JPS6316535A - Thin x-ray beam generator - Google Patents

Thin x-ray beam generator

Info

Publication number
JPS6316535A
JPS6316535A JP61159869A JP15986986A JPS6316535A JP S6316535 A JPS6316535 A JP S6316535A JP 61159869 A JP61159869 A JP 61159869A JP 15986986 A JP15986986 A JP 15986986A JP S6316535 A JPS6316535 A JP S6316535A
Authority
JP
Japan
Prior art keywords
aperture
rays
total reflection
ray beams
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61159869A
Other languages
Japanese (ja)
Inventor
Ikutaka Misono
御園 生隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGAKU KEISOKU KK
Original Assignee
RIGAKU KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGAKU KEISOKU KK filed Critical RIGAKU KEISOKU KK
Priority to JP61159869A priority Critical patent/JPS6316535A/en
Publication of JPS6316535A publication Critical patent/JPS6316535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a small-sized device to generate thin and strong parallel X-ray beams effectively with small electric consumption by taking out thin X-ray beams which make repetitive total reflection on the inner face of a through aperture and are emitted from the other end thereof, and separating said beam with a deflecting means. CONSTITUTION:A target 7 to generate X-rays is provided with a small through aperture 9. X-rays are generated by throttling an exciting electron beam to be incident inward from one end of the through aperture 9. Part of the X-rays are radiated towerd the opening opposite to the aperture 9 to be incident to the inner side of the aperture 9 at a smaller angle than the critical angle for total reflection, and total reflection is caused at this incident point. X-rays generated around the entrance of the electron beam and subjected to total reflection are accumulated to grow into strong X-ray beams, which will form parallel X-ray beams having an extremely small diffusion angle equivalent to the total reflection angle. The electron beam passing through the aperture 9 can be easily separated from the X-ray beams by means of a deflective plate 12 or the like. Thus strong and thin parallel X-ray beams can be obtained with an extremely small capacity.

Description

【発明の詳細な説明】 本発明は例えば試料表面の微少部を分析する場合等に用
いるための極めて細くかつ強力なX線ビームを得ること
のできるX線発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray generator capable of producing an extremely narrow and powerful X-ray beam for use in, for example, analyzing minute parts on the surface of a sample.

例えば試料表面の微小部に強力なX線を入射さ仕て、そ
の部分から発生する電子線のエネルギ分析を行うことに
より、上記微小部の物性を分析することができる。この
ような分析に際して従来はX線管の平面状あるいは円錐
状ターゲットの比較的広い範囲を電子線で励起して、全
方向へ拡散するX線を発生させ、コリメークで極めて細
いX線ビームを取り出して試料上の分析しようとする微
小部分に照射していた。従って著しく大容量で大型のX
線発生装置を必要とする欠点があった。本発明は例えば
上述のような分析に用いるための、小容量でしかも極め
て強力な小径のX線ビームを得ることのできる装置を提
供するものである。
For example, the physical properties of the minute portion can be analyzed by directing powerful X-rays to a minute portion on the surface of a sample and analyzing the energy of the electron beam generated from that portion. Conventionally, for such analysis, a relatively wide range of a flat or conical target in an X-ray tube is excited with an electron beam, generating X-rays that diffuse in all directions, and then collimated to extract an extremely narrow X-ray beam. The beam was used to irradiate the tiny area on the sample that was to be analyzed. Therefore, the X
It had the disadvantage of requiring a line generator. The present invention provides an apparatus capable of obtaining a small-capacity, extremely powerful, and small-diameter X-ray beam for use in, for example, the above-mentioned analysis.

すなわち本発明はX線を発生させるターゲットに小さい
貫通孔を設け、励起用の電子線を細く絞ってその貫通孔
の一端から内部に入射させる。従って孔の内面、特に電
子線の入射口に近い部分から全方向に向ってX線が発生
する。このX線の一部は孔の反対側の開口の方向へ放射
されて、その孔の内面に全反射臨界角より小さい角度で
入射するから、この入射点で全反射を生ずる。かつこの
ように一度全反射を生じたX線の大部分は次の入射点に
おいても全反射を生ずる。従って上記反対側の開口部に
おいては、このように電子線の人口に近い部分で発生し
て一旦全反射を生じたX線が累積されて強力なX線ビー
ムに成長すると共にそのビームは全反射角に相当する極
めて小さい拡散角をもった平行X線ビームを形成する。
That is, in the present invention, a small through hole is provided in a target for generating X-rays, and an electron beam for excitation is narrowed down and made to enter the inside from one end of the through hole. Therefore, X-rays are generated in all directions from the inner surface of the hole, particularly from a portion close to the electron beam entrance. A portion of this X-ray is emitted toward the opening on the opposite side of the hole and is incident on the inner surface of the hole at an angle smaller than the critical angle for total reflection, causing total internal reflection at this point of incidence. Moreover, most of the X-rays that have been totally reflected once will also be totally reflected at the next point of incidence. Therefore, at the aperture on the opposite side, the X-rays generated near the electron beam and once totally reflected are accumulated and grow into a powerful X-ray beam, and the beam is totally reflected. A parallel X-ray beam is formed with a very small divergence angle corresponding to the angle.

また孔を通り抜けた電子線は、これを偏向板等によって
X線ビームと容易に分離することができる。このため本
発明の装置は極めて小容量で、しかも強力な細い平行X
線ビームを得ることができる。
Further, the electron beam passing through the hole can be easily separated from the X-ray beam by a deflection plate or the like. For this reason, the device of the present invention has an extremely small capacity and yet has a powerful thin parallel
You can get a ray beam.

第1図は本発明実施例の縦断面図で、絶縁体真空容aZ
 1の一端に、ウェーネルト電極2および熱電子放射フ
ィラメント3からなる電子銃を形成した碍子部4を設け
て、この容器の適当な位置に排気口5を形成すると共に
端子板6を取り付けである。また容器l内には、例えば
10cm程度の長さの円柱状ターゲット7をウェーネル
ト電極2と同軸的に適当な距離をもって配置し、その外
側に冷却水導管8を添着すると共に軸線に沿って例えば
径か0.5n+n+程度の小孔9を形成しである。なお
この孔のウェーネルト側の端部は、孔の径を僅かに拡大
して漏斗状に形成しである。また容器1における重犯碍
子部4と反対側の端部には導体板で形成した有底筒状の
電子線捕捉室10を取り付けてその底面にX線ビーム取
出口11を形成し、かつターゲット7に近い位置に1対
の電子線偏向板12を設けて、前記端子板6の各端子に
この偏向板およびターゲット7等を接続しである。また
図面は上述の装置を前述のようなX線光電子分析装置等
の真空室13に連結して用いる場合を示したが、単独で
用いる場合はX線ビーム取出口11を鎖線のようにベリ
リウム板14等で閉塞する。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, showing the insulator vacuum volume aZ
At one end of the container, an insulator section 4 having an electron gun formed of a Wehnelt electrode 2 and a thermionic emission filament 3 is provided, and an exhaust port 5 is formed at an appropriate position of the container, and a terminal plate 6 is attached. Further, in the container l, a cylindrical target 7 having a length of, for example, about 10 cm is placed coaxially with the Wehnelt electrode 2 at an appropriate distance, and a cooling water conduit 8 is attached to the outside of the target 7, and a cylindrical target 7 with a length of, for example, about 10 cm is arranged along the axis. A small hole 9 of about 0.5n+n+ is formed. Note that the end of this hole on the Wehnelt side is formed into a funnel shape by slightly enlarging the diameter of the hole. Further, a bottomed cylindrical electron beam capture chamber 10 formed of a conductor plate is attached to the end of the container 1 opposite to the heavy-duty insulator section 4, and an X-ray beam extraction port 11 is formed on the bottom surface of the electron beam capture chamber 10. A pair of electron beam deflecting plates 12 is provided at a position close to the electron beam deflecting plate 12, and the deflecting plates, the target 7, etc. are connected to each terminal of the terminal plate 6. In addition, the drawing shows the case where the above-mentioned device is used in connection with the vacuum chamber 13 of the above-mentioned X-ray photoelectron analyzer, etc., but when used alone, the It will be occluded at 14 mag.

上述の装置において、排気口5を高真空ポンプに連結し
てフィラメント3から熱電子を放射させると、その熱電
子はターゲット7に向かって走行すると共にウェーネル
ト電極2で絞られて細い電子線eを形成する。第2図は
第1図におけるターゲット7の一部を拡大した図で、上
記電子線eが小孔9の端部に入射する。この端部15を
必要に応じて漏斗状に拡大しておくことにより電子′a
eの一部が容易に侵入して孔9の内面を衝撃し、その各
部からX線Xを発生させる。このX線は勿論全方向へ向
かって放射されるから大部分は孔の反対側の内面へ比較
的大きい角度で入射して消滅する。しかし一部のXaI
は孔9の軸に対して比較的小さい角度で走行し、このX
線は孔9の反対側の内面へ図のように例えば0.5度程
度以下の充分小さい角度で入射して、全反射を生ずる。
In the above-mentioned apparatus, when the exhaust port 5 is connected to a high vacuum pump and the filament 3 emits thermoelectrons, the thermoelectrons travel toward the target 7 and are narrowed by the Wehnelt electrode 2 to form a thin electron beam e. Form. FIG. 2 is an enlarged view of a part of the target 7 in FIG. 1, in which the electron beam e is incident on the end of the small hole 9. By enlarging this end 15 into a funnel shape as necessary, the electron 'a'
A part of the rays e easily enters and impacts the inner surface of the hole 9, generating X-rays X from each part. Of course, since these X-rays are emitted in all directions, most of them enter the inner surface on the opposite side of the hole at a relatively large angle and disappear. However, some XaI
runs at a relatively small angle to the axis of hole 9, and this
The line is incident on the inner surface on the opposite side of the hole 9 at a sufficiently small angle of, for example, about 0.5 degrees or less, as shown in the figure, and total reflection occurs.

このようにして一旦全反射を生じたX線は、次にも孔9
の内面へ充分小さい角度で入射して再び全反射する。す
なわち孔9の軸に対して充分小さい角度で発生したX線
は孔の内面で全反射を繰り返すから、比較的小さい減衰
量をもって孔9の他端から放出される。これに反し、軸
に対して大きい角度で発生したX線は、孔9の内面に大
きい角度で入射するから全反射を生ずることなく消滅す
る。従って孔9の他端から充分小さい拡散角をもった、
はぼ平行でしかも極めて細い高輝度のX線Xか第1図に
示したように発射される。
In this way, once the X-rays have been totally reflected, they are then transmitted to the hole 9.
The light is incident on the inner surface at a sufficiently small angle and is totally reflected again. That is, since X-rays generated at a sufficiently small angle with respect to the axis of the hole 9 undergo repeated total reflection on the inner surface of the hole, they are emitted from the other end of the hole 9 with a relatively small amount of attenuation. On the other hand, X-rays generated at a large angle with respect to the axis enter the inner surface of the hole 9 at a large angle and disappear without causing total reflection. Therefore, with a sufficiently small diffusion angle from the other end of the hole 9,
High-intensity X-rays are emitted as shown in Figure 1, which are nearly parallel and extremely narrow.

また電子線eの一部は孔9内を直進して第1図にe′で
示したようにその端部から放出される。
A portion of the electron beam e travels straight through the hole 9 and is emitted from its end as indicated by e' in FIG.

しかし偏向板12に適当な直流電圧を加えておくことに
よって、この電子線e°は第1図に点線で示したように
屈曲してX線取出口11の側部に捕□ 捉される。従っ
て電子線かX線と共に取出口】Jから放出されるような
おそれも除かれる。
However, by applying an appropriate DC voltage to the deflection plate 12, this electron beam e° is bent as shown by the dotted line in FIG. 1 and captured at the side of the X-ray extraction port 11. Therefore, the fear that the electron beams and X-rays will be emitted from the outlet [J] is also eliminated.

このように本発明は極めて小電力で小型の装置をもって
、細く強力な平行X線ビームを効率よく発生させること
ができる。
In this manner, the present invention can efficiently generate a narrow and powerful parallel X-ray beam using a compact device with extremely low power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の縦断面図、第2図は第1図の一
部を拡大した図である。なお図において、2はウェーネ
ルト電極、3はフィラメント、5は排気口、6は端子板
、7はターゲット、8は冷却水導管、9は小孔、10は
電子線捕捉室、IfはX線取出口、12は偏向板である
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is an enlarged view of a part of FIG. 1. In the figure, 2 is a Wehnelt electrode, 3 is a filament, 5 is an exhaust port, 6 is a terminal board, 7 is a target, 8 is a cooling water conduit, 9 is a small hole, 10 is an electron beam capture chamber, and If is an X-ray capture chamber. The outlet, 12, is a deflection plate.

Claims (1)

【特許請求の範囲】[Claims] 直線状の小さい貫通孔を有するターゲットと、上記貫通
孔の内面にその一端からX線励起用の電子線を入射させ
る電子銃と、上記貫通孔の内面で全反射を繰り返してそ
の他端から放出される細径のX線ビームを外部へ取り出
すためのX線窓と、前記ターゲットと上記X線窓との間
に配置した電子線偏向手段と、よりなることを特徴とす
る細径X線ビーム発生装置
A target having a small linear through hole, an electron gun that injects an electron beam for X-ray excitation into the inner surface of the through hole from one end, and an electron beam that undergoes repeated total reflection on the inner surface of the through hole and is emitted from the other end. A narrow-diameter X-ray beam generator comprising: an X-ray window for extracting a narrow-diameter X-ray beam to the outside; and electron beam deflection means disposed between the target and the X-ray window. Device
JP61159869A 1986-07-09 1986-07-09 Thin x-ray beam generator Pending JPS6316535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159869A JPS6316535A (en) 1986-07-09 1986-07-09 Thin x-ray beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159869A JPS6316535A (en) 1986-07-09 1986-07-09 Thin x-ray beam generator

Publications (1)

Publication Number Publication Date
JPS6316535A true JPS6316535A (en) 1988-01-23

Family

ID=15702990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159869A Pending JPS6316535A (en) 1986-07-09 1986-07-09 Thin x-ray beam generator

Country Status (1)

Country Link
JP (1) JPS6316535A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524892A (en) * 2003-04-25 2006-11-02 シーエックスアール リミテッド X-ray source
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212045A (en) * 1982-06-02 1983-12-09 Natl Inst For Res In Inorg Mater Cylindrical twin cathodes for x-ray generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212045A (en) * 1982-06-02 1983-12-09 Natl Inst For Res In Inorg Mater Cylindrical twin cathodes for x-ray generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524892A (en) * 2003-04-25 2006-11-02 シーエックスアール リミテッド X-ray source
JP4832285B2 (en) * 2003-04-25 2011-12-07 シーエックスアール リミテッド X-ray source
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US9726619B2 (en) 2005-10-25 2017-08-08 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images

Similar Documents

Publication Publication Date Title
EP0237259A2 (en) Mass spectrometer
US6974957B2 (en) Ionization device for aerosol mass spectrometer and method of ionization
US7825374B2 (en) Tandem time-of-flight mass spectrometer
JPH06501130A (en) Trace component analyzer and method
US5464975A (en) Method and apparatus for charged particle collection, conversion, fragmentation or detection
US7075065B2 (en) Time of flight mass spectrometry apparatus
GB1326279A (en) Mass spectrometers
JPH11345591A (en) Cycloid mass spectrometer and ionizer for use therein
US7038200B2 (en) Ion cyclotron resonance mass spectrometer
US4101771A (en) Ion electron converter
JPS6316535A (en) Thin x-ray beam generator
JP5504969B2 (en) Mass spectrometer
Aviv et al. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions
US4845364A (en) Coaxial reentrant ion source for surface mass spectroscopy
US7115861B2 (en) Spectrograph time of flight system for low energy neutral particles
US3935454A (en) Electron collection in electron spectrometers
US6218672B1 (en) Ion source
US7381945B2 (en) Non-linear time-of-flight mass spectrometer
JPH11288683A (en) Atmospheric pressure ionization mass spectrometer
US3505516A (en) Ion cyclotron resonance spectrometer employing an optically transparent ion collecting electrode
US5086254A (en) Microwave excited helium plasma photoionization detector
JPS5947424B2 (en) Composite analysis device
JPH1114571A (en) Photoionization mass spectrometer
JP3085381B2 (en) Plasma ionization mass spectrometer
KR950703786A (en) Electronic energy spectrometer