JPS63160758A - Manufacture of amorphous thin metal strip - Google Patents

Manufacture of amorphous thin metal strip

Info

Publication number
JPS63160758A
JPS63160758A JP30531586A JP30531586A JPS63160758A JP S63160758 A JPS63160758 A JP S63160758A JP 30531586 A JP30531586 A JP 30531586A JP 30531586 A JP30531586 A JP 30531586A JP S63160758 A JPS63160758 A JP S63160758A
Authority
JP
Japan
Prior art keywords
cooling body
molten metal
moving
ribbon
moving cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30531586A
Other languages
Japanese (ja)
Other versions
JPH0615099B2 (en
Inventor
Yasunori Tanji
丹治 雍典
Yuuichi Tatsutani
雄一 立谷
Tsutomu Nakamura
務 中村
Morikazu Yamada
盛一 山田
Tadami Suzuki
鈴木 忠美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP61305315A priority Critical patent/JPH0615099B2/en
Publication of JPS63160758A publication Critical patent/JPS63160758A/en
Publication of JPH0615099B2 publication Critical patent/JPH0615099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To form the amorphous thin strip of good quality with the reverse injection method of a molten metal by holding the angle between the normal line in the progressing direction of a moving cooling body and the injection direction of a molten metal and the gap between the rear part lip and the surface of a moving cooling body in the range of a specific value, installing the rear part lip in parallel to the surface of the moving cooling body. CONSTITUTION:A normal line is drawn in the progressing direction of a mobile cooling body (roll, etc.) 3 on its surface. the angle theta made by said normal line and the injection direction injecting the mobile cooling body in the reverse direction to thin progressing direction is taken to be within the range of 0<theta<60 deg.. The gap (d) between the rear part lip 1' of the injection port part and the surface of the mobile cooling body 3 is taken to be within the range of 0.01mm<=d<0.6mm. The length (a) in the direction opposing to the progressing direction of the rear part lip 1' is made larger than dtantheta. The rear part lip 1' is set up in parallel to the surface of thin mobile cooling body. A molten metal 2 is injected from the injection port part by passing the mid part of front and back lips 1, 1' to form a solidified body (thin strip) 2'. With this method, the amorphous thin trip of good quality can be formed by the reverse injection method of the molten metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶湯噴出口よシ、移動冷却体(例えば回転ロー
ル)の表面に金属の溶湯を噴出させ、上記冷却体の表面
に於いて急冷させることにより。
[Detailed Description of the Invention] [Industrial Application Field] The present invention jets molten metal from a molten metal spout onto the surface of a moving cooling body (for example, a rotating roll), and rapidly cools the metal on the surface of the cooling body. By letting.

非晶質金属薄帯を製造する方法に関するものである。The present invention relates to a method of manufacturing an amorphous metal ribbon.

〔従来の技術〕[Conventional technology]

片ロール法による超急冷薄帯の製造技術は著しく進歩し
、最近、fB気ヘッド、高周波トランスコアなどの素材
として用いられているアモルファス磁性合金の薄帯の製
造にも応用されている。このようなアモルファス磁性合
金の薄帯には、磁気特性は勿論の事1品質のよい平滑な
表面をもつことが要求される。
The technology for producing ultra-quenched ribbons using the single roll method has made significant progress, and has recently been applied to the production of amorphous magnetic alloy ribbons used as materials for fB magnetic heads, high-frequency transformer cores, and the like. A ribbon of such an amorphous magnetic alloy is required not only to have good magnetic properties but also to have a smooth surface of good quality.

従来の一般的なアモルファス合金薄帯製造方法の場合、
金属の溶湯を溶湯供給管の噴出口部から移動冷却体表面
へ噴出する角度θ(θは、移動冷却体表面の法線方向に
対する角度とする)は、直角又はほぼ直角(%開昭60
−46845号公報)である。或いは、該移動冷却体の
移動方向に対して70°〜10°(特開昭59−183
957号公報)の噴出角度θをもって噴出される溶湯は
該冷却体の表面上に湯溜りを形成する。その湯溜シは直
ちに104℃/ 8 e 0以上の速度で冷却し薄帯と
なる。
In the case of the conventional general amorphous alloy ribbon manufacturing method,
The angle θ (θ is the angle with respect to the normal direction of the surface of the moving cooling body) at which the molten metal is jetted from the spout part of the molten metal supply pipe to the surface of the moving cooling body is a right angle or almost a right angle (%
-46845). Or 70° to 10° with respect to the moving direction of the moving cooling body (Japanese Patent Laid-Open No. 59-183
The molten metal ejected at the ejection angle θ of the method disclosed in Japanese Patent Publication No. 957 forms a puddle on the surface of the cooling body. The hot water tank is immediately cooled at a rate of 104°C/8e0 or more and becomes a thin ribbon.

特に、移動冷却体(例えば回転ロール)の移動方向に対
して同一方向に噴出角度をつける事によって平滑な薄帯
が得られ、他方、逆方向に溶湯を噴出し、移動冷却体表
面上に形成される湯溜りは乱れ移動冷却体の移動方向と
は異なる方向に溶湯が飛散する場合がある。その溶湯粒
に運動量が付与され再度溶湯粒の1部は噴出口部方向に
移動し。
In particular, a smooth ribbon can be obtained by setting the ejection angle in the same direction as the moving direction of the moving cooling body (for example, a rotating roll), while a smooth ribbon can be obtained by ejecting the molten metal in the opposite direction and forming it on the surface of the moving cooling body. The molten metal may be turbulent and the molten metal may scatter in a direction different from the moving direction of the moving cooling body. Momentum is imparted to the molten metal particles, and a portion of the molten metal particles once again moves toward the spout.

噴出口部に付着したり、移動冷却体表面と噴出口部先端
面との間隙に狭まって噴出口部を破壊したり、、移動冷
却体表面に損傷を与えたりする事が上記特開昭59−1
83957号公報の中で述べられている。他方、特開昭
57−195564号公報。
The above-mentioned Japanese Patent Application Laid-Open No. 59/1989 may adhere to the jet nozzle, or become narrowed in the gap between the surface of the moving cooling body and the tip of the jet nozzle, destroying the jet nozzle, or damaging the surface of the moving cooling body. -1
It is stated in Publication No. 83957. On the other hand, Japanese Patent Application Laid-open No. 195564/1983.

特開昭58−16760号公報に於いて、上記とは全く
逆の事象が、微結晶薄帯の製造の場合に、移動冷却体の
移動方向とは逆方向に0≦θ≦10°、θ<25°で溶
湯が噴出される事によって良質な薄帯の製造が可能であ
る事が述べられている。
In Japanese Unexamined Patent Publication No. 58-16760, a phenomenon completely opposite to the above occurs in the case of manufacturing a microcrystalline ribbon, when 0≦θ≦10°, θ It is stated that it is possible to produce high-quality ribbons by ejecting the molten metal at an angle of <25°.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは特開昭57−195564号公報。 The present inventors disclosed Japanese Patent Application Laid-Open No. 195564/1983.

特開昭58−16760号公報の中で述べられている移
動冷却体の移動方向に対して、逆方向に溶湯を噴出させ
て薄帯を製造する実験を追試し、特開昭59−1839
57号公報の中でも述べられている様に高速で運動して
いる移動冷却体に逆らって溶湯を逆噴出させる場合、移
動冷却体表面上に安定な湯溜りを形成させる事は一般的
にはむづかしい事を実験的に確認した。特開昭57−1
95564号公報、特開昭58−16760号公報には
上記逆方向に溶湯を噴出させる事以外の製造条件(噴出
口部形状、噴出口部先端と移動冷却体表面との間隙、移
動冷却体の移動速度、など)について全然述べられてい
ない。しかしこれらの条件によって薄帯の製造は可能に
も不可能にもなる。
The experiment of manufacturing a ribbon by spouting molten metal in the opposite direction to the moving direction of the moving cooling body described in JP-A-58-16760 was repeated, and the experiment was published in JP-A-59-1839.
As stated in Publication No. 57, when molten metal is jetted out against a moving cooling body that is moving at high speed, it is generally difficult to form a stable pool on the surface of the moving cooling body. This was confirmed experimentally. JP-A-57-1
No. 95564 and Japanese Unexamined Patent Application Publication No. 16760/1982 describe manufacturing conditions other than ejecting the molten metal in the opposite direction (the shape of the spout, the gap between the tip of the spout and the surface of the movable cooling body, the shape of the movable cooling body) There is no mention of movement speed, etc.). However, these conditions make the production of ribbons both possible and impossible.

本発明者らは溶湯を、移動冷却体の移動方向に対して逆
方向に噴出させる場合、噴出口部(特にそれらの平行度
、移動冷却体の移動速度、溶湯噴出速度およびスロット
溝幅に極めて厳密な条件を加えなければ非晶質薄帯の装
置の完成は難しい事を見出した。即ち1本発明の目的は
逆噴出方式によって非晶質薄帯を製造するための上記製
造条件を決定しその条件の基で、移動冷却体の移動方向
に対して逆方向に溶湯を噴出させる非晶質薄帯の製造技
術を提供する事にある。
The present inventors have found that when spouting molten metal in the opposite direction to the moving direction of the moving cooling body, it is extremely important to It has been found that it is difficult to complete an apparatus for producing an amorphous ribbon unless strict conditions are added.That is, one object of the present invention is to determine the above-mentioned manufacturing conditions for producing an amorphous ribbon by the reverse injection method. Under these conditions, the present invention aims to provide a technology for manufacturing an amorphous ribbon in which molten metal is ejected in a direction opposite to the moving direction of a moving cooling body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば金属の溶湯を溶湯供給管の噴出口部から
移動冷却体に噴出させ、前記溶湯を急冷させ凝固させる
ことにより、非晶質金属薄帯を製造する方法であって、
前記移動冷却体の進行方向とは逆方向に該移動冷却体の
表面に前記゛溶湯を噴出させる前記非晶質金属薄帯の製
造方法において。
According to the present invention, there is provided a method for producing an amorphous metal ribbon by spouting a molten metal from a spout part of a molten metal supply pipe to a moving cooling body, and rapidly cooling and solidifying the molten metal, comprising:
In the method for manufacturing an amorphous metal ribbon, the molten metal is jetted onto the surface of the moving cooling body in a direction opposite to the traveling direction of the moving cooling body.

前記移動冷却体の前記表面に、該移動冷却体の進行方向
に直角に法線を立て、該移動冷却体の進行方向とは逆方
向に該移動冷却体に噴出退せる溶湯の噴出方向と前記法
線とのなす角度θが0〈θく60°の範囲内にあり、前
記噴出口部先端の前記進行方向に対して後方寄りの後方
リップと前記移動冷却体の前記表面との間隙をdとする
とき、該後方リップの前記進行方向に対向した方向の長
さaは少くともdtanθよりも大きいと云う関係が満
足され、dは0.01■≦d(0,6mmの範囲内にあ
り、しかも前記後方リップは前記移動冷却体表面に実質
的に平行になる様に設置されている事を特徴とする非晶
質金属薄帯の製造方法が得られる。
A normal line is set on the surface of the movable cooling body perpendicular to the traveling direction of the movable cooling body, and a spouting direction of the molten metal to be spouted and retreated to the movable cooling body in a direction opposite to the traveling direction of the movable cooling body; The angle θ with the normal line is within the range of 0<θ to 60°, and the gap between the rear lip of the tip of the jet nozzle at the rear side with respect to the traveling direction and the surface of the movable cooling body is d. Then, the relationship that the length a of the rear lip in the direction opposite to the traveling direction is at least larger than dtanθ is satisfied, and d is within the range of 0.01■≦d (0.6 mm). Furthermore, there is obtained a method for manufacturing an amorphous metal ribbon, characterized in that the rear lip is disposed substantially parallel to the surface of the moving cooling body.

以下憩日 〔実施例〕 次に本発明の実施例について図面を参照して説明する。The following rest days 〔Example〕 Next, embodiments of the present invention will be described with reference to the drawings.

第2図に示す従来の製造方法(順噴出方式)の場合、即
ち溶湯2の噴出方向は、常に移動冷却体3の移動方向と
同一方向の場合、噴出溶湯の流速は移動冷却体に近づく
につれて2次第に加速される。従って冷却体表面で形成
される湯溜シは安定する事なく、複雑な流速変化を受け
つつ凝固され。
In the case of the conventional manufacturing method (forward jet method) shown in Fig. 2, that is, when the jetting direction of the molten metal 2 is always the same as the moving direction of the moving cooling body 3, the flow velocity of the jetting molten metal increases as it approaches the moving cooling body. 2 It will be accelerated gradually. Therefore, the molten water formed on the surface of the cooling body is not stabilized and solidifies while undergoing complicated changes in flow velocity.

移動冷却体の移動速度でもって搬送される。流速が加速
される際に移動冷却体表面に付着してくる雰囲気ガス又
は大気を巻き込み、それが膨張飛散するとき薄帯表面に
凸凹を生ずしめる。
It is conveyed at the moving speed of the moving cooling body. When the flow rate is accelerated, atmospheric gas or air that adheres to the surface of the moving cooling body is drawn in, and when it expands and scatters, it causes unevenness on the surface of the ribbon.

これに対して第1図に示す本発明による逆噴出方式の場
合、溶湯2は移動冷却体3とは逆方向に向って噴出され
るために移動冷却体表面に近づく憾?れて上記順噴出方
式の場合とは異なシ移動冷却体の負荷抵抗を受け、噴出
流速を次第に減速させ、更に湯溜り形成位置近傍に於い
て流速ゼロを示し、その後、移動冷却体の移動方向と同
じ方向の速度ベクトルをもつ様になる。やがて上記湯溜
シ2′は移動冷却体表面上で凝固し、移動冷却体の移動
速度と等しい速度でもって移動を開始する。
On the other hand, in the case of the reverse injection method according to the present invention shown in FIG. 1, the molten metal 2 is ejected in the opposite direction to the moving cooling body 3, so it approaches the surface of the moving cooling body. The flow velocity is gradually reduced due to the load resistance of the moving cooling body, which is different from the case of the above-mentioned sequential jetting method, and the flow velocity reaches zero near the position where the pool is formed. It will have a velocity vector in the same direction as . Eventually, the sump 2' solidifies on the surface of the moving cooling body and starts moving at a speed equal to the moving speed of the moving cooling body.

上記の場合、噴出湯が逆噴出されるための負荷抵抗に対
して、湯溜シを安定に静止させ更に逆方向に搬送させる
ための条件を整えねばならない。
In the above case, it is necessary to prepare conditions for stably stopping the hot water tank and transporting it in the reverse direction against the load resistance for the hot water to be jetted out in the opposite direction.

特開昭59−183957 、特開昭57−19556
4号公報、特開昭58−16764号公報の中で述べら
れてbる逆噴出方式による不成功は溶湯噴出角度θのみ
に容置するのではなく、その他の設定条件に誤シがあっ
たためと考えられる。
JP-A-59-183957, JP-A-57-19556
The failure of the reverse jetting method described in Publication No. 4 and Japanese Patent Application Laid-Open No. 58-16764 was due to errors in other setting conditions, not just the molten metal jetting angle θ. it is conceivable that.

本発明者らは先ず噴出口部先端の移動冷却体3進行方向
に対して後方寄りの後方リッffを、前方寄りの前方リ
ツf1よシ長くシ、夫々の移動冷却体との間隙d、eと
の間にd≦eなる関係を持たせ、しかもdを出来るだけ
小さくする事を試みた。
The present inventors first made the rear lip ff at the tip of the jet nozzle part, which is closer to the rear with respect to the traveling direction of the moving cooling body 3, longer than the front lip f1, which is closer to the front, and the gaps d and e with the respective moving cooling bodies. We tried to establish the relationship d≦e between the two and to make d as small as possible.

第3図には噴出角度θ=30° 、冷却体移動速度v=
3Qm/we、噴出ロ形状b Xt=0.2 X 30
+ItIR(tは長さ)、噴出圧力Pg =1.0 k
l? /Cm”  の製造条件の下でdを0.02から
0.6mmまで変化させたときの薄帯製造評価結果の1
部を示す。
In Fig. 3, the jet angle θ = 30°, the cooling body moving speed v =
3Qm/we, jet shape b Xt=0.2 X 30
+ItIR (t is length), injection pressure Pg = 1.0 k
l? /Cm'' manufacturing conditions and d was varied from 0.02 to 0.6 mm 1 of the ribbon manufacturing evaluation results
Show part.

移動冷却体と噴出口部との相対移動速度と溶湯の噴出角
度との明白な相関関係は見られなかった。
There was no obvious correlation between the relative movement speed between the moving cooling body and the spout and the spout angle of the molten metal.

噴出角度が大きくなる場合、該移動速度を下げた方が薄
帯製造の成功率は高くなる。
When the ejection angle becomes large, the success rate of ribbon production becomes higher if the moving speed is lowered.

本発明の逆噴出方式によって製造される薄帯は従来の順
噴出方式によって得られる薄帯よりも。
The ribbon produced by the reverse jetting method of the present invention is superior to the ribbon produced by the conventional forward jetting method.

より薄手のものが得られる。従って条件によっては薄帯
は網の目状の孔があく場合もある。これは単位時間当り
の溶湯の噴出lが不足しているためであシ相対移動速度
を下げる事によって制御可能である。
You can get a thinner one. Therefore, depending on the conditions, the ribbon may have a network of holes. This is because the amount of molten metal ejected per unit time is insufficient, and can be controlled by lowering the relative movement speed.

第4図には噴出角度θ=30°、冷却体移動速度v =
 30 m/sec+噴出圧力P、 = 1.0 kl
i/cm2に於ける噴出口部形状(溝@bxスリット長
さt)の中のbを変えた場合の薄帯の製造評価結果の1
部を示す。
In Fig. 4, the ejection angle θ = 30° and the cooling body moving speed v =
30 m/sec + ejection pressure P, = 1.0 kl
1 of the results of manufacturing evaluation of thin ribbon when changing b in the spout shape (groove @ b x slit length t) at i/cm2
Show part.

ただし、スリット長さtは30冒である。However, the slit length t is 30 mm.

移動冷却体表面に形成される湯溜りは量的にも温度的に
も、均一である事が望ましい。湯溜りの温度分布を均一
にするためには一般的には噴出口溝幅すを出来るだけ狭
くする方が望ましい。しかし噴出口溝gbが小さくなる
と噴出圧力P2を高くしなければならず、溶湯供給管、
噴出口部などの機械的強度、高圧下における噴出流速の
制御等に問題が生じ、噴出口溝幅すを狭くする事に、自
ずと限界が生じてくる。実験の結果ではb=0.1〜0
.6mmにお−て薄帯の製造は可能であった。特にb=
0.1〜0.3Hに於いて安定した薄帯製造が可能であ
った。此の時b 〉0.6 mの場合、溶湯が噴出口か
ら噴出しやすくなり安定な薄帯を作るための噴出圧力P
8の制御が困難となる。0.01≦b<0.1 、およ
び0.6pb≦1(胡)の溝幅につ込ても溶湯供給管内
の噴出圧P。の制御機構を高度化する事によって十分実
現可能な領域である。
It is desirable that the pool formed on the surface of the moving cooling body be uniform both in quantity and temperature. In order to make the temperature distribution of the hot water pool uniform, it is generally desirable to make the width of the spout groove as narrow as possible. However, if the spout groove gb becomes smaller, the jet pressure P2 must be increased, and the molten metal supply pipe,
Problems arise in the mechanical strength of the jet nozzle, control of the jet flow velocity under high pressure, etc., and there is a natural limit to the narrowing of the jet nozzle groove width. According to the experimental results, b=0.1~0
.. It was possible to manufacture a ribbon with a thickness of 6 mm. Especially b=
Stable ribbon production was possible at 0.1 to 0.3H. In this case, when b > 0.6 m, the ejection pressure P is such that the molten metal easily ejects from the ejection port and creates a stable ribbon.
8 becomes difficult to control. Even if the groove width is 0.01≦b<0.1 and 0.6 pb≦1 (hu), the ejection pressure P in the molten metal supply pipe remains constant. This is an area that can be fully realized by improving the sophistication of the control mechanism.

第5図に、逆噴出する溶湯噴出角度θ=5.IQ。In FIG. 5, the molten metal jetting angle θ=5. I.Q.

15.20.30,40,50,60,70°における
最適製造条件とその製品薄帯評価をまとめて示す。
15.20.The optimal manufacturing conditions at 30, 40, 50, 60, and 70 degrees and the evaluation of the product ribbon are summarized.

この図から明らかなようにθを大きくするに従って、薄
帯の板厚は次第に薄くなシ、その断面の平行度δもまた
急激に小さくなる。
As is clear from this figure, as θ increases, the thickness of the ribbon gradually decreases, and the parallelism δ of its cross section also decreases rapidly.

上述の結果は最適条件下に於ける薄帯製造評価であるが
、その条件が適切でないと溶湯の飛散の生ずる場合もあ
る。
The above results are evaluations of ribbon production under optimal conditions, but if the conditions are not appropriate, molten metal may scatter.

θが大きくなるにつれて、溶湯噴出圧力P2と移動冷却
体の移動速度υの制御が困難となり、特に溶湯噴出角度
が60°を越える場合には、均一な薄帯を得ることは困
難であった。
As θ becomes larger, it becomes difficult to control the molten metal jetting pressure P2 and the moving speed υ of the moving cooling body, and it is difficult to obtain a uniform ribbon especially when the molten metal jetting angle exceeds 60°.

以上の第5図に示す様な十分な製造条件の制御の下で溶
湯噴出圧力によって製造された薄帯は順噴出方式(現在
製造の殆んどがこの方式によっている)による薄帯とは
異なシ、大気中又は雰囲気中で製造しても、ガスの巻き
、込みは少く、滑らかなものであった。
As shown in Figure 5 above, the ribbon manufactured by the molten metal jetting pressure under sufficient control of the manufacturing conditions is different from the ribbon manufactured by the forward jetting method (currently, most manufacturing uses this method). Even when produced in the atmosphere, there was little gas entrainment and entrainment, and the product was smooth.

次に本発明の具体例について説明する。Next, specific examples of the present invention will be explained.

第1図に示す様に移動冷却体(Cu系合金製回転ケ却ロ
ール)の回転方向と逆方向に浴湯噴出角度θをもつ溶湯
噴出口部から溶湯噴出口先端面と上記冷却ロール表面と
の間隙d=e=o、10trm*冷却ロール周速度υ=
28.30.および35m/冠、スロット溝帖b = 
0.2 rrvn yスリット幅30間、噴出圧力1、
2 kg/cm2の条件の下でt (copeNt)7
3Mo、5(stn)2z合金の溶湯を冷却ロール表面
上に噴出させ、板幅30問板厚0.02〜0.0158
の薄帯を作製した。この薄帯について、X線回折により
結晶構造を検討の結果、X線的には非晶質である事を確
認した。
As shown in Fig. 1, from the molten metal spout part having the bath water spouting angle θ in the opposite direction to the rotating direction of the moving cooling body (Cu-based alloy rotary cooling roll), the molten metal spout tip face and the above-mentioned cooling roll surface are connected. Gap d=e=o, 10trm*chilling roll circumferential speed υ=
28.30. and 35m/crown, slot groove b =
0.2 rrvn y slit width 30, jet pressure 1,
t (copeNt)7 under the condition of 2 kg/cm2
The molten metal of 3Mo, 5(stn)2z alloy was jetted onto the surface of the cooling roll, and the plate width was 30 and the plate thickness was 0.02 to 0.0158.
A thin ribbon was made. The crystal structure of this ribbon was examined by X-ray diffraction, and it was confirmed that it was amorphous from an X-ray perspective.

溶湯供給管の位置Xと溶湯噴出角度θ=θ、+θ2との
関係を第6図及び第7図に示す。
The relationship between the position X of the molten metal supply pipe and the molten metal jetting angles θ=θ, +θ2 is shown in FIGS. 6 and 7.

以上の様な条件で試作された薄帯の溶湯噴出角度θと薄
帯板厚の平行度δとの関係を第8図に示すO いづれの場合も安定して薄帯が製作された。図から明ら
かな様に噴出角度θが大きくなるに従って薄帯断面の平
行度変化量δは著しく減少する。
Figure 8 shows the relationship between the molten metal ejection angle θ and the parallelism δ of the ribbon thickness for the ribbons prototyped under the above conditions. In all cases, the ribbons were stably manufactured. As is clear from the figure, as the ejection angle θ increases, the amount of change in parallelism δ of the cross section of the ribbon decreases significantly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように2本発明によれば、溶湯を逆噴出方
式によって移動冷却体表面に噴出して良好な非晶質薄帯
を製造することが可能となる。
As explained above, according to the two aspects of the present invention, it is possible to produce a good amorphous ribbon by jetting the molten metal onto the surface of the moving cooling body using the reverse jetting method.

以″F依日From now on

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による逆噴出方式による非晶質薄帯の製
造方法を説明するための図、第2図は一般的な従来の順
噴出方式による薄帯の製造方法を説明するための図、第
3図は噴出口部先端(後方リップ)面と移動冷却体表面
との間隙dの変化による薄帯製造評価を示した図、第4
図は噴出口部形状(溝幅b×長さt)の中、bの変化に
よる薄帯製造評価を示した図、第5図は各溶湯噴出角度
0における最良製造条件とその製品薄帯評価を示した図
、第6図及び第7図は本発明の詳細な説明するための図
、第8図は溶湯噴出角度θと薄帯板厚の平行度δとの関
係を示した図である。 1・・・噴出口部前方リップ 、l・・・噴出口部後方
リップ、2・・・噴出溶湯、2′・・・凝固体(薄帯)
、3・・・移動冷却体 第2図 第3図 評価基準 : ■ 非常に蛍定して薄帯が製造されうる
C1#留100%)Q 薄帯は十分出来る(9’119
0%摩上)Δ 失敗する場合もある(歩留90〜60%
)× 失敗する場合の方が多い(4)留50%以下)噴
出口部先端(後方リップ)面と移動冷却体表面との間F
i5dlF)’f化による薄帯製造評価 第4図 薄帯製造の評価は第3図のdの評価基準に準する。 製造条件も31.第3因のそれに準する。但し、製造薄
帯の板厚は26/蝋以下のものとする。 噴出口部形状(溝幅b×長さZ−SO龍)の中、b変化
による薄帯製造評価 第6図 溶湯供給管の位置Xと湯治噴出角HB−6=0 、4−
02と′)関係第7図 X(cm) θ(degree)
FIG. 1 is a diagram for explaining the method for manufacturing an amorphous ribbon using the reverse jet method according to the present invention, and FIG. 2 is a diagram for explaining the conventional method for manufacturing a ribbon using the conventional forward jet method. , Figure 3 is a diagram showing the evaluation of ribbon production based on changes in the gap d between the jet nozzle tip (rear lip) surface and the surface of the moving cooling body.
The figure shows the ribbon manufacturing evaluation based on the change in b in the spout shape (groove width b x length t). Figure 5 shows the best manufacturing conditions for each molten metal spouting angle of 0 and the product ribbon evaluation. FIG. 6 and FIG. 7 are diagrams for explaining the present invention in detail, and FIG. 8 is a diagram showing the relationship between the molten metal ejection angle θ and the parallelism δ of the ribbon thickness. . 1... Front lip of the spout part, l... Rear lip of the spout part, 2... Spouted molten metal, 2'... Solidified body (thin ribbon)
, 3... Moving cooling body Figure 2 Figure 3 Evaluation criteria: ■ C1 # distillate 100% that can produce a thin ribbon with very high fluorescence)Q A thin ribbon can be produced satisfactorily (9'119
0% polishing) Δ May fail (yield 90-60%)
F
i5dlF) 'Evaluation of ribbon production by conversion to f Figure 4 Evaluation of ribbon production is based on the evaluation criteria d in Figure 3. Manufacturing conditions are also 31. It is similar to that of the third cause. However, the thickness of the manufactured ribbon shall be 26/wax or less. Figure 6. Evaluation of ribbon production based on changes in b in the spout shape (groove width b x length Z-SO dragon) Figure 6 Position of molten metal supply pipe and hot water treatment spout angle HB-6 = 0, 4-
02 and ') Relationship Figure 7 X (cm) θ (degree)

Claims (4)

【特許請求の範囲】[Claims] (1)金属の溶湯を溶湯供給管の噴出口部から移動冷却
体に噴出させ、前記溶湯を急冷させ凝固させることによ
り非晶質金属薄帯を製造する方法であって、前記移動冷
却体の進行方向とは逆方向に該移動冷却体の表面に前記
溶湯を噴出させる前記非晶質金属薄帯の製造方法におい
て、前記移動冷却体の前記表面に、該移動冷却体の進行
方向に直角に法線を立て、該移動冷却体の進行方向とは
逆方向に該移動冷却体に噴出させる溶湯の噴出方向と前
記法線とのなす角度θが0<θ≦60°の範囲内にあり
、前記噴出口部先端の前記進行方向に対して後方寄りの
後方リップと前記移動冷却体の前記表面との間隙をdと
するとき、該後方リップの前記進行方向に対向した方向
の長さaは少くともdtanθよりも大きいと云う関係
が満足され、dは0.01mm≦d<0.6mmの範囲
内にあり、しかも前記後方リップは前記移動冷却体表面
に実質的に平行になる様に設置されている事を特徴とす
る非晶質金属薄帯の製造方法。
(1) A method for producing an amorphous metal ribbon by spouting molten metal from a spout part of a molten metal supply pipe onto a moving cooling body, and rapidly cooling and solidifying the molten metal, the method comprising: In the method for manufacturing an amorphous metal ribbon, in which the molten metal is ejected onto the surface of the moving cooling body in a direction opposite to the traveling direction, the molten metal is jetted onto the surface of the moving cooling body at right angles to the traveling direction of the moving cooling body. A normal line is erected, and the angle θ between the normal line and the spouting direction of the molten metal jetted to the movable cooling body in a direction opposite to the traveling direction of the movable cooling body is within the range of 0<θ≦60°, When the gap between the rear lip of the tip of the spout portion that is located toward the rear with respect to the traveling direction and the surface of the movable cooling body is d, the length a of the rear lip in the direction opposite to the traveling direction is The relationship that dtanθ is greater than at least is satisfied, d is within the range of 0.01 mm≦d<0.6 mm, and the rear lip is installed so as to be substantially parallel to the surface of the moving cooling body. A method for producing an amorphous metal ribbon, characterized in that:
(2)前記噴出口部先端の前記進行方向に対して前方寄
りの前方リップと前記移動冷却体の前記表面との間隙を
dとし、前記噴出口部、先端の前記進行方向に対して後
方寄りの後方リップと前記移動冷却体の前記表面との間
隙をeとすると、常にd≦eなる関係をもって、前記溶
湯が前記移動冷却体の前記表面に噴出される特許請求の
範囲第1項記載の非晶質金属薄帯の製造方法。
(2) The gap between the front lip of the tip of the jet nozzle part which is forward in the direction of travel and the surface of the movable cooling body is d, and the tip of the jet nozzle part is located backward with respect to the travel direction. Claim 1, wherein the molten metal is ejected onto the surface of the movable cooling body with the relationship d≦e, where e is the gap between the rear lip of the movable cooling body and the surface of the movable cooling body. A method for producing an amorphous metal ribbon.
(3)前記移動冷却体と前記溶湯供給管との相対移動速
度が10〜60m/secである特許請求の範囲第1項
の非晶質金属薄帯の製造方法。
(3) The method for manufacturing an amorphous metal ribbon according to claim 1, wherein the relative movement speed between the moving cooling body and the molten metal supply pipe is 10 to 60 m/sec.
(4)前記溶湯供給管の噴出口溝幅bが0.01mm〜
0.6mmである特許請求の範囲第1項記載の非晶質金
属薄帯の製造方法。
(4) The spout groove width b of the molten metal supply pipe is 0.01 mm or more.
A method for producing an amorphous metal ribbon according to claim 1, which has a thickness of 0.6 mm.
JP61305315A 1986-12-23 1986-12-23 Amorphous metal ribbon manufacturing method Expired - Lifetime JPH0615099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61305315A JPH0615099B2 (en) 1986-12-23 1986-12-23 Amorphous metal ribbon manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61305315A JPH0615099B2 (en) 1986-12-23 1986-12-23 Amorphous metal ribbon manufacturing method

Publications (2)

Publication Number Publication Date
JPS63160758A true JPS63160758A (en) 1988-07-04
JPH0615099B2 JPH0615099B2 (en) 1994-03-02

Family

ID=17943623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305315A Expired - Lifetime JPH0615099B2 (en) 1986-12-23 1986-12-23 Amorphous metal ribbon manufacturing method

Country Status (1)

Country Link
JP (1) JPH0615099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234428A (en) * 2009-03-31 2010-10-21 Nippon Steel Corp Rapid cooling solidification nozzle for casting ribbon
CN107234218A (en) * 2016-06-27 2017-10-10 安泰科技股份有限公司 The embedded nozzle of weld pool for preparing amorphous band

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip
JPS57195564A (en) * 1981-05-28 1982-12-01 Furukawa Electric Co Ltd:The Production of thin metallic strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip
JPS57195564A (en) * 1981-05-28 1982-12-01 Furukawa Electric Co Ltd:The Production of thin metallic strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234428A (en) * 2009-03-31 2010-10-21 Nippon Steel Corp Rapid cooling solidification nozzle for casting ribbon
CN107234218A (en) * 2016-06-27 2017-10-10 安泰科技股份有限公司 The embedded nozzle of weld pool for preparing amorphous band
CN107234218B (en) * 2016-06-27 2022-10-18 安泰科技股份有限公司 A embedded nozzle of weld pool for preparing amorphous strip

Also Published As

Publication number Publication date
JPH0615099B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
CN112840060A (en) Cooling device for hot-dip plated steel sheet
CN1446133A (en) Belt-cooling and guiding means for continuous belt casting of metal strip
US4274473A (en) Contour control for planar flow casting of metal ribbon
JPS63160758A (en) Manufacture of amorphous thin metal strip
JPS6015049A (en) Continuous casting device
KR960003714B1 (en) Method and apparatus for manufacturing a thin metal strip by quenching and solidification
US5063988A (en) Method and apparatus for strip casting
JPH03169460A (en) Apparatus and method for producing rapidly cooled metal strip
JP2637892B2 (en) Amorphous metal ribbon
EP0387271B1 (en) A method and apparatus for the direct casting of metals to form elongated bodies
JPS61204363A (en) Production of metal hot dipped steel plate having excellent appearance
JPH10204599A (en) Method for controlling hot-dip coating amount and gas wiping nozzle
JPS61159246A (en) Production of amorphous metallic ribbon
JPS6213247A (en) Apparatus for producing ultra-quickly cooled thin alloy strip
US5908068A (en) Method of manufacturing a wide metal thin strip
JPH04365846A (en) Continuous galvanizing device for steel strip
JPS5927226B2 (en) Slit type two-fluid spray nozzle
JPH0636973B2 (en) Method and apparatus for manufacturing quenched metal ribbon
JPH07266006A (en) Nozzle for producing amorphous metal strip
JPS6159820B2 (en)
JP2002294425A (en) Wiping device with gas
JPS60199551A (en) Method and device for producing thin metallic strip
JPS60199552A (en) Production of thin metallic strip
JPH0523864B2 (en)
JPS6216139B2 (en)