JPS63161194A - Method for electrolytically descaling cold rolled stainless steel strip - Google Patents

Method for electrolytically descaling cold rolled stainless steel strip

Info

Publication number
JPS63161194A
JPS63161194A JP31361986A JP31361986A JPS63161194A JP S63161194 A JPS63161194 A JP S63161194A JP 31361986 A JP31361986 A JP 31361986A JP 31361986 A JP31361986 A JP 31361986A JP S63161194 A JPS63161194 A JP S63161194A
Authority
JP
Japan
Prior art keywords
neutral salt
steel strip
stainless steel
aqueous solution
descaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31361986A
Other languages
Japanese (ja)
Inventor
Masaaki Ishikawa
正明 石川
Takumi Ugi
工 宇城
Takashi Shiokawa
隆 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31361986A priority Critical patent/JPS63161194A/en
Publication of JPS63161194A publication Critical patent/JPS63161194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To prevent the resticking of oxide scale and to increase descaling capacity by electrolytically treating a cold rolled stainless steel strip as the cathode in an aq. neutral salt soln. at a prescribed current density regulated according to the concn. of the neutral salt soln. CONSTITUTION:A cold rolled stainless steel strip annealed in an oxidizing atmosphere is electrolytically treated as the cathode in an aq. neutral salt soln. At this time, the cathode current density (x) is regulated to >=10+0.8A/dm<2> in case where the total concn. (c) of Fe, Cr and Ni ions in the neutral salt soln. is >=2.5g/l and to x>=12A/dm<2> in case where the total concn. (c) is <2.5g/l. The electrolytically treated steel strip is pickled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ステンレス冷延鋼帯表面の酸化スケールを連
続的に除去するための効率的な電解脱スケール方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an efficient electrolytic descaling method for continuously removing oxidized scale from the surface of a cold-rolled stainless steel strip.

〈従来技術とその問題点〉 一般に、ステンレス冷延鋼帯は、冷間圧延後に酸化性雰
囲気中で焼鈍処理を受けた後、引続いて焼鈍により銅帯
表面に生じた酸化スケールを除去するための脱スケール
処理が行われる。
<Prior art and its problems> In general, cold-rolled stainless steel strips are annealed in an oxidizing atmosphere after cold rolling, and then annealed to remove oxidized scale formed on the surface of the copper strip. Descaling process is performed.

この脱スケール処理には、硫酸、硝酸、硝弗酸(硝酸と
弗酸の混合酸)等による酸洗が一般に用いられているが
、ステンレス冷延鋼帯に形成される酸化スケールは緻密
で強固であるため、完全に脱スケールをするのは困難で
ある。そのため溶融アルカリ塩への浸漬処理(ソルト処
理)あるいは中性塩水溶液中での電解処理(特公昭38
−12162号公報)等が酸洗を容易にするための前処
理法として開発され実用化されている。
For this descaling treatment, pickling with sulfuric acid, nitric acid, nitric-fluoric acid (a mixed acid of nitric acid and hydrofluoric acid), etc. is generally used, but the oxide scale that forms on cold-rolled stainless steel strips is dense and strong. Therefore, it is difficult to completely descale. Therefore, immersion treatment in molten alkali salt (salt treatment) or electrolytic treatment in a neutral salt aqueous solution (Japanese Patent Publication No. 38
12162) etc. have been developed and put into practical use as pretreatment methods to facilitate pickling.

このうち、中性塩水溶液中での電解処理における代表的
な電解処理装置1の構造を第1図に示す。同図に示すよ
うに、図中矢印方向に連続的に走行するステンレス鋼帯
2は、ロール5および6を経て電解槽4中の中性塩水溶
液3に浸漬され、再びロール6および5を経て槽外へ出
ていゆく。
Among these, the structure of a typical electrolytic treatment apparatus 1 for electrolytic treatment in a neutral salt aqueous solution is shown in FIG. As shown in the figure, the stainless steel strip 2 running continuously in the direction of the arrow in the figure passes through rolls 5 and 6, is immersed in a neutral salt aqueous solution 3 in an electrolytic cell 4, and passes through rolls 6 and 5 again. It goes out of the tank.

電解槽4内には、鋼帯2の上面側および下面側に電極が
対面設置され、一対の陰電極7.7と一対の陽電極8.
8とが鋼帯2の走行方向に順次(交互に)配置されてお
り、両極間に直流電圧を印加する方式、即ち、間接電解
方式が採用されている。連続的に走行するステンレス鋼
帯2は、陽電極8.8間においてカソード分極し、陰電
極7.7間においてアノード分極し、アノード分極で生
じるアノード反応によって脱スケールが進行する。
Inside the electrolytic cell 4, electrodes are installed facing each other on the upper and lower surfaces of the steel strip 2, including a pair of negative electrodes 7.7 and a pair of positive electrodes 8.7.
8 are arranged sequentially (alternately) in the running direction of the steel strip 2, and a method of applying a DC voltage between both electrodes, that is, an indirect electrolysis method is adopted. The continuously running stainless steel strip 2 is cathodically polarized between the anode electrodes 8.8 and anodically polarized between the cathode electrodes 7.7, and descaling progresses by the anodic reaction that occurs during the anodic polarization.

このような中性塩水溶液中での電解処理は、ソルト処理
に比べ美麗な表面性状を得やすいこと、作業環境が良い
等の利点があるが、脱スケール能力に優れるソルト処理
と同等の効果を得るためには電解のために多量の電気エ
ネルギーを必要とし、かつ電解時間も長時間を要するた
めソルト槽に比べ長大な電解槽を必要とするという欠点
があった。
Electrolytic treatment in a neutral salt aqueous solution has the advantage of being easier to obtain beautiful surface textures and providing a better working environment than salt treatment, but it is not as effective as salt treatment, which has excellent descaling ability. In order to obtain this, a large amount of electrical energy is required for electrolysis, and the electrolysis time also takes a long time, which has the disadvantage of requiring a longer electrolytic bath compared to a salt bath.

〈発明の目的〉 本発明の目的は、上述した従来技術の欠点を解消し、中
性塩水溶液中での電解処理において、美麗な表面性状を
得ることができ、作業環境が良いという利点を生かしつ
つ、より電解効率を高め、消費する電気エネルギーの低
減および電解時間の短縮を図ることができるステンレス
冷延鋼帯の脱スケール方法を提供することにある。
<Object of the Invention> The object of the present invention is to eliminate the drawbacks of the prior art described above, and to take advantage of the advantages of being able to obtain a beautiful surface texture and a good working environment in electrolytic treatment in a neutral salt aqueous solution. At the same time, it is an object of the present invention to provide a method for descaling cold-rolled stainless steel strip, which can further increase electrolysis efficiency, reduce consumed electrical energy, and shorten electrolysis time.

〈発明の構成〉 ステンレス冷延鋼帯の中性塩水溶液中における電解は、
一般に第1図に示すような電極配置で行われ、銅帯はア
ノード分極、カソード分極を順次くりかえして受けるこ
とにより脱スケール処理される。脱スケール反応はアノ
ード分極された時に生ずるアノード反応によって進行す
るため、従来はアノード反応にのみ着目し、脱スケール
に適したアノード電流密度、中性塩水溶液の中性塩濃度
、溶液温度などが検討されそれぞれ適正値が設定されて
いた。
<Structure of the invention> Electrolysis of cold-rolled stainless steel strip in a neutral salt aqueous solution is as follows:
Generally, descaling is carried out using an electrode arrangement as shown in FIG. 1, and the copper strip is descaled by repeatedly undergoing anodic polarization and cathodic polarization. Since the descaling reaction progresses through the anodic reaction that occurs when the anode is polarized, conventionally only the anodic reaction has been focused on, and the appropriate anode current density for descaling, neutral salt concentration of the neutral salt aqueous solution, solution temperature, etc. have been investigated. Appropriate values were set for each.

銅帯がカソード分極されて生じるカソード反応は、間接
電解のため必然的に生じるものであるが、単に水素発生
反応が生じるものであり、脱スケールにはほとんど関係
ないものと考えられていた。
The cathodic reaction that occurs when the copper strip is cathodically polarized is an inevitable result of indirect electrolysis, but it was thought that it was simply a hydrogen generation reaction and had little to do with descaling.

本発明者らは、このカソード反応に着目し、その反応挙
動を詳細に調査研究した結果、脱スケールに大きな影響
及ぼしていることを知見した。
The present inventors focused on this cathode reaction, and as a result of detailed investigation and research into its reaction behavior, they found that it has a great influence on descaling.

即ち、カソード反応では従来いわれている水素発生反応
以外にアノード反応により地鉄より化学的結合を解きは
なれた酸化スケールの一部が強固に再付着するという反
応も条件によって生ずるということを見い出した。
That is, it has been found that in the cathode reaction, in addition to the conventional hydrogen generation reaction, a reaction in which part of the oxide scale that has been chemically separated from the iron base by the anode reaction is firmly reattached may also occur depending on the conditions.

この酸化スケールの再付着反応が生ずるか否かは銅帯の
カソード電流密度と中性塩水溶液中に溶解している金属
イオン濃度によって決まるものであり、その関係を第2
図のグラフに示す。
Whether or not this oxide scale redeposition reaction occurs is determined by the cathode current density of the copper strip and the concentration of metal ions dissolved in the neutral salt aqueous solution, and the relationship between them is determined by the second method.
Shown in the graph of figure.

なお、中性塩水溶液中の金属イオン(Naイオンを除く
)は、新液を建浴した時は0であるが、脱スケール処理
が行われるに従い、ステンレス鋼帯の脱スケール反応に
よりしだいに増加する。そしてその金属イオンの大部分
はFe1.C「、Niの各イオンでありその合計で代表
することができる。
Note that the metal ions (excluding Na ions) in the neutral salt aqueous solution are 0 when a new solution is prepared, but as the descaling process is performed, they gradually increase due to the descaling reaction of the stainless steel strip. do. And most of the metal ions are Fe1. C", each ion of Ni, and can be represented by their total.

本発明は、カソード反応の条件を第2図のグラフに示す
酸化スケールが再付着しない領域において行うことによ
り、アノード反応において行われる塩スケールを効果的
に行わせ、消費する電気エネルギーの低減および電解時
間の短縮を図らんとするものである。
In the present invention, by conducting the cathode reaction in a region where the oxide scale does not re-deposit as shown in the graph of FIG. 2, the salt scale carried out in the anode reaction can be effectively carried out, reducing the electrical energy consumed and reducing the electrolysis. The aim is to shorten the time.

即ち、本発明は酸化性雰囲気中で焼鈍されたステンレス
冷延鋼帯を、中性塩水溶液中での電解処理と後続する酸
洗処理との組合せによフて説スケール処理するに際し、 前記中性塩水溶液中での電解処理において、ステンレス
冷延鋼帯のカソード電流密度Xを前記中性塩水溶液中の
金属イオン濃度に応じ下記式で示される範囲とすること
を特徴とするステンレス冷延鋼帯の電解脱スケール方法 X≧10+0.8 c (c≧2.5の時)X≧12 
    (c<2.5の時)X:カソード電流密度(A
/drn” )C:中性塩水溶液中のFe、 Cr、 
Niの各イオン濃度の合計(g/L) を提供するものである。
That is, the present invention performs scale treatment on a cold rolled stainless steel strip annealed in an oxidizing atmosphere by a combination of electrolytic treatment in a neutral salt aqueous solution and subsequent pickling treatment. Cold rolled stainless steel, characterized in that in electrolytic treatment in a neutral salt aqueous solution, the cathode current density Electrolytic descaling method for bands X≧10+0.8 c (when c≧2.5) X≧12
(When c<2.5) X: Cathode current density (A
/drn”) C: Fe, Cr, in neutral salt aqueous solution
It provides the total concentration (g/L) of each ion concentration of Ni.

なお、従来行われていた中性塩水溶液中での電解処理に
おける鋼帯のカソード電流密度は2〜10 A/ddに
設定されており、第2図のグラフに従えば、中性塩水溶
液中の金属イオン濃度の合計量にかかわらず、カソード
反応において酸化スケールの再付着が生じていたものと
推定される。
The cathode current density of the steel strip in the conventional electrolytic treatment in a neutral salt aqueous solution is set to 2 to 10 A/dd, and according to the graph in Figure 2, the cathode current density of the steel strip in the conventional electrolytic treatment in a neutral salt aqueous solution is It is presumed that redeposition of oxide scale occurred during the cathode reaction, regardless of the total metal ion concentration.

従って、アノード反応における脱スケール反応とカソー
ド反応における酸化スケールの再付着反応が嗅互に行わ
れていたため、脱スケールに要する電気エネルギーが多
大となり、電解時間が長時間となっていたのである。
Therefore, the descaling reaction in the anode reaction and the re-deposition reaction of the oxide scale in the cathodic reaction were performed alternately, resulting in a large amount of electrical energy required for descaling and a long electrolysis time.

以下、本発明のステンレス冷延鋼帯の電解脱スケール方
法について詳細に説明する。
Hereinafter, the method for electrolytic descaling of cold-rolled stainless steel strip according to the present invention will be described in detail.

本発明における脱スケール処理は、酸化雰囲気中で焼鈍
されたステンレス冷延鋼帯を、中性塩水溶液中で電解処
理し、次いで酸洗処理を行うものである。
In the descaling treatment in the present invention, a cold rolled stainless steel strip annealed in an oxidizing atmosphere is electrolytically treated in a neutral salt aqueous solution, and then subjected to a pickling treatment.

中性塩水溶液中での電解処理条件は次の通りである。The electrolytic treatment conditions in a neutral salt aqueous solution are as follows.

中性塩水溶液中での電解処理時に、ステンレス鋼帯のカ
ソード電流密度Xを溶液中の金属イオン濃度(Fe、 
(:r、Niの各イオン濃度の合計)に応じて下記式(
1)または(2)で示される範囲とする。
During electrolytic treatment in a neutral salt aqueous solution, the cathode current density
(: total of each ion concentration of r, Ni) according to the following formula (
The range shall be as shown in 1) or (2).

X≧lo+0.8 c   (c≧2.5の時)−−−
−(1)X≧12       (c<2.5の時”)
 −−−−−(2)X:カソード電流密度(A/drn
’ )C:中性塩水溶液中のFe、 Cr、 Niの各
イオン濃度の合計(g/l カソード電流密度Xがt記式(+)または(2)の範囲
であれば、銅帯のカソード反応において、酸化スケール
の再付着が生じない(第2図参照)。
X≧lo+0.8 c (when c≧2.5)---
-(1)X≧12 (when c<2.5”)
------- (2) X: Cathode current density (A/drn
) C: Total concentration of Fe, Cr, and Ni ions in the neutral salt aqueous solution (g/l) If the cathode current density No redeposition of oxide scale occurs during the reaction (see Figure 2).

なお、カソード電流密度の上限は特に限定されないが、
対極となる陽電極の消耗を過大にしないために30 へ
/dd以下にすることが好ましい。
Note that the upper limit of the cathode current density is not particularly limited, but
In order to prevent excessive consumption of the anode, which serves as a counter electrode, it is preferable to set it to 30°/dd or less.

銅帯のアノード電流密度は特に限定されないが、アノー
ド反応の脱スケール能力の観点から2〜15 A/dd
の範囲とすることが好ましい。
The anode current density of the copper strip is not particularly limited, but from the viewpoint of descaling ability of the anode reaction, it is 2 to 15 A/dd.
It is preferable to set it as the range of.

中性塩水溶液の諸条件、例えば中性塩の種類、濃度およ
び溶液の温度、pH等は特に限定されず、従来の条件を
適用すればよい。
Conditions for the neutral salt aqueous solution, such as the type and concentration of the neutral salt, and the temperature and pH of the solution, are not particularly limited, and conventional conditions may be applied.

すなわち、中性塩は硫酸、硝酸、塩酸などのNa塩およ
びに塩を単独または混合して使用できるが、経済性、表
面仕上りの点から硫酸ナトリウムが好適であり、その濃
度は100〜300 g/Qの範囲がよい。また中性塩
水溶液の温度は脱スケール能力の点から70〜90℃が
好ましく、pl(は脱スケール能力と表面仕上りの点か
ら3〜7が好ましい。
That is, as the neutral salt, Na salts such as sulfuric acid, nitric acid, and hydrochloric acid can be used alone or in combination, but sodium sulfate is preferred from the viewpoint of economy and surface finish, and its concentration is 100 to 300 g. /Q range is good. Further, the temperature of the neutral salt aqueous solution is preferably 70 to 90°C from the viewpoint of descaling ability, and pl (is preferably 3 to 7 from the viewpoint of descaling ability and surface finish).

中性塩水溶液中での電解処理後に行われる酸洗処理は、
従来と同様の処理を行えばよく、フェライト系およびマ
ルテンサイト系ステンレス鋼に対して主として、硝酸浸
漬または硝酸電解、オーステナイト系ステンレス鋼に対
しては主として硝弗酸浸漬が適用される。
The pickling treatment performed after electrolytic treatment in a neutral salt aqueous solution is
The same treatment as conventional methods may be applied, and nitric acid immersion or nitric acid electrolysis is mainly applied to ferritic and martensitic stainless steels, and nitric-fluoric acid immersion is mainly applied to austenitic stainless steels.

〈実施例〉 冷間圧延および酸化性雰囲気中での焼鈍を行った板厚2
.0mmの5IJS430および板厚1.5mmの5U
S304の鋼帯を使用し、中性塩水溶液中での電解と?
&続する酸洗とを組合せた脱スケールプロセスについて
酸洗条件を一定に固定し、脱スケールに必要な中性塩水
溶液中での電解条件を求めた。中性塩水溶液は200g
/JNa度のNa2SO4溶液をpH=4に調整し、液
温は85℃とし、溶液中のFe、 Cr、 Niの各イ
オン濃度の和が、0.5、Log/ffiの場合につい
て塩スケール処理を行った。5US430について得ら
れた結果を表1に、5US304について得られた結果
を表2に示す。
<Example> Plate thickness 2 cold rolled and annealed in an oxidizing atmosphere
.. 0mm 5IJS430 and 1.5mm plate thickness 5U
Electrolysis in a neutral salt aqueous solution using S304 steel strip?
The pickling conditions were fixed constant for the descaling process that combines the subsequent pickling, and the electrolytic conditions in a neutral salt aqueous solution necessary for descaling were determined. 200g of neutral salt solution
/JNa degree Na2SO4 solution was adjusted to pH = 4, the liquid temperature was 85 ° C., and the sum of the respective ion concentrations of Fe, Cr, and Ni in the solution was 0.5, Log/ffi, and salt scale treatment was performed. I did it. The results obtained for 5US430 are shown in Table 1, and the results obtained for 5US304 are shown in Table 2.

なお、中性塩水溶液中のFe、 Cr、 Ni金属イオ
ン濃度の和が多くなるほど脱スケール性が悪くなる傾向
にあるため本発明例と比較例は同一金属イオン濃度の溶
液で比較する必要があり、表1では歯1と2、NO3と
4、歯5と6と7、表2ではNotと2.No3と4を
比較する。
Note that the greater the sum of the Fe, Cr, and Ni metal ion concentrations in the neutral salt aqueous solution, the worse the descaling properties tend to be, so it is necessary to compare the inventive examples and comparative examples using solutions with the same metal ion concentration. , in Table 1, teeth 1 and 2, NO3 and 4, teeth 5, 6 and 7, and in Table 2, Not and 2. Compare No. 3 and No. 4.

上記、表1および表2の結果から明らかなように、0.
5.10g/uいずれの金属イオン濃度においても、本
発明の電解脱スケール方法は、比較例に比べ脱スケール
に要する電解時間(アノード反応電解時間とカソード電
解時間の合計)が大幅に短縮され、かつ脱スケールに要
する電気量(電流密度と電解時間の8)が大幅に減少す
ることがわかる。
As is clear from the results in Tables 1 and 2 above, 0.
At any metal ion concentration of 5.10 g/u, the electrolytic descaling method of the present invention significantly shortens the electrolytic time required for descaling (the sum of the anode reaction electrolysis time and the cathode electrolysis time) compared to the comparative example, It can also be seen that the amount of electricity required for descaling (8 of current density and electrolysis time) is significantly reduced.

また、本発明例により脱スケール処理を行ったステンレ
ス鋼帯は、いずれも従来法により得られるのと同等の美
麗な仕上り表面が得られていた。
In addition, all stainless steel strips subjected to descaling according to the examples of the present invention had a beautiful finished surface equivalent to that obtained by the conventional method.

〈発明の効果〉 本発明のステンレス冷延鋼帯の電解脱スケール方法によ
れば、ステンレス冷延鋼帯のカソード電流密度を中性塩
水溶液中の金属イオン濃度に応じ所定範囲に設定して電
解脱スケールを行うことにより、銅帯のカソード反応に
おいて酸化スケールの再付着を防止しアノード反応にお
ける脱スケール能力を有効に発揮させ、よって脱スケー
ルに要する電気量の大幅な低減および電解時間の大幅な
短縮を図ることができる。
<Effects of the Invention> According to the electrolytic descaling method for cold rolled stainless steel strip of the present invention, the cathode current density of the cold rolled stainless steel strip is set within a predetermined range according to the metal ion concentration in the neutral salt aqueous solution. By descaling, the re-deposition of oxide scale is prevented in the cathode reaction of the copper strip, and the descaling ability in the anode reaction is effectively demonstrated, thereby significantly reducing the amount of electricity required for descaling and significantly shortening the electrolysis time. It is possible to shorten the time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、中性塩水溶液中での電解処理における代表的
な電解処理装置の構造を示す線図的断面側面図である。 第2図は、ステンレス鋼帯のカソード反応により酸化ス
ケールの再付着が生ずるか否かの領域を、中性塩水溶液
(200g/ 11 Na2SO4、液温85℃、pl
= 4 )中のFe、 Cr、 Niの各イオン濃度の
合計とカソード電流密度との関係において示したグラフ
である。 符号の説明 l・・・電解処理装置、 2−ステンレス鋼帯、 3−中性塩水溶液、 4・・・電解槽、 5.6・−ロール、 7−陰電極、 8−V:、電極 FIG、2 =ゝ ((1/I )
FIG. 1 is a schematic cross-sectional side view showing the structure of a typical electrolytic treatment apparatus for electrolytic treatment in a neutral salt aqueous solution. Figure 2 shows the area in which oxide scale re-deposition occurs due to the cathode reaction of the stainless steel strip, using a neutral salt aqueous solution (200 g/11 Na2SO4, liquid temperature 85°C, pl
4) is a graph showing the relationship between the total ion concentration of Fe, Cr, and Ni in (4) and the cathode current density. Explanation of symbols l...Electrolytic treatment device, 2-Stainless steel strip, 3-Neutral salt aqueous solution, 4...Electrolytic cell, 5.6-Roll, 7-Cathode electrode, 8-V:, Electrode FIG , 2 =ゝ((1/I)

Claims (1)

【特許請求の範囲】[Claims] (1)酸化性雰囲気中で焼鈍されたステンレス冷延鋼帯
を、中性塩水溶液中での電解処理と後続する酸洗処理と
の組合せによって脱スケール処理するに際し、 前記中性塩水溶液中での電解処理において、ステンレス
冷延鋼帯のカソード電流密度xを前記中性塩水溶液中の
金属イオン濃度に応じ下記式で示される範囲とすること
を特徴とするステンレス冷延鋼帯の電解脱スケール方法
。 x≧10+0.8c(c≧2.5の時) x≧12     (c<2.5の時) x:カソード電流密度(A/dm^2) c:中性塩水溶液中のFe、Cr、Niの各イオン濃度
の合計(g/l)
(1) When descaling a cold rolled stainless steel strip annealed in an oxidizing atmosphere by a combination of electrolytic treatment in a neutral salt aqueous solution and subsequent pickling treatment, in the neutral salt aqueous solution. Electrolytic descaling of cold-rolled stainless steel strip, characterized in that the cathode current density x of the cold-rolled stainless steel strip is set in the range shown by the following formula according to the metal ion concentration in the neutral salt aqueous solution. Method. x≧10+0.8c (when c≧2.5) x≧12 (when c<2.5) x: Cathode current density (A/dm^2) c: Fe, Cr in neutral salt aqueous solution, Total concentration of each ion of Ni (g/l)
JP31361986A 1986-12-24 1986-12-24 Method for electrolytically descaling cold rolled stainless steel strip Pending JPS63161194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31361986A JPS63161194A (en) 1986-12-24 1986-12-24 Method for electrolytically descaling cold rolled stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31361986A JPS63161194A (en) 1986-12-24 1986-12-24 Method for electrolytically descaling cold rolled stainless steel strip

Publications (1)

Publication Number Publication Date
JPS63161194A true JPS63161194A (en) 1988-07-04

Family

ID=18043496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31361986A Pending JPS63161194A (en) 1986-12-24 1986-12-24 Method for electrolytically descaling cold rolled stainless steel strip

Country Status (1)

Country Link
JP (1) JPS63161194A (en)

Similar Documents

Publication Publication Date Title
US4994157A (en) Method and apparatus for descaling stainless steel
KR100650961B1 (en) Process for electrolytic pickling using nitric acid-free solutions
JP2721053B2 (en) Pickling method for high-grade steel
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
KR100373805B1 (en) Neutral salt electrolyte treatment method and apparatus therefor, and descaling method of stainless steel and apparatus therefor
EP1051545A1 (en) Method for treating a metal product
JPS63161194A (en) Method for electrolytically descaling cold rolled stainless steel strip
EP1358367A1 (en) Continuous electrolytic pickling and descaling of carbon steel and stainless
JP2517353B2 (en) Descaling method for stainless steel strip
JPS6160920B2 (en)
JPS5959899A (en) Method for electrolytic descaling of stainless steel strip
JPH0534439B2 (en)
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPH0534438B2 (en)
JP2585444B2 (en) Method and apparatus for descaling stainless steel strip
JPS6396300A (en) Method for pickling cold-rolled and annealed band stainless steel
JP3873335B2 (en) Electrolytic descaling method for steel strip
JP2640565B2 (en) Continuous production equipment for stainless steel sheets
JPH0665798A (en) Method for descaling stainless steel and device therefor
JPH0534440B2 (en)
JPH0711080B2 (en) High-speed electrolytic melting method for steel metal
JPH0368799A (en) Descaling method for cold rolled stainless steel strip
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip
JPH0324300A (en) Method and device for electrolytically pickling band stainless steel