japanese (ja)
Other versions
JPH0773052B2 (en
Inventor
Hiroshi Kawano
川野 博志
Shoichi Ikeyama
正一 池山
Yasuko Ito
康子 伊藤
Munehisa Ikoma
宗久 生駒
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61159002A priority Critical patent/JPH0773052B2/en
Publication of JPS6316556A publication Critical patent/JPS6316556A/en
Publication of JPH0773052B2 publication Critical patent/JPH0773052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To simplify the manufacture and to obtain an active material with a cheap cost by manufacturing nickel hydroxide obtained by controlling the concentration and the flow of supplied salt, and the temperature and the PH value in a tank. CONSTITUTION:A step for introducing solutions of nickel salt and caustic alkali in the same tank, and stirring them together thoroughly, so as to transform them into nickel hydroxide, and to take it out by overflowing, is applied. In this step, nickel hydroxide is obtained by controlling the concentration of supplied salt, the temperature in a tank, the flow or residence period of the supplyed salt in the tank, and the PH value in the tank. The concentration and the flow of the supplied salt, and the temperature in the precipitation tank give a great effect on the PH value. By increasing the concentration of the supplied salt while making the flow constant, for example, nickel in the same tank, caustic alkali, and transformed nickel hydroxide increase so that the PH value will change as a matter of cource. In the case of changing one of conditions, other conditions are thus fixed so as to produce nickel hydroxide, and an active material powder having uniform characteristics is thereby obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ニッケル正極に適用しうる
、非焼結式ニッケル正極の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a non-sintered nickel positive electrode that can be applied to a nickel positive electrode for alkaline storage batteries.

従来の技術 従来、この踵のアルカリ電池用ニッケル正極に使用する
非焼結式ニッケル正極、つまり水酸化ニッケル粉末を活
物質として直接使用する正極にはニッケル塩水溶液に化
学量論的に過剰で一定量のか性アルカリを加え、水酸化
ニッケルとして沈澱析出させて製造する方法、すなわち
、水酸化ニッケルをバッチ式で製造している。また、電
池用活物質として特性の優れたものにするため、結晶を
ある程度成長、安定化する目的で一定時間熟成する必要
があった。これらの理由により、この方法では、製造工
程が連続化することが困難で、製造コストが高くなる欠
点を有している。
Conventional technology Conventionally, non-sintered nickel positive electrodes used in nickel positive electrodes for alkaline batteries, that is, positive electrodes that directly use nickel hydroxide powder as the active material, have a constant stoichiometric excess in an aqueous nickel salt solution. Nickel hydroxide is produced by adding a certain amount of caustic alkali to precipitate it as nickel hydroxide, that is, producing nickel hydroxide in a batch process. In addition, in order to make it a battery active material with excellent characteristics, it was necessary to ripen it for a certain period of time in order to grow and stabilize crystals to some extent. For these reasons, this method has the disadvantage that it is difficult to make the manufacturing process continuous and the manufacturing cost is high.

発明が解決しようとする問題点 このような従来の製法では、水酸化ニッケル粉末を連続
的に製造することが困難で、水酸化ニッケル粉末が高価
になるという問題があった。
Problems to be Solved by the Invention In such conventional production methods, it is difficult to continuously produce nickel hydroxide powder, and the nickel hydroxide powder becomes expensive.

本発明は水溶性のニッケル塩の転化と結晶を成長させる
熟成の2段階を同一槽で連続的に行ない、低コストの水
酸化ニッケル粉末を製造することを目的とするものであ
る。
The object of the present invention is to produce low-cost nickel hydroxide powder by continuously carrying out the two stages of conversion of a water-soluble nickel salt and ripening to grow crystals in the same tank.

問題点を解決するための手段 この問題点を解決するために本発明は、非焼結式ニッケ
ル極に使用される水酸化ニッケル粉末の製法をつぎに示
す方法で製造するものである。すなわち、ニッケル塩の
水溶液とか性アルカリ水溶液を同一槽に導入して十分攪
拌し、水酸化ニッケルに転化して槽の上部より、オーバ
フローさせて取り出す工程を採用し、この工程において
、供給塩濃度、槽内温度、供給塩流量または槽内へ滞溜
する時間及び槽内のPHを制御して、水酸化ニッケルを
製造するものである。
Means for Solving the Problem In order to solve this problem, the present invention produces a nickel hydroxide powder used in a non-sintered nickel electrode by the following method. That is, a process is adopted in which a nickel salt aqueous solution and a caustic alkali aqueous solution are introduced into the same tank, thoroughly stirred, and converted into nickel hydroxide, which is then taken out from the top of the tank by overflowing. In this process, the concentration of the supplied salt, Nickel hydroxide is produced by controlling the temperature inside the tank, the flow rate of the supplied salt, the residence time in the tank, and the pH inside the tank.

作  用 この構成によれば、上記の供給塩の濃度、供給塩流量、
析出槽の温度はPH値に大きな影響を与えるものであり
、たとえば供給基量を一定流量にして供給塩濃度を増大
させることにより、同一槽内のニッケル量は増大し、か
性アルカリ、転化した水酸化ニッケルも増大することに
なり、PH値も当然変化する。したがって、一つの条件
を変化させる場合は、他の条件は固定して水酸化ニッケ
ルを製造することにより、均一な特性を有する活物質粉
末が得られることがわかった。
According to this configuration, the concentration of the above-mentioned supply salt, the supply salt flow rate,
The temperature of the precipitation tank has a great effect on the pH value. For example, by increasing the supply base amount at a constant flow rate and increasing the feed salt concentration, the amount of nickel in the same tank will increase, causing caustic alkali and conversion. Nickel hydroxide also increases, and the pH value naturally changes. Therefore, it has been found that when one condition is changed, by manufacturing nickel hydroxide while keeping the other conditions fixed, an active material powder having uniform characteristics can be obtained.

実施例 水酸化ニッケルを製造する析出槽としては、1oOlの
タンクを用いて、ニッケル塩、か性アルカリ水溶液とし
て、各々18oy/l のニッケル金属を溶解した硝酸
ニッケルと、20重量%の水酸化ナトリウム水溶液を用
いた。このタンク内へニッケル塩溶液を1.5//hr
の一定流量で導入し、槽内温度を40℃一定に保ち、十
分攪拌しながら、水酸化ナトリウム水溶液を一定範囲内
のPH値を保持するために間欠的に添加した。この一定
範囲のPH値として、10.3〜10.4.10.4−
10.6゜10.5〜10.6 、10.6〜10.7
 、10.7〜10.8の6段階に変化させて得られた
水酸化ニッケルA〜Eを作り、水洗、乾燥し粉末とした
Example A 10Ol tank was used as a precipitation tank for producing nickel hydroxide, and nickel nitrate with 18 oy/l of nickel metal dissolved in each as a nickel salt and caustic alkali aqueous solution, and 20% by weight of sodium hydroxide were prepared. An aqueous solution was used. Add nickel salt solution into this tank for 1.5//hour
was introduced at a constant flow rate, the temperature inside the tank was kept constant at 40°C, and while stirring sufficiently, an aqueous sodium hydroxide solution was added intermittently to maintain the pH value within a certain range. As the PH value in this certain range, 10.3 to 10.4.10.4-
10.6°10.5~10.6, 10.6~10.7
, 10.7 to 10.8 to prepare nickel hydroxides A to E, which were washed with water and dried to form powders.

このA、Eの粉末を用いて、それぞれ水酸化ニッケル1
0oyに対して、金属コバルトBP混合し、水を加えて
ペースト状にし、発泡状ニッケル多孔体(多孔度95%
)に充てんし、乾燥後一定条件で加圧プラスを行ない、
非焼結式ニッケル正極を得た。この正極を用い、負極と
して公知のカドミウム負極と組みあわせ、公称容量70
0 mAhのAAサイズの密閉形ニッケルカドミウム蓄
電池を構成した。
Using these powders A and E, 1 nickel hydroxide was added to each powder.
0oy, mix metal cobalt BP, add water to make a paste, and form a foamed nickel porous body (porosity 95%).
), and after drying, pressurize plus under certain conditions,
A non-sintered nickel positive electrode was obtained. Using this positive electrode and combining it with a known cadmium negative electrode as a negative electrode, the nominal capacity was 70.
A sealed nickel-cadmium storage battery of 0 mAh AA size was constructed.

この電池を20’Cの一定温度で0.10で20時間充
電し、0.20で放電を繰りかえし、2サイクル目の放
電容量(終止電圧を1vにした場合)で電池特性を評価
した。これらの結果を第1表に示す。
This battery was charged at a constant temperature of 20'C for 20 hours at a temperature of 0.10, discharged repeatedly at a temperature of 0.20, and the battery characteristics were evaluated based on the discharge capacity of the second cycle (when the final voltage was set to 1 V). These results are shown in Table 1.

以下余白 この表において、析出PH値は、たとえばAの場合であ
れば、下限値が10.3であり、上限値が10.4の範
囲で変化している。実際にはPH値が10.33になる
と水酸化ナトリウムの水溶液が添加され、PH値が10
.37になれば水酸化ナトリウム水溶液の供給ポンプが
停止するように設計されている。また、粉末の充てん密
度の測定は水酸化ニッケル粉末を十分乾燥後、一定高さ
より落下させる工程を決められた回数だけ繰りかえした
時の粉末の密度を示したもので、電極にした場合の同一
体積中に充てんされる水酸化ニッケル量に関連してくる
。したがって、高容量の電池を作るには充てん密度の大
きい粉末が望ましい。
Margin below In this table, the precipitation PH value varies within the range of, for example, A, the lower limit is 10.3 and the upper limit is 10.4. In reality, when the pH value reaches 10.33, an aqueous solution of sodium hydroxide is added, and the pH value reaches 10.33.
.. 37, the sodium hydroxide aqueous solution supply pump is designed to stop. In addition, the measurement of the powder packing density indicates the density of the powder when the process of dropping the nickel hydroxide powder from a certain height after drying it enough is repeated a predetermined number of times, and the same volume when used as an electrode. It is related to the amount of nickel hydroxide filled inside. Therefore, powders with a high packing density are desirable for producing high-capacity batteries.

活物質の利用率については、PH値の大きい範囲で析出
させた水酸化ニッケルが良かった。この粉末においては
、粉末の粒子が小さくなり、比表面積の大きな粉末が形
成されたことに起因する。
Regarding the utilization rate of the active material, nickel hydroxide precipitated in a large pH value range was good. This is due to the fact that in this powder, the particles of the powder become smaller and a powder with a larger specific surface area is formed.

しかし、電極として充てんした場合、充てん密度が低く
なり、容量密度としては低下した。
However, when it was filled as an electrode, the filling density became low and the capacity density decreased.

実施例においてはニッケル塩濃度、ニッケル塩流量(析
出槽内に滞溜している時間)、析出温度を固定して、P
H値を変化させて得られた粉末について比較したが、前
記3条件が異なることにより、最適PH値が異なってく
る。したがって、PH値だけで本発明を規正することは
困雅で、4項目を関連づけて決定することが必要である
。また、使用するニッケル塩の種類を変更しても、上記
4項目を限定することにより最適範囲が存在することが
確認でき、この方法は水溶性のニッケル塩たとえば、硫
酸ニッケル、塩化ニッケルでも適用できることがわかっ
た。
In the example, the nickel salt concentration, the nickel salt flow rate (the time the nickel salt stays in the precipitation tank), and the precipitation temperature are fixed, and the P
Powders obtained by varying the H value were compared, but the optimum pH value differs due to the three conditions being different. Therefore, it is difficult to regulate the present invention based only on the PH value, and it is necessary to make decisions by relating the four items. Furthermore, even if the type of nickel salt used is changed, it was confirmed that an optimal range exists by limiting the above four items, and this method can also be applied to water-soluble nickel salts such as nickel sulfate and nickel chloride. I understand.

さらに、実施例においては発泡状ニッケル多孔体へ、充
てんして電極を構成する例を示したが、金属基板として
、ニッケルのネット、エキスバンドメタルの両面に塗着
する方法により得られたニッケル正極および多数の細孔
を有する金属ケース内へ充てんして得られるポケット式
ニッケル正極においても本発明は有効な手段であった。
Furthermore, in the example, an example was shown in which an electrode was constructed by filling a foamed nickel porous material, but as a metal substrate, a nickel positive electrode obtained by coating both sides of a nickel net or expanded metal was used. The present invention was also an effective means for a pocket type nickel positive electrode obtained by filling a metal case with a large number of pores.

発明の効果 以上のように本発明によれば、非焼結式ニッケル正極の
活物質の製法として、製法が簡素化され、低コストの活
物質粉末が可能になる。さらに、この製法において、析
出条件を一定範囲に固定することにより、活物質の充て
ん密度、活物質の利用率から得られる容量密度の大きな
電極が得られ、従来のバッチ式で得られた水酸化ニッケ
ルに比べて、電池特性も劣ることはなかった。したがっ
て本発明は非焼結式ニッケル極の活物質製法として、安
価で高性能の水酸化ニッケルを提供するもので、その工
業的価値はきわめて大きい。
Effects of the Invention As described above, according to the present invention, the manufacturing method for the active material of a non-sintered nickel positive electrode is simplified, and low-cost active material powder can be produced. Furthermore, in this manufacturing method, by fixing the deposition conditions within a certain range, an electrode with a large capacity density obtained from the packing density of the active material and the utilization rate of the active material can be obtained, and the hydroxide Compared to nickel, the battery characteristics were not inferior. Therefore, the present invention provides an inexpensive and high-performance nickel hydroxide as a method for producing an active material for a non-sintered nickel electrode, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)水酸化ニッケル粉末を主体とする粉末混合物を乾
燥状態もしくはペースト状態で金属基板または支持体内
部に充てんしたニッケル正極であって、使用する水酸化
ニッケル粉末はニッケル塩の水溶液とか性アルカリ水溶
液を同一槽内に導入して十分攪拌し、連続的に水酸化ニ
ッケルを取り出す工程において、供給塩濃度と供給塩流
量、槽内温度及び槽内PHを制御して得られた水酸化ニ
ッケルであることを特徴とする非焼結式電極の製造法。
(1) A nickel positive electrode in which a powder mixture mainly composed of nickel hydroxide powder is filled in a metal substrate or support in a dry or paste state, and the nickel hydroxide powder used is an aqueous solution of nickel salt or an alkaline aqueous solution. This is nickel hydroxide obtained by controlling the supply salt concentration, supply salt flow rate, tank temperature, and tank pH in the process of introducing nickel hydroxide into the same tank, thoroughly stirring it, and continuously taking out nickel hydroxide. A method for manufacturing a non-sintered electrode characterized by:
(2)ニッケル塩が硝酸ニッケルであって、硝酸ニッケ
ル水溶液の濃度、供給量、槽内温度が一定の時、PH値
が10.4〜10.7の範囲内に制御して得られた水酸
化ニッケルである特許請求の範囲第1項に記載の非焼結
式電極の製造法。
(2) Water obtained by controlling the pH value within the range of 10.4 to 10.7 when the nickel salt is nickel nitrate and the concentration, supply amount, and tank temperature of the nickel nitrate aqueous solution are constant. A method for manufacturing a non-sintered electrode according to claim 1, wherein the electrode is nickel oxide.
JP61159002A 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method Expired - Lifetime JPH0773052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159002A JPH0773052B2 (en) 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159002A JPH0773052B2 (en) 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPS6316556A true JPS6316556A (en) 1988-01-23
JPH0773052B2 JPH0773052B2 (en) 1995-08-02

Family

ID=15684083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159002A Expired - Lifetime JPH0773052B2 (en) 1986-07-07 1986-07-07 Non-sintered electrode manufacturing method

Country Status (1)

Country Link
JP (1) JPH0773052B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187768A (en) * 1988-01-19 1989-07-27 Yuasa Battery Co Ltd Nickel electrode for alkali battery
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH026340A (en) * 1988-04-13 1990-01-10 Kansai Shokubai Kagaku Kk Production of nickel hydroxide
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543836A (en) * 1977-06-10 1979-01-12 Denki Kagaku Kogyo Kk Dryyspray process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543836A (en) * 1977-06-10 1979-01-12 Denki Kagaku Kogyo Kk Dryyspray process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187768A (en) * 1988-01-19 1989-07-27 Yuasa Battery Co Ltd Nickel electrode for alkali battery
JPH0568068B2 (en) * 1988-01-19 1993-09-28 Yuasa Battery Co Ltd
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH0724218B2 (en) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション Nickel electrode for alkaline battery and battery using the same
JPH026340A (en) * 1988-04-13 1990-01-10 Kansai Shokubai Kagaku Kk Production of nickel hydroxide
JPH0468249B2 (en) * 1988-04-13 1992-10-30 Kansai Shokubai Kagaku Kk
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles

Also Published As

Publication number Publication date
JPH0773052B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JP4848384B2 (en) High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same
JP2002201028A (en) High density nickel hydroxide coprecipitated with cobalt and manganese, and method for producing the same
WO2023024584A1 (en) Nickel-doped cobalt carbonate, and preparation method therefor and use thereof
JPH10265225A (en) Manufacturing device of metallic hydroxide for battery component
KR100831802B1 (en) Methods for Fabricating Calcium Zincate for Negative Electrodes
JPS6316556A (en) Manufacture of non-sintered type electrode
JPH0350384B2 (en)
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPH1160245A (en) Production of double structured nickel hydroxide
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
JPS6316555A (en) Manufacture of non-sintered type electrode
JPH1097856A (en) Nickel hydroxide for alkaline storage battery and manufacture thereof
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JPH05290841A (en) Alkaline secondary battery
JPS64787B2 (en)
JPH11268917A (en) Production of nickel hydroxide
JPH0722027A (en) Unsintered nickel positive electrode for alkaline storage battery and manufacture thereof
JPS6161227B2 (en)
JPH1012236A (en) Alpha-cobalt hydroxide layer-coated nickel hydroxide for alkaline storage battery and manufacture thereof
JPH01187765A (en) Manufacture of nickel electrode for alkaline battery
JPH0326903B2 (en)
JPH01281670A (en) Nickel electrode for alkaline battery
JPH07105232B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JPS63164163A (en) Nickel positive electrode for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term