JPS6316185A - Axial flow type air pump - Google Patents

Axial flow type air pump

Info

Publication number
JPS6316185A
JPS6316185A JP15864686A JP15864686A JPS6316185A JP S6316185 A JPS6316185 A JP S6316185A JP 15864686 A JP15864686 A JP 15864686A JP 15864686 A JP15864686 A JP 15864686A JP S6316185 A JPS6316185 A JP S6316185A
Authority
JP
Japan
Prior art keywords
rotors
rotor
working chamber
torsion
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15864686A
Other languages
Japanese (ja)
Inventor
Takeshi Sugihara
毅 杉原
Yasuaki Hasegawa
泰明 長谷川
Yasushi Kawato
川戸 康史
Hideo Katsuta
勝田 日出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP15864686A priority Critical patent/JPS6316185A/en
Publication of JPS6316185A publication Critical patent/JPS6316185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To make large discharge pressure securable, by letting three rotors, being increased by degrees in proportion as torsion of each rotor shifts from the suction side to the discharge side, slidingly contact with one another, and making them perform synchronous rotation of the same phase. CONSTITUTION:An axial flow type air pump is provided with three rotors 2-4. Each rotor is formed into the sectional form partitioned off by three convex curves setting a radius of curvature and length down to the same each. And, the drum form part form is formed into such a torsion form as increasing the extent of torsion by degrees in proportion as it shifts from the suction port side to the discharge port 13 side. When each rotor is rotated via gears 14-16 and turning shafts 5-7, plural operating chambers formed by these rotors themselves in the axial direction shifts from the suction port side to the discharge port 13 side. At this time, the torsion of each rotor grows large, insomuch that it goes toward the side of the discharge port 13, and since the degree of decrement in displacement of the operating chamber becomes larger, large discharge pressure is thus securable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は軸流式エアポンプに関するもので、より具体的
にはケーシング内において同期回転する少なくとも3個
の回転子相互間に作動室を形成し、この作動室の容積の
増減を利用して構成した軸流式エアポンプに関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an axial flow air pump, and more specifically, an axial flow air pump in which a working chamber is formed between at least three rotors that rotate synchronously within a casing. This invention relates to an axial flow air pump constructed by utilizing the increase/decrease in volume of the working chamber.

(従来の技術) 従来、軸流式エアポンプとしてはベーン型ポンプやルー
ツ型ポンプが知られている。ベーン型ポンプは、ケーシ
ング内に偏心した状態にロータを設け、このロータの半
径方向に複数の羽根を伸縮自在に取付GJたポンプであ
る。他方、ルーツ型ポンプは、ケーシング内に2枚の歯
を待った一対のローラを90度位相をずらして取付け、
これらのロータを互いに逆方向に回転させて液体の圧送
を行なうポンプである。
(Prior Art) Conventionally, vane type pumps and roots type pumps are known as axial flow air pumps. A vane type pump is a pump in which a rotor is provided eccentrically within a casing, and a plurality of vanes are extendably and retractably attached to the rotor in the radial direction. On the other hand, the Roots type pump has a pair of rollers with two teeth installed inside the casing with a phase difference of 90 degrees.
This pump pumps liquid by rotating these rotors in opposite directions.

(発明が解決しようとする問題点) 上記のベーン型ポンプでは比較的大きな吐出口を(qや
プいが、ベーンがケースに接触して摺動ずるためベーン
が摩耗するだけでなく大きな駆動力を要すると言った問
題があった。一方、ルーツ型ポンプでは回転子とケース
が非接触であるため駆動力が小さくてすむが、充分な吐
出力を得がたいとδつだ問題があった。
(Problem to be solved by the invention) The vane type pump described above has a relatively large discharge port (Q and P), but since the vane contacts the case and slides, it not only wears out the vane but also generates a large driving force. On the other hand, roots-type pumps require less driving force because the rotor and case are not in contact with each other, but they have the problem of not being able to obtain sufficient discharge force.

上記のような問題点を解決するため、本出願人は先に実
願昭60−53287で3個の捩れロータを有する回転
ポンプを提供した。この回転ポンプは、全体として回転
軸を中心に一定角度捩られかつ回転軸に直交する方向の
断面形状が曲率半径及び長さをそれぞれ同一にする3つ
の凸状湾曲辺で画成された少なくとも3個の回転子をケ
ーシング内に回転自在に収納して回転子相互間に作動室
を形成し、作fJJ室の一端を吸込口にまた他端を吐出
口に連通し、連動機構によってこれら回転子が同一の位
相を維持しつつ同期回転するようにしたものである。
In order to solve the above-mentioned problems, the present applicant previously provided a rotary pump having three torsion rotors in U.S. Patent Application No. 60-53287. This rotary pump as a whole is twisted at a certain angle around the rotation axis, and has at least three convex curved sides whose cross-sectional shape in a direction perpendicular to the rotation axis is defined by three convex curved sides having the same radius of curvature and length, respectively. A working chamber is formed between the rotors by rotatably housing the rotors in the casing, and one end of the working chamber is connected to the suction port and the other end is connected to the discharge port. are designed to rotate synchronously while maintaining the same phase.

この回転ポンプは1)a述した従来のベーン型及びルー
ツ型ポンプを大幅に改善したものであるが、より大ぎな
吐出圧力の得られる回転ポンプが望まれていた。
This rotary pump is a significant improvement over the conventional vane-type and roots-type pumps described in 1)a, but a rotary pump that can provide greater discharge pressure has been desired.

本発明は上記のような要請に基づいてなされたもので、
その目的は本出願人の先願に係る回転ポンプを改善して
より大きな吐出圧力を得ることができるようにするにあ
る。
The present invention was made based on the above requirements, and
The purpose is to improve the rotary pump according to the applicant's earlier application so as to be able to obtain a larger discharge pressure.

(問題点を解決するための手段) 上記の目的を達成するため、本発明によれば、全体とし
て回転軸を中心として捩られた形態を有し、回転軸と直
交する方向の面内における断面形状が曲率半径及び長さ
をそれぞれ同一とする3つの凸状湾曲辺で画成された少
なくとも3個の回転子と、3個の回転子の回転軸をそれ
ぞれ三角形の頂点に配置して平行かつ回転自在に収容し
、回転子相互間に作動室を画成するようにしてなるケー
シングと、ケーシングに形成され上記作動室の一端に開
口した吸入口と、ケーシングに形成され作動室の他端に
間口した吐出口と、3個の回転子が互いに同一の位相を
維持しながら同期回転するように連動させる連動機構と
を備えてなる軸流式エアポンプにおいて、各回転子の該
回転軸を中心とする捩れ率を作動室の前記吸入口側から
吐出口側に移行するに従って徐々に増加させてなるので
ある。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, the entire structure is twisted around the rotation axis, and a cross section in a plane perpendicular to the rotation axis is provided. At least three rotors whose shape is defined by three convex curved sides having the same radius of curvature and the same length, and the rotation axes of the three rotors are arranged at the vertices of a triangle so that they are parallel and parallel. a casing configured to rotatably house the rotors and define a working chamber between the rotors; an inlet formed in the casing and open at one end of the working chamber; and an inlet formed in the casing and opened at the other end of the working chamber. In an axial air pump equipped with a wide discharge port and an interlocking mechanism that interlocks three rotors so that they rotate synchronously while maintaining the same phase with each other, the rotation axis of each rotor is the center. The twist rate is gradually increased from the suction port side to the discharge port side of the working chamber.

(作 用) 3個の回転子を連動機構によって同期回転させると、回
転軸に直交する部分の作動室の面積は順次変化する。
(Function) When the three rotors are rotated synchronously by the interlocking mechanism, the area of the working chamber in the portion orthogonal to the rotation axis changes sequentially.

そして、3個の回転子の頂点が互いに接触する位置にお
ける作動室の断面積は零である。従って、回転子を回転
して上記零地点を吸入口側から吐出口側へ移動させてや
れば、吸入口から空気が作動室内へ吸入され、次いで作
動室の吐出口から排気されることになる。
The cross-sectional area of the working chamber at the position where the vertices of the three rotors contact each other is zero. Therefore, if the rotor is rotated to move the zero point from the suction port side to the discharge port side, air will be sucked into the working chamber from the suction port and then exhausted from the discharge port of the working chamber. .

ここで本発明では、各回転子の回転軸を中心とする捩れ
率が作動室の吸入側から吐出側に移行するに従って徐々
に増大するため、作動室内に吸入された空気は回転子の
捩れ率が一定の場合に比べて、吐出側においてより大き
な吐出圧力によって吐出されることになる。
Here, in the present invention, since the torsion rate of each rotor about the rotation axis gradually increases as it moves from the suction side to the discharge side of the working chamber, the air sucked into the working chamber is Compared to the case where is constant, the discharge is performed with a larger discharge pressure on the discharge side.

(実施例) 以下に本発明の好適な実施例について添附図面を参照に
して説明する。
(Embodiments) Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明に係る軸流式エアポンプ1は3個の回転子2,3
.4を有し、この各回転子の断面形状は曲率半径及び長
さをそれぞれ同一とする3つの凸状湾曲で画成された形
状で、より具体的には正三角形の辺の長さを半径とし各
頂点から他の2つの頂点を結ぶ円弧を描いてなる形状と
なっている。
The axial air pump 1 according to the present invention has three rotors 2, 3.
.. 4, and the cross-sectional shape of each rotor is defined by three convex curves with the same radius of curvature and length, and more specifically, the radius is the length of the side of an equilateral triangle. The shape is formed by drawing an arc connecting each vertex to the other two vertices.

そして、これらの回転子2,3.4は上記正三角形の中
心位置に回転軸5.6.7を有し、各回転子の胴部形状
は各回転軸に対して捩れた形となっている。
These rotors 2, 3.4 have a rotation axis 5.6.7 at the center of the equilateral triangle, and the shape of the body of each rotor is twisted with respect to each rotation axis. There is.

これら3個の回転子2.3.4は、その中心軸5.6.
7を前記の正三角形と同寸法の正三角形の頂点に位置さ
せて平行に配設され、ケーシング8の前侵喘板9,10
に回転自在に支承されている。従って、隣接する回転子
2と3.3と4.4と2は実質的に常時1;η接し、相
互のクリアランスはほぼ零とされている。
These three rotors 2.3.4 have their central axes 5.6.
7 are located at the apexes of an equilateral triangle having the same dimensions as the aforementioned equilateral triangle and are arranged in parallel, and the front invasion plates 9, 10 of the casing 8
It is rotatably supported. Therefore, the adjacent rotors 2, 3.3, 4.4, and 2 are substantially always in contact with each other by 1;η, and their mutual clearance is approximately zero.

回転子2,3.4の間には作動室11が形成され、作動
室11の前、後端は端板9,10によって画成されてい
る。この前端板9には吸込口12が、また後端板10に
は吐出口13が形成され、この吸込口12及び吐出口1
3はそれぞれ作動室11に開口している。
A working chamber 11 is formed between the rotors 2, 3.4, and the front and rear ends of the working chamber 11 are defined by end plates 9, 10. A suction port 12 is formed in the front end plate 9, and a discharge port 13 is formed in the rear end plate 10.
3 open into the working chamber 11, respectively.

前記回転軸5,6.7の端部には歯車14,15.16
が固設され、これら歯車14.15.16は内歯型のリ
ングギヤ17と噛み合い、これにより各回転子2,3.
4は所定の同一位相を維持しつつ同期回転されることに
なる。そして、このリングギヤ17はベルト18を介し
てエンジン出力軸に固設されたプーリ19に連結されて
いる。
Gears 14, 15.16 are provided at the ends of the rotating shafts 5, 6.7.
are fixedly installed, and these gears 14, 15, 16 mesh with an internally toothed ring gear 17, whereby each rotor 2, 3, .
4 are rotated synchronously while maintaining the same predetermined phase. The ring gear 17 is connected via a belt 18 to a pulley 19 fixed to the engine output shaft.

本発明の図示した例では、各回転子の胴部が第3図に示
すように全長に亘って720°捩られ、その捩れ率(T
)が作動室11の吸入口側から吐出口側に向けて第4図
に示すように一定の割合で徐々に大ぎくなっている。こ
こで捩れ率とは、回転子の軸方向をχ軸(吸入口側端面
をχ−〇)とし、χ=0での回転子の頂部の角度(回転
子の回転軸を中心)をθ=0とすれば、捩れ回転子では
任意の位置χにおけるθはχの関数としてθ−f(χ)
として表わされ、捩れ率T=df(χ)/dχで表わさ
れる。
In the illustrated example of the invention, the body of each rotor is twisted 720° over its entire length as shown in FIG.
) gradually increases at a constant rate from the suction port side to the discharge port side of the working chamber 11, as shown in FIG. Here, the torsion rate is defined as the axial direction of the rotor being the χ axis (the end face on the suction port side is χ - 0), and the angle of the top of the rotor (centered on the rotation axis of the rotor) at χ = 0 being θ = 0, then in a torsion rotor, θ at any position χ is θ−f(χ) as a function of χ.
The torsion rate T=df(χ)/dχ.

この実施例では、回転子の胴部が720°涙られている
ため、作動室は120°毎に区切られて回転子の軸方向
に6個の作動室が形成されることになる。そして各作動
室の容積は第5図に示すように、作D’lの吸入側から
吐出側に移行するに従って徐々に減少している。
In this embodiment, since the body of the rotor is bent 720 degrees, the working chambers are divided into sections of 120 degrees, thereby forming six working chambers in the axial direction of the rotor. As shown in FIG. 5, the volume of each working chamber gradually decreases as it moves from the suction side to the discharge side of the operation D'l.

尚、本発明の上記実施例では回転子の胴部を720°捩
っているが、この捩り角度は120’(7)2倍以上と
し、好ましくは他の整数倍とすることである。また、捩
れ率の増加の割合は一定である必要はない。
In the above-mentioned embodiment of the present invention, the body of the rotor is twisted by 720 degrees, but this twist angle is set to be 120' (7) times or more, preferably another integral number. Furthermore, the rate of increase in twist rate does not need to be constant.

本発明の上記実施例に係る軸流式エアポンプを駆動する
ため、エンジンが作動してクランクプーリ19が第1図
矢印方向へ回転すると、回転子2゜3.4は互いに同一
位相を維持しつつ同一方向(矢印方向)へ同一回転速度
で回転する。
In order to drive the axial air pump according to the above embodiment of the present invention, when the engine operates and the crank pulley 19 rotates in the direction of the arrow in FIG. Rotates in the same direction (arrow direction) at the same rotation speed.

これにより、回転子2,3.4相互間の作動室11の容
積は第5図に示すように吸入側から吐出側に向けて徐々
に減少していくため、作動室11内へ吸入された空気は
徐々に圧縮され、その吐出口13からは大きな吐出圧力
で吐出されることになる。
As a result, the volume of the working chamber 11 between the rotors 2, 3.4 gradually decreases from the suction side to the discharge side as shown in FIG. The air is gradually compressed and is discharged from the discharge port 13 with a large discharge pressure.

(効 果) 以上のように本発明に係る軸流式エアポンプでは、作動
室を画成する回転子の回転軸を中心とする捩れ率を作動
室の吸入口側から吐出lコ側に向けて徐々に増加させて
いるため、作動室内に吸入された空気は吐出側に移行す
る従って圧縮され、吐出口において大きな吐出圧力を得
ることができる。
(Effects) As described above, in the axial flow air pump according to the present invention, the torsion rate about the rotating shaft of the rotor defining the working chamber is directed from the suction port side to the discharge side of the working chamber. Since the pressure is gradually increased, the air sucked into the working chamber is compressed as it moves toward the discharge side, and a large discharge pressure can be obtained at the discharge port.

また、上記の捩れ率の増加により作動室を画成する壁面
が、吐出方向に移行するに従って回転軸に対して直角に
近づくため逆流量が少なくなり、この点からも吐出圧力
を大きくすることができる。
In addition, due to the above-mentioned increase in torsion rate, the wall surface defining the working chamber becomes more perpendicular to the rotation axis as it moves toward the discharge direction, so the backflow flow decreases, and from this point of view as well, it is possible to increase the discharge pressure. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る軸流式エアポンプを示
す分解斜視図、第2図は回転子の回転軸と直交する方向
における断面図、第3図は回転子の側面図、第4図は回
転子の捩り率の変化を示す図、第5図は作fll室の吸
入口から吐出口に至る間の容積変化を示す図である。 1・・・・・・・・・ポンプ    2.3.4・・・
・・・回転子5.6.7・・・・・・回転軸 8・・・
・・・・・・ケーシング11・・・・・・作動室   
 12・・・・・・吸入口13・・・・・・吐出口 特許出願人         マツダ 株式会社代 理
 人         弁理士 −色健輔同     
      弁理士 松本雅利第4図
FIG. 1 is an exploded perspective view showing an axial air pump according to an embodiment of the present invention, FIG. 2 is a sectional view taken in a direction perpendicular to the rotation axis of the rotor, and FIG. 3 is a side view of the rotor. FIG. 4 is a diagram showing changes in the torsion rate of the rotor, and FIG. 5 is a diagram showing changes in volume between the suction port and the discharge port of the production chamber. 1...Pump 2.3.4...
... Rotor 5.6.7 ... Rotating shaft 8 ...
...Casing 11...Working chamber
12...Suction port 13...Discharge port Patent applicant Mazda Co., Ltd. Agent Patent attorney - Kensuke Shiro
Patent Attorney Masatoshi Matsumoto Figure 4

Claims (1)

【特許請求の範囲】[Claims] 全体として回転軸を中心として捩られた形態を有し、回
転軸と直交する方向の面内における断面形状が曲率半径
及び長さをそれぞれ同一とする3つの凸状湾曲辺で画成
された少なくとも3個の回転子と、該3個の回転子の回
転軸をそれぞれ三角形の頂点に配置して平行かつ回転自
在に収容し、該回転子相互間に作動室を画成するように
してなるケーシングと、該ケーシングに形成され該作動
室の一端に開口した吸入口と、該ケーシングに形成され
該作動室の他端に開口した吐出口と、該3個の回転子が
互いに同一の位相を維持しながら同期回転するように連
動させる連動機構とを備えてなる軸流式エアポンプにお
いて、該各回転子の該回転軸を中心とする捩れ率を該作
動室の吸入口側から吐出口側に移行するに従つて徐々に
増加させてなることを特徴とする軸流式エアポンプ。
At least three convex curved sides having the same radius of curvature and the same length in a cross-sectional shape in a plane perpendicular to the rotation axis, with the overall shape being twisted around the rotation axis. A casing that accommodates three rotors and the rotation axes of the three rotors arranged at the apexes of a triangle so as to be parallel and rotatable, and defining a working chamber between the rotors. , an inlet formed in the casing and opened at one end of the working chamber, an outlet formed in the casing and opened at the other end of the working chamber, and the three rotors maintain the same phase with each other. In the axial flow air pump, the torsion rate of each rotor about the rotation axis is shifted from the suction port side to the discharge port side of the working chamber. An axial air pump characterized in that the air flow gradually increases as the flow increases.
JP15864686A 1986-07-08 1986-07-08 Axial flow type air pump Pending JPS6316185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15864686A JPS6316185A (en) 1986-07-08 1986-07-08 Axial flow type air pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15864686A JPS6316185A (en) 1986-07-08 1986-07-08 Axial flow type air pump

Publications (1)

Publication Number Publication Date
JPS6316185A true JPS6316185A (en) 1988-01-23

Family

ID=15676255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15864686A Pending JPS6316185A (en) 1986-07-08 1986-07-08 Axial flow type air pump

Country Status (1)

Country Link
JP (1) JPS6316185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668209A1 (en) * 1990-10-18 1992-04-24 Hitachi Koki Kk Molecular suction pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668209A1 (en) * 1990-10-18 1992-04-24 Hitachi Koki Kk Molecular suction pump
US5120208A (en) * 1990-10-18 1992-06-09 Hitachi Koki Company Limited Molecular drag pump with rotors moving in same direction

Similar Documents

Publication Publication Date Title
US10844720B2 (en) Rotary machine with pressure relief mechanism
JP5353383B2 (en) Roots fluid machinery
KR100449312B1 (en) Twin cylinder impeller type pump increasing suction force and discharge force by shutting off clearance between impeller and casing
IL166569A (en) Gear pump
US5704774A (en) Pump with twin cylindrical impellers
JPS6115241B2 (en)
US5685704A (en) Rotary gear pump having asymmetrical convex tooth profiles
JPS6316185A (en) Axial flow type air pump
US5135373A (en) Spur gear with epi-cycloidal and hypo-cycloidal tooth shapes
WO1994028312A1 (en) Rotary pump
CN113530818B (en) Single-head twisted lobe roots pump rotor and lobe pump
US4076469A (en) Rotary compressor
US4915596A (en) Pure rotary positive displacement device
US4033708A (en) Rotary compressor
JPS6321381A (en) Axial flow type air pump
GB2125109A (en) Rotary positive-displacement fluid-machines
JPS6321382A (en) Air pump
JP2720181B2 (en) Compressor
JPS6316182A (en) Displacement type rotary pump
JPS61200392A (en) Rotary piston type compressor
GB2018897A (en) Rotary positive-displacement pumps
RU2253754C1 (en) Compressor
KR100195166B1 (en) Scroll compressor
RU1775009C (en) Positive-displacement rotor machine
JPS59105985A (en) Eaves pump