JPS63164169A - Manufacture of conductive plastic electrode - Google Patents

Manufacture of conductive plastic electrode

Info

Publication number
JPS63164169A
JPS63164169A JP61307826A JP30782686A JPS63164169A JP S63164169 A JPS63164169 A JP S63164169A JP 61307826 A JP61307826 A JP 61307826A JP 30782686 A JP30782686 A JP 30782686A JP S63164169 A JPS63164169 A JP S63164169A
Authority
JP
Japan
Prior art keywords
carbon
plate
press
plastic plate
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61307826A
Other languages
Japanese (ja)
Inventor
Nobuhiko Kamura
嘉村 信彦
Haruhiko Yoshizaki
吉崎 東彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP61307826A priority Critical patent/JPS63164169A/en
Publication of JPS63164169A publication Critical patent/JPS63164169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make it possible to produce a conductive plastic electrode with little electrolyte blow pressure loss, little uneven connection, and little deformation, in a simple method, by melting and attaching a carbon film sheet and a carbon plastic plate in a heat press, and then transferring them to a cold press to give a hardening and a size correction processes. CONSTITUTION:When an electrode plate is manufactured by incorporating a carbon film sheet 2 and a carbon plastic plate 3, first they are molten and attached in a heat press whose temperature is between +10 deg.C and +80 deg.C to the melting point of a carbon plastic matrix resin, and then they are transferred to a cold press whose temperature is between 10 deg.C and -70 deg.C the melting point of the said resin to give a hardening and a size correcting processes. In such a way, a penetration of the adhesive, a breaking of the carbon fiber, a warp of the carbon plastic plate, a crack of the carbon plastic plate, and the like are eliminated, and the carbon fiber sheet/carbon plastic plate incorporated carbon plastic electrode can be manufactured in a simple way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性プラスチック電極の製造方法に係わり、
さらに詳しくはレドックス・フロー型、亜鉛−ハロゲン
型などの新型二次電池において使用される導電性プラス
チックを掻の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a conductive plastic electrode,
More specifically, the present invention relates to a method for manufacturing conductive plastics used in new types of secondary batteries such as redox flow type and zinc-halogen type secondary batteries.

〔従来の技術〕[Conventional technology]

最近の国際石油需給は緩和基調で推移しているが、石油
の埋蔵量は有限であるため、埋蔵量は年々側々と減少し
ているのは事実である。また、ソ連原子力発電所の事故
に見られるように原子力発電所の規模も安全面から巨大
化にブレーキがかかってくることは必至である。その反
面、夏の電力1FI要は年々増加してきており、年間の
電力消費量にアンバランスがおきている。このようなピ
ーク時に備えてあらかじめオフピーク時の電力を貯蔵し
ておこうという新型二次電池貯蔵システムの研究開発が
種々なされている。
Although the international oil supply and demand situation has recently been easing, it is true that oil reserves are finite and are decreasing year by year. Furthermore, as seen in the accident at the Soviet Union's nuclear power plant, it is inevitable that the scale of nuclear power plants will be put on hold for safety reasons. On the other hand, the amount of electricity required per FI in summer is increasing year by year, creating an imbalance in annual electricity consumption. Various research and development efforts have been made on new types of secondary battery storage systems that store off-peak power in advance in preparation for such peak times.

ところで、この新型二次電池において従来から用いられ
ている電極は、カーボンプラスチック板などの導電性を
有するプレートからなるバイポーラ・プレートとクロス
、ニットまたはフェルト等からなる炭素繊維シートなど
を組み合わせて使用されていた。
By the way, the electrodes conventionally used in this new type of secondary battery are a combination of bipolar plates made of conductive plates such as carbon plastic plates and carbon fiber sheets made of cloth, knit, or felt. was.

電池の電極に求められる性能としては導電性、電解液の
不浸透性、循環電解液に対する流動抵抗性、及び機械的
強度が主なものである。しかし、これらの性能を同時に
満足させる素材は見出せないため、電解液の不浸透性と
機械的強度をバイポーラ・プレートに持たせ、導電性を
向上させるために表面に電子授受面積(表面積)の大き
い導電性炭素繊維シートを用いていた。これらの電極を
用いた電池内の電流は、電極から電極(バイポーラ・プ
レート/炭素繊維シート−炭素繊維ソート/バイポーラ
・プレート)に移動していくため、この両者の間に生じ
る接触抵抗を軽減するためにバイポーラ・プレートと炭
素繊維シートの接合に接着剤を使用したり、又は、熱プ
レスによって圧着接合する方法が、例えば特開昭60−
117559号公報、あるいは特開昭59−29385
号公報などにより提案されている。しかしながら接着剤
による接合は、常温で接合が行えるためカーボンプラス
チック板の加熱変形を心配する必要がないものの、接着
剤が炭素繊維シートにしみこみ、電解液の流通を妨げ、
圧力損失を増大させるという欠陥を招いていた。一方、
熱プレスによる圧着接合の方法はカーボンプラスチック
板と炭素繊維シートとの接触抵抗を軽減し、電気化学反
応の効率向上を行う方法として原理的には有効な手段で
ある。しかし、この方法には次のような問題点があり、
その解決方法が強く望まれていた。
The main properties required for battery electrodes are conductivity, impermeability to electrolyte, flow resistance to circulating electrolyte, and mechanical strength. However, it has not been possible to find a material that satisfies these properties at the same time, so bipolar plates have to be impermeable to electrolyte and have mechanical strength, and have a large surface area for electron exchange (surface area) to improve conductivity. A conductive carbon fiber sheet was used. The current in a battery using these electrodes moves from one electrode to another (bipolar plate/carbon fiber sheet - carbon fiber sort/bipolar plate), reducing the contact resistance between the two. For example, a method of bonding a bipolar plate and a carbon fiber sheet using an adhesive or using a heat press is disclosed in Japanese Patent Application Laid-Open No. 1986-
Publication No. 117559 or JP-A-59-29385
It has been proposed in the following publications. However, with adhesive bonding, bonding can be performed at room temperature, so there is no need to worry about heat deformation of the carbon plastic sheet, but the adhesive may seep into the carbon fiber sheet and impede the flow of electrolyte.
This resulted in the defect of increasing pressure loss. on the other hand,
The method of pressure bonding using hot press is in principle an effective means for reducing the contact resistance between the carbon plastic plate and the carbon fiber sheet and improving the efficiency of the electrochemical reaction. However, this method has the following problems:
A solution to this problem was strongly desired.

問題点としては、まず第一に、電極に使用される炭素繊
維シートは電気抵抗の低減及び表面活性を高める目的で
高温焼成及び化学処理を行う結果、強度が低下している
ため、熱プレス圧着時に炭素繊維シートが折損し、電極
表面積の減少ならびに折損層による電解液流路の閉塞の
問題が発生すること、第二には、熱プレス法は熱により
、カーボンプラスチック板表面のマトリックス樹脂を一
部溶融させなければならないため、その弊害として、カ
ーボンプラスチック板が反ったり、寸法が大きい物では
冷却時に、収縮速度差による割れを発生すること等であ
る。
First of all, the carbon fiber sheets used for electrodes are subjected to high-temperature firing and chemical treatment to reduce electrical resistance and increase surface activity, resulting in reduced strength. At times, the carbon fiber sheet may break, resulting in a decrease in the electrode surface area and blockage of the electrolyte flow path due to the broken layer.Secondly, the heat press method uses heat to unify the matrix resin on the surface of the carbon plastic plate. Since a portion of the carbon plastic plate must be melted, the disadvantages include warping of the carbon plastic plate and cracking due to the difference in shrinkage rate when cooling a large size plate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上のような従来技術で問題となっていた、接
着剤のしみこみ、炭素繊維の折)員、カーボンプラスチ
ック板の反り、カーボンプラスチック板の割れ等を解決
し、製造が困難であった炭素繊維シート/カーボンプラ
スチック板・一体化導電性プラスチック電極の製造方法
を提供することを目的とするものである。
The present invention solves the problems of the prior art, such as adhesive seepage, folding of carbon fibers, warping of carbon plastic plates, and cracking of carbon plastic plates, which were difficult to manufacture. The object of the present invention is to provide a method for manufacturing a carbon fiber sheet/carbon plastic plate/integrated conductive plastic electrode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前述した問題点を解決するために研究を行
い、炭素繊維シートとカーボンプラスチック板とをプレ
スを用いて、ある特定条件下で接合する新しい電極の製
造方法を見出し、本発明を完成させた。すなわち、本発
明は炭素繊維シートとカーボンプラスチック板とを一体
化してなる電極板の製造方法において、温度がカーボン
プラスチック・マトリックス樹脂の融点+10℃以上か
ら融点+80℃以下の範囲の熱プレスで両者を融着した
後、温度が10℃から上記樹脂の融点−70℃の範囲の
冷プレスに移し固化と寸法矯正を行わせることを特徴と
する導電性プラスチック電極の製造方法である。
The present inventors conducted research to solve the above-mentioned problems, and discovered a new method for manufacturing an electrode in which a carbon fiber sheet and a carbon plastic plate are joined under certain conditions using a press. Completed. That is, the present invention provides a method for manufacturing an electrode plate made by integrating a carbon fiber sheet and a carbon plastic plate, in which both are heated in a heat press at a temperature in the range from the melting point of the carbon plastic matrix resin +10°C to the melting point +80°C or less. This is a method for producing a conductive plastic electrode, which is characterized in that, after being fused, the electrode is transferred to a cold press at a temperature ranging from 10° C. to the melting point of the resin -70° C. for solidification and size correction.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明において用いられるカーボンプラスチック
板とはポリエチレン、ポリプロピレン、エチレン−プロ
ピレン共重合樹脂、塩化ビニル樹脂、メチルペンテンポ
リマー、フッソ系樹脂等の熱可塑性樹脂にカーボンブラ
ック、黒鉛などのような導電性フィラーを混練したのち
押出機等により成形して板状としたもので、望ましくは
体積固有抵抗で10Ω−1以下の導電性を有し、電池電
解液の不浸透性を持ったものを指す。
First, the carbon plastic plate used in the present invention is a thermoplastic resin such as polyethylene, polypropylene, ethylene-propylene copolymer resin, vinyl chloride resin, methylpentene polymer, fluorocarbon resin, etc., and conductive material such as carbon black or graphite. A filler is kneaded and then molded into a plate shape using an extruder or the like, and preferably has a volume resistivity of 10 Ω-1 or less in conductivity and is impermeable to battery electrolyte.

また、本発明にいう炭素繊維シートとはアクリル繊維、
レーヨン、リグニン−ポバール等の繊維で予めクロス、
ニット又はフェルトなどのような形を作り高温で炭化処
理及び表面活性化処理を施したもの、及び/又は予備炭
素化ピッチ系炭素繊維をクロス、ニット又はフェルトな
どのような形に加工し、更に高温で炭化処理及び表面活
性化処理を施したものをいう。 さらに、本発明にいう
熱プレスとは電気ヒーター、蒸気循環、油循環等で加熱
し、温度調節が可能な熱板を有し、又プレス圧力及び開
閉速度を細かく制御出来るものをいう。そして、本発明
にいう冷プレスとは温度調節vIi環水により温度調節
が可能な定盤を存し、又プレス圧力及び開閉速度を細か
く制御出来るものをいう。  次に第1図及び第2図は
、本発明法の実施の態様例を示す模式図であって、これ
らの図に示すように被接合物としてカーボンプラスチッ
ク板3の少なくとも片側に炭素繊維シート2を接し、こ
れらを熱板lの間に配置してプレスした後に被接合物を
冷プレスに移し加圧して接合するものである。
Furthermore, the carbon fiber sheet referred to in the present invention refers to acrylic fiber,
Pre-cross with fibers such as rayon, lignin-poval, etc.
It is made into a shape like knit or felt and subjected to carbonization treatment and surface activation treatment at high temperature, and/or processed from pre-carbonized pitch-based carbon fiber into a shape like cloth, knit or felt, and further Refers to products that have been carbonized and surface activated at high temperatures. Furthermore, the heat press referred to in the present invention refers to a press that heats with an electric heater, steam circulation, oil circulation, etc., has a hot plate whose temperature can be adjusted, and can finely control press pressure and opening/closing speed. The cold press referred to in the present invention includes a surface plate whose temperature can be adjusted by means of temperature control vIi circulating water, and which allows fine control of press pressure and opening/closing speed. Next, FIGS. 1 and 2 are schematic diagrams showing embodiments of the method of the present invention, and as shown in these diagrams, a carbon fiber sheet 2 is attached to at least one side of a carbon plastic plate 3 as an object to be joined. After placing these in contact with each other between hot plates 1 and pressing them, the objects to be joined are transferred to a cold press and pressurized to join them.

熱プレスの温度はカーボンプラスチック板マトリックス
樹脂の融点+10℃以上から融点+80℃以下の範囲、
望ましくは融点+20℃から融点+70℃以下の範囲で
ある。被接合物を上記温度にUR節された熱プレス間に
配置した後に、O9OIkg/cIiから0.2kg/
cm2の範囲の予備圧をかけて、カーボンプラスチック
板表層部のマトリックス樹脂が熔融を開始する直前まで
予熱し、炭素繊維シート中の繊維が永久変形および折損
せず、なおかつ炭素繊維シートとカーボンプラスチック
板の接合に充分な圧力である0、3kg/aJから5.
0kg/aJの範囲、望ましくは0.5に/aJから4
.0kg/ajの範囲でプレスし両者を融着する。
The temperature of the heat press is in the range from the melting point of the carbon plastic plate matrix resin +10°C or more to the melting point +80°C or less,
The range is preferably from +20°C to +70°C. After placing the objects to be joined between heat presses heated to the above temperature, 0.2 kg/cIi from O9OIkg/cIi is applied.
By applying a pre-pressure in the range of cm2, the matrix resin on the surface layer of the carbon plastic board is preheated until just before it starts to melt, and the fibers in the carbon fiber sheet are not permanently deformed or broken, and the carbon fiber sheet and the carbon plastic board are heated. From 0.3 kg/aJ to 5.0 kg/aJ, which is sufficient pressure for bonding.
in the range of 0 kg/aJ, preferably from 0.5 to 4/aJ
.. Both are fused together by pressing in a range of 0 kg/aj.

予熱時間はカーボンプラスチック板と炭素繊維シートの
間の温度が、マトリックス樹脂の融点−20℃になった
時点が望ましい。これはカーボンプラスチック板中のマ
トリックス樹脂が完全に溶けてしまうと、僅かの圧力で
も厚みが変わると同時に、長手方向も寸法が変化してし
まうため、予備圧ではカーボンプラスチック板表層部が
僅かに軟化する点に止め、本圧下で短時間に一気にプレ
スしたいためである。この予備圧をかける時間は炭素繊
維シートの形態がクロス、ニット、フェルト等と種々あ
り、また繊維の太さ、シートの厚さなど千差万別で、当
然、熱伝導率が異なるため、その都度決定する必要があ
る。かくして、融着させたカーボンプラスチック板/炭
素繊維シートを10℃からカーボンプラスチック・マト
リックス樹脂の融点−70℃の範囲、望ましくは15℃
から融点−80℃の範囲に温度調節した冷プレスに移し
、0.3kg/cdから5.0kg/cjの範囲、望ま
しくは0.5kg/cm2から4.0kg/cm2の範
囲の圧力をかけながら30℃/分以下の遅い冷却速度で
被接合物を冷し、カーボンプラスチック板の熱伸縮によ
る材料の移動や、材料内部の温度差による反り力を緩和
しなから固化と寸法矯正を行わせる。冷却速度は循環水
の温度により調節するが、更に好ましくは冷プレスの熱
板と被接合品との間に熱伝導率の小さな素材、例えば木
製板、テフロンシート等を置いて冷却速度を遅くするほ
うがよい。
The preheating time is preferably such that the temperature between the carbon plastic plate and the carbon fiber sheet reaches the melting point of the matrix resin -20°C. This is because if the matrix resin in the carbon plastic plate is completely melted, the thickness will change even with a slight pressure, and the dimensions in the longitudinal direction will change as well. Therefore, the surface layer of the carbon plastic plate will soften slightly under pre-pressure. This is because you want to stop at the point where the press is applied and press all at once under the main pressure in a short period of time. The time to apply this prepressure depends on the shape of the carbon fiber sheet, such as cloth, knit, felt, etc., and the thickness of the fibers and sheets, which naturally have different thermal conductivity. It is necessary to decide each time. Thus, the fused carbon plastic plate/carbon fiber sheet is heated in a range from 10°C to the melting point of the carbon plastic matrix resin -70°C, preferably 15°C.
Transferred to a cold press whose temperature was adjusted to a melting point of -80°C, while applying a pressure in the range of 0.3 kg/cd to 5.0 kg/cj, preferably in the range of 0.5 kg/cm2 to 4.0 kg/cm2. The objects to be joined are cooled at a slow cooling rate of 30° C./min or less, and solidification and dimensional correction are performed while alleviating the movement of the material due to thermal expansion and contraction of the carbon plastic plate and the warping force due to temperature differences inside the material. The cooling rate is adjusted by the temperature of the circulating water, but it is more preferable to slow the cooling rate by placing a material with low thermal conductivity, such as a wooden board or a Teflon sheet, between the hot plate of the cold press and the products to be joined. It's better.

なお、熱プレスの温度がカーボンプラスチック板マトリ
ックス樹脂の融点+10℃未満の場合は、カーボンプラ
スチック板と炭素繊維シートは融着せず、融点+80℃
より高い場合は樹脂が溶は過ぎて、カーボンプラスチッ
ク板の厚みが変わったり、低い圧力でも炭素繊維シート
がカーボンプラスチック仮に食い込んで、炭素繊維層が
薄くなり電解液の通路が狭くなる等の弊害が生じる。
If the temperature of the heat press is lower than the melting point of the carbon plastic plate matrix resin +10°C, the carbon plastic plate and carbon fiber sheet will not be fused and the melting point will be +80°C.
If the pressure is higher, the resin will melt too much and the thickness of the carbon plastic plate will change, and even if the pressure is low, the carbon fiber sheet will bite into the carbon plastic, making the carbon fiber layer thinner and narrowing the electrolyte passage. arise.

熱プレスの圧力がQ、3kIr/cd未満であると、接
合むらが発生し、接合しない部分が出来る。
If the pressure of the hot press is less than Q, 3 kIr/cd, uneven bonding will occur, resulting in portions that are not bonded.

圧力が5.0kg/aJより高いと、繊維が永久変形し
て炭素繊維シートの厚みが変わったり、繊維が折れたり
、炭素繊維シートがカーボンプラスチック板に食い込ん
で炭素繊維シートの厚みが薄くなる等の弊害が生じ、そ
の結果、電解液の通路が狭くなり、ポンプの圧損が上昇
し、ひいては電池効率の低下を招くことになる。
If the pressure is higher than 5.0 kg/aJ, the fibers will be permanently deformed and the thickness of the carbon fiber sheet will change, the fibers will break, or the carbon fiber sheet will dig into the carbon plastic plate and the thickness of the carbon fiber sheet will become thinner. As a result, the passage for the electrolytic solution becomes narrow, the pressure loss of the pump increases, and this leads to a decrease in battery efficiency.

冷プレスの温度が10℃未満であると、カーボンプラス
チック板がプレス圧により割れることがあり、また冷プ
レスの温度がカーボンプラスチ・7り板マトリックス樹
脂の融点−70℃より高いと、接合板を冷プレスから出
した時反りを生じやすい。
If the temperature of the cold press is less than 10℃, the carbon plastic plate may crack due to the press pressure, and if the temperature of the cold press is higher than the melting point of the carbon plastic/7-plate matrix resin -70℃, the bonded plate may break. It tends to warp when removed from the cold press.

冷プレスでの冷却速度が30℃/分より速いとカーボン
プラスチック板の固化が急速に起こり、カーボンプラス
チック仮に反りが発生する。特に、カーボンプラスチッ
ク板の片側だけに炭素繊維シートを接合する場合は、そ
の反りが顕著であり、場合によっては、反り力によって
カーボンプラスチック板が割れることがある。従って、
本発明によれば、カーボンプラスチック板と炭素繊維シ
ートとの接合をカーボンプラスチック板の反り及び割れ
の発生がなく、なおかつ、炭素繊維シートの永久変形及
び折損を発生させることなく行うことが出来る。
If the cooling rate in the cold press is faster than 30° C./min, the carbon plastic plate will solidify rapidly and the carbon plastic will warp. In particular, when a carbon fiber sheet is bonded to only one side of a carbon plastic plate, the warping is significant, and in some cases, the carbon plastic plate may crack due to the warping force. Therefore,
According to the present invention, a carbon plastic plate and a carbon fiber sheet can be joined without warping or cracking the carbon plastic plate, and without causing permanent deformation or breakage of the carbon fiber sheet.

〔実 施 例〕〔Example〕

以下、実施例にもとづいて、本発明の効果を具体的に説
明する。
Hereinafter, the effects of the present invention will be specifically explained based on Examples.

第1表は、この実施例に用いられた接合条件及び試験結
果を示すものであって、同表中1ml〜6は本発明例、
隘7〜11は比較例である。
Table 1 shows the bonding conditions and test results used in this example, and in the table, 1ml to 6 are examples of the present invention,
Nos. 7 to 11 are comparative examples.

先ず、カーボンプラスチック板(CP板)はポリエチレ
ン、カーボンブラック、黒鉛をバンバリーミキサ−を用
いて?R練してペレフトとした後、押出成形機により厚
さ1.5nx幅50Qm富x長さ600蓋鳳のサイズに
成形した。ポリエチレンとしては、融点123℃の中低
圧ポリエチレン及び融点130℃の高密度ポリエチレン
を用いた。成形したCP板の体積固有抵抗はともに0.
20Ω−1であった。また、炭素繊維シート(CFレシ
ートは面積電気抵抗0.25Ω−1厚さ2.5mm×幅
500+uX長さ6001の導電性カーボン繊維フェル
)(CFフェルト)、及び面積電気抵抗0.22Ω−1
厚さ2,3鶴×幅500×長さ600龍の導電性カーボ
ン繊維クロス(CFクロス)を使用した。熱プレスは温
度調節油を循環する方式の熱板を有し、油圧により微細
駆動が可能な20トンプレスを使用した。冷プレスは温
度調節水を循環する方式の定盤を有し、油圧により微細
駆動が可能な20トンプレスを使用した。
First, carbon plastic board (CP board) is made by mixing polyethylene, carbon black, and graphite using a Banbury mixer. After kneading it into a pellet, it was molded using an extrusion molding machine to a size of 1.5 nm thick x 50 Qm wide x 600 mm long. As the polyethylene, medium-low pressure polyethylene with a melting point of 123°C and high-density polyethylene with a melting point of 130°C were used. Both volume resistivities of the molded CP plates are 0.
It was 20Ω-1. In addition, carbon fiber sheet (CF receipt is conductive carbon fiber felt with area electrical resistance 0.25 Ω-1 thickness 2.5 mm x width 500 + u x length 6001) (CF felt), and area electrical resistance 0.22 Ω-1
A conductive carbon fiber cloth (CF cloth) measuring 2 to 3 mm thick x 500 mm wide x 600 mm long was used. The heat press used was a 20-ton press that had a hot plate that circulated temperature-adjusting oil and could be driven finely by hydraulic pressure. The cold press used was a 20-ton press that had a surface plate that circulated temperature-controlled water and could be driven finely by hydraulic pressure.

なお、冷プレス時は必要に応じて、第1表の本発明例隘
1〜6の内、試験光1〜5に示すように、プレス面と被
接合物の間に厚さ3〜9flのベニヤ板を置いて冷却速
度を調節した。これらl1hl〜5は両面接合の例であ
って、熱プレス熱板上にCFレシートCP板、CFレシ
ート順に重ねてプレスしたものであり、また、11h6
は片面接合の例であって、CFレシートCP板、シリコ
ンゴムの順に重ねてプレスしたものである。なお、熱プ
レス条件は第1表、試験Nll〜6に示す通りである。
In addition, during cold pressing, if necessary, as shown in test light 1 to 5 of the present invention examples 1 to 6 in Table 1, a thickness of 3 to 9 fl is applied between the press surface and the workpiece. A plywood board was placed to adjust the cooling rate. These l1hl~5 are examples of double-sided bonding, in which the CF receipt CP plate and the CF receipt are stacked and pressed in this order on a heat press hot plate, and 11h6
is an example of one-sided bonding, in which a CF receipt CP board and silicone rubber were stacked in this order and pressed. The hot press conditions are as shown in Table 1, Tests No. 11-6.

熱プレス時の予熱時間はCP板とCFレシート間の温度
がCP板マトリックス樹脂の融点−20℃になった時点
とし、熱プレス時間は予熱時間を含めて、全て2分間と
した。 熱プレスの圧力は第1表、試験光1〜6に示し
た通りであり、冷プレスの圧力は熱プレスと同一条件に
した。比較例として、第1表、試験陽7〜11に本発明
の条件外の試験結果を示した。
The preheating time during hot pressing was set at the time when the temperature between the CP board and the CF receipt reached the melting point of the CP board matrix resin -20°C, and the total hot pressing time including the preheating time was 2 minutes. The pressure of the hot press was as shown in Table 1, Test Lights 1 to 6, and the pressure of the cold press was set to the same conditions as the hot press. As a comparative example, test results outside the conditions of the present invention are shown in Table 1, test numbers 7 to 11.

本発明例である、試験遅1〜6は第1表に示すように、
CP板とCFレシート接合が、むら無く均一に出来、接
合板の反りがなく、又CFレシート永久変形及び折を員
が生ぜず、CFレシートCP板へのめり込みも無いため
、ポンプの圧力…失が小さい。 一方、本発明の条件外
で接合した試験磁7〜11は接合しなかったり(試験隘
7)、接合むらを生じたり(試験磁8)、反りを生じた
り(患7〜11)、又繊維の折損、CFレシートCP板
へのめり込みなどのための圧力損失増が見られ、CP板
とCFレシート熱接合は特定条件下で行う必要があるこ
とを示している。(以下余白)〔発明の効果〕 以上の実施例からも明らかなように本発明によれば、電
解液循環型電池に用いられる炭素繊維シートとカーボン
プラスチック板を一体化した電極板として電解液流動圧
損が少なく、接合むらがなく、また変形の少ない導電性
プラスチック電極を簡易な手段で製造することができ、
産業上の効果は著しい。
Test delays 1 to 6, which are examples of the present invention, are as shown in Table 1.
The CP plate and CF receipt can be joined evenly and evenly, there is no warping of the bonded plate, there is no permanent deformation or folding of the CF receipt, and there is no sinking of the CF receipt into the CP plate, so there is no loss of pump pressure. small. On the other hand, test magnets 7 to 11 bonded under the conditions of the present invention did not bond (test magnet 7), had uneven bonding (test magnet 8), warped (test magnets 7 to 11), or had fibers. An increase in pressure loss was observed due to breakage of the CF receipt, sinking of the CF receipt into the CP plate, etc., indicating that thermal bonding of the CP plate and CF receipt must be performed under specific conditions. (Left below) [Effects of the Invention] As is clear from the above embodiments, according to the present invention, an electrode plate that integrates a carbon fiber sheet and a carbon plastic plate used in an electrolyte circulation type battery can be used for electrolyte flow. Conductive plastic electrodes with low pressure loss, no uneven bonding, and minimal deformation can be manufactured by simple means.
The industrial effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明における製造方法の態様例
を示す模式図である。 1 −−−−−−・熱プレスにあっては熱板、冷プレス
にあっては定盤
FIGS. 1 and 2 are schematic diagrams showing embodiments of the manufacturing method of the present invention. 1 --------Hot plate for heat press, surface plate for cold press

Claims (1)

【特許請求の範囲】 (1)炭素繊維シートとカーボンプラスチック板とを一
体化してなる電極板の製造方法において、温度がカーボ
ンプラスチック・マトリックス樹脂の融点+10℃以上
から融点+80℃以下の範囲の熱プレスで両者を融着し
た後、温度が10℃から上記樹脂の融点−70℃の範囲
の冷プレスに移し固化と寸法矯正を行わせることを特徴
とする導電性プラスチック電極の製造方法。 (2)熱プレス及び冷プレスのプレス圧力が0.3kg
/cm^2から5.0kg/cm^2の範囲であること
を特徴とする特許請求の範囲第1項記載の導電性プラス
チック電極の製造方法。 (4)冷プレスでの冷却速度が30℃/分以下であるこ
とを特徴とする特許請求の範囲第1項記載の導電性プラ
スチック電極の製造方法。
[Scope of Claims] (1) In a method for manufacturing an electrode plate formed by integrating a carbon fiber sheet and a carbon plastic plate, the temperature is within a range of from the melting point of the carbon plastic matrix resin +10°C to the melting point +80°C or less. A method for producing a conductive plastic electrode, which comprises fusing the two together using a press, and then transferring the material to a cold press at a temperature ranging from 10° C. to the melting point of the resin -70° C. for solidification and size correction. (2) Press pressure of hot press and cold press is 0.3 kg
2. The method of manufacturing a conductive plastic electrode according to claim 1, wherein the conductive plastic electrode is in a range of 5.0 kg/cm^2 to 5.0 kg/cm^2. (4) The method for manufacturing a conductive plastic electrode according to claim 1, wherein the cooling rate in the cold press is 30° C./min or less.
JP61307826A 1986-12-25 1986-12-25 Manufacture of conductive plastic electrode Pending JPS63164169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307826A JPS63164169A (en) 1986-12-25 1986-12-25 Manufacture of conductive plastic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307826A JPS63164169A (en) 1986-12-25 1986-12-25 Manufacture of conductive plastic electrode

Publications (1)

Publication Number Publication Date
JPS63164169A true JPS63164169A (en) 1988-07-07

Family

ID=17973672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307826A Pending JPS63164169A (en) 1986-12-25 1986-12-25 Manufacture of conductive plastic electrode

Country Status (1)

Country Link
JP (1) JPS63164169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057507A1 (en) * 1999-03-23 2000-09-28 Unisearch Limited Electrodes
CN1323455C (en) * 2004-10-10 2007-06-27 上海河森电气有限公司 Method of mfg conducting and gas diffusion layer material in electrochemical generating unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057507A1 (en) * 1999-03-23 2000-09-28 Unisearch Limited Electrodes
US6656639B1 (en) * 1999-03-23 2003-12-02 Unisearch Limited Bipolar electrode having non-conductive electrode substrate and fibrous electrochemically active material
CN1323455C (en) * 2004-10-10 2007-06-27 上海河森电气有限公司 Method of mfg conducting and gas diffusion layer material in electrochemical generating unit

Similar Documents

Publication Publication Date Title
US4115627A (en) Electrochemical cell comprising a ribbed electrode substrate
US4759989A (en) Electrode substrate for fuel cell
JP2002516467A (en) Bipolar plate for electrochemical cell
JP2003504832A (en) Improved conductive fuel cell current collector and method of manufacture
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
CN110176608A (en) A kind of compound bipolar plates of thermosetting resin base used for all-vanadium redox flow battery and preparation method thereof
US6017653A (en) Method of manufacturing modular molded components for a bipolar battery and the resulting bipolar battery
CN110620240A (en) Preparation method of integrated electrode and vanadium redox flow battery
WO2000039872A1 (en) Fuel cell, fuel cell separator, and method of manufacture of separator
JPS63164169A (en) Manufacture of conductive plastic electrode
KR101743924B1 (en) Carbon fiber felt integrated bipolar plate for batteries and method for manufacturing same
CN110265685A (en) A kind of modified dual-electrode plates preparation method used for all-vanadium redox flow battery
CN109411779A (en) A kind of preparation method of vanadium cell soft graphite bipolar plates
CN114976090A (en) Method for manufacturing integrated bipolar reaction plate
KR20180036389A (en) Preparation method of bipolar plate for vanadium redox flow battery
CN102074710A (en) Die for preparing integrated electrode for full-vanadium liquid flow energy storage battery and application thereof
CN100517837C (en) Method of manufacturing separator for fuel cell
CN101193467B (en) Making method for plane macromolecule compound material heating sheet and its heating base material
JPS63281359A (en) Manufacture of conductive plastic electrode
JPS6380485A (en) Sealed laminated cell
JP3373683B2 (en) Manufacturing method of carbon thin plate
JPS6348751A (en) Manufacture of conductive plastic electrode
JPS592815A (en) Manufacture of fiber-reinforced thermoplastic resin composite material
CN117410513B (en) Flexible composite graphite bipolar plate and preparation method thereof
JPS6348777A (en) Manufacture of sealed type lead storage cell