JPS63159272A - Manufacture of inorganic hardened body - Google Patents

Manufacture of inorganic hardened body

Info

Publication number
JPS63159272A
JPS63159272A JP30685986A JP30685986A JPS63159272A JP S63159272 A JPS63159272 A JP S63159272A JP 30685986 A JP30685986 A JP 30685986A JP 30685986 A JP30685986 A JP 30685986A JP S63159272 A JPS63159272 A JP S63159272A
Authority
JP
Japan
Prior art keywords
inorganic
water
molding
organic particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30685986A
Other languages
Japanese (ja)
Inventor
裕之 瀧華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP30685986A priority Critical patent/JPS63159272A/en
Publication of JPS63159272A publication Critical patent/JPS63159272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Dental Preparations (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [技術分野1 本発明は、水硬性無機質材料を主成分とし無機建築材な
どとして用いられる耐凍害性に優れ高密度で高強度の無
機質硬化体の製造方法に関するものである。
[Detailed Description of the Invention] [Technical Field 1] The present invention relates to a method for producing a hardened inorganic material which is mainly composed of a hydraulic inorganic material and has excellent frost damage resistance, high density, and high strength and is used as an inorganic building material. be.

〔背景技術1 従来上り、セメントのような水硬性無機質材料を低混水
比で混練して成形材料を調製し、これを押出成形などに
より成形賦形し、高強度の無機質硬化体をgl造する方
法が実施されており、この硬化体は主として外装材など
として用いられている。
[Background technology 1] Conventionally, a molding material is prepared by kneading a hydraulic inorganic material such as cement at a low water mixing ratio, and this is molded and shaped by extrusion molding to produce a high-strength inorganic hardened body. The cured product is mainly used as an exterior material.

しかしながら、これら従来の硬化体は耐凍結融解性が悪
く、凍結融解試験を行うと100サイクル程度で凍害が
発生し、実際、外装材としては寒冷地で凍害の問題を引
き起こしている。
However, these conventional cured products have poor freeze-thaw resistance, and freeze damage occurs after about 100 cycles when subjected to freeze-thaw tests, and in fact, as exterior materials, they cause freeze damage problems in cold regions.

ところで、凍害は材料が吸水状態にある場合に起こるが
、その吸水状態においては毛細管張力による吸水が一段
落した段階で、内部に十分な量の気泡が存在する場合、
この気体部分が水の凍結膨張量を吸収するため凍害劣化
は生じない、このような材料に凍害を生じさせるために
は、より以上の水の吸収が必要で、凍結融解の繰り返し
行程のもつ吸水作用が重要となる。これは氷で周囲が覆
われた材料表面の水の凍結時の容積増加が、まだ凍結し
ていない材料の内部へ水を圧入するもので、一種の圧力
吸水である。当然、気中での凍結と比較して水中での凍
結でその役割が大きく、凍結する水のN厚なども関係す
る。これは材料が劣化を開始する以前の凍結融解の繰り
返しは材料に水を押し込める作用となることを意味して
おり、凍島は、この作用によって吸収した水分の増加が
ある限界(内部の気泡が膨張量を緩和で慇なくなる限?
iL>を越えることによって生じると考えることができ
る。十分吸水した後に材料内部に存在する気泡は、凍害
による膨張量を吸収し、耐凍害性に重要となる。コンク
リートの凍害では、材料内部に独立的な気泡を導入する
こと、つまり、AE剤やAE減水剤を用いて空気を連行
することが凍害対策の基本となっている。このAE剤や
AE減水剤のよる気泡の大きさは20〜100μm程度
である。
By the way, frost damage occurs when the material is in a water absorption state, but in that water absorption state, when the water absorption due to capillary tension has settled down, if there are a sufficient amount of air bubbles inside,
Because this gaseous part absorbs the amount of freezing and expansion of water, no frost damage deterioration occurs.In order to cause frost damage to such materials, it is necessary to absorb even more water, and the water absorption caused by the repeated freeze-thaw process The effect is important. This is a type of pressure water absorption in which the increase in volume of water on the surface of a material surrounded by ice when it freezes forces water into the interior of the material that has not yet frozen. Naturally, it plays a larger role in freezing underwater than in freezing in the air, and the N thickness of the frozen water also plays a role. This means that the repeated freezing and thawing of the material before it begins to deteriorate causes water to be pushed into the material, and a frozen island is caused by a certain limit (internal air bubbles increase) due to this action. As long as it becomes unsatisfying by relaxing the amount of expansion?
It can be considered that this is caused by exceeding iL>. The bubbles that exist inside the material after sufficient water absorption absorbs the amount of expansion caused by frost damage, and are important for frost damage resistance. The basic countermeasure against freezing damage to concrete is to introduce independent air bubbles into the material, that is, to entrain air using an AE agent or an AE water reducer. The size of bubbles caused by this AE agent or AE water reducing agent is about 20 to 100 μm.

一方、高密度の硬化体を製造する際は、一般に成形材料
は低混水比であり、高粘度であるため、AE剤などによ
って気泡を連行することは不可能である。又AE剤など
の効果が得られるよC虫で混水比を上げると、強度や吸
水率などの他の物性が低下してしまう。
On the other hand, when producing a high-density cured product, the molding material generally has a low water mixing ratio and high viscosity, so it is impossible to entrain air bubbles with an AE agent or the like. In addition, if the water mixing ratio is increased with C insects to obtain the effects of AE agents, other physical properties such as strength and water absorption rate will decrease.

[発明の目的1 本発明は上記事情に鑑みて為されたものであり、その目
的とするところは、成形材料の混水比に関係なく、所望
通りに内部に気泡を形成でき、耐凍害性に優れ、しかも
高密度、高強度の無機質硬化体を製造することにある。
[Objective of the Invention 1 The present invention has been made in view of the above circumstances, and its purpose is to form bubbles inside as desired regardless of the water mixing ratio of the molding material, and to achieve frost damage resistance. The object of the present invention is to produce an inorganic cured body with excellent properties, high density, and high strength.

[発明の開示1 本発明の無機質硬化体の製造方法は、水硬性無機質材料
と骨材を主成分とし、有機物粒子を配合すると共に水を
配合し混線して成形材料を調製し、この成形材料を成形
賦形した後焼成して有機物粒子を焼失させることを特徴
とするものであり、この構成により上記目的が達成され
たものである。
[Disclosure 1 of the Invention The method for producing an inorganic cured body of the present invention is to prepare a molding material containing a hydraulic inorganic material and an aggregate as main components, blending organic particles and mixing with water and mixing. It is characterized by molding and shaping and then firing it to burn out the organic particles, and with this configuration, the above object is achieved.

即ち、配合した有機物粒子を焼失させることにより、内
部に気泡を形成で外、この気泡により耐凍害性を向上さ
せることができ、又、従来のようにAE剤を用いなくて
も内部に気泡を導入できることから、低混水比の成形材
料も用いることができ、従って、高密度、高強度の無機
質硬化体を製造することができる。
In other words, by burning out the compounded organic particles, air bubbles are formed inside, which can improve the frost damage resistance. Since it can be introduced, a molding material with a low water mixing ratio can also be used, and therefore, a high-density, high-strength inorganic cured body can be manufactured.

本発明における水硬性無機質材料とは、水と反応して硬
化する結合材をいい、特に限定はしないが、セメント、
スラグ、石膏等を挙げることができる。この内、セメン
トとしては普通ポルトランドセメント、アルミナセメン
ト、早強セメント、ノヱットセメント、高炉セメントな
どを用いることができる。
The hydraulic inorganic material in the present invention refers to a binder that hardens by reacting with water, and includes, but is not limited to, cement,
Examples include slag, gypsum, etc. Among these, ordinary Portland cement, alumina cement, early strength cement, knot cement, blast furnace cement, etc. can be used as the cement.

この水硬性無機質材料に配合される骨材としては、いわ
ゆる火成岩、けい砂、シャモット、シェルベン、煉瓦粉
、抗火石などを用いることができ、特に成形品を焼成す
る際に焼成温度よりも低温で化学変化や急激な重量及び
寸法変化を起こさない耐熱性のものが好ましい、この骨
材は、特に限定はされないが、水硬性無機質材料100
重tmに対して50〜200重量部の範囲で使用される
。骨材が50重量部未満のときは、高温の焼成工程にお
いて成形品が破壊したり、クラックが発生したりして強
度の低下が着しい、i!!に200重量部を超えると、
1)+−勇−、Jh131Jコ1ムー1−一1ノψ身r
tJ−r/M罰−*J##口乙−に:してしまう恐れが
ある。
As the aggregate to be mixed into this hydraulic inorganic material, so-called igneous rock, silica sand, chamotte, shelben, brick powder, anti-flinder stone, etc. can be used. This aggregate is preferably a heat-resistant one that does not cause chemical changes or rapid weight and dimensional changes, but is not particularly limited, but hydraulic inorganic materials 100
It is used in an amount of 50 to 200 parts by weight based on weight tm. If the aggregate content is less than 50 parts by weight, the molded product may break or crack during the high-temperature firing process, resulting in a decrease in strength.i! ! If it exceeds 200 parts by weight,
1) +-Yu-, Jh131Jko1mu1-1noψbodyr
tJ-r/Mpunishment-*J##mouth-to-: There is a risk of doing so.

その他、繊維を配合してもよいが、この繊維としてアス
ベスト、ウナラストナイト等の無機繊維、ポリプロピレ
ン、ビニロン等の有8!繊維を用いることができる。又
、所望により種々の添加剤を配合する。
Other fibers may be added, including inorganic fibers such as asbestos and unalastonite, polypropylene, vinylon, etc. Fibers can be used. Additionally, various additives may be added as desired.

又、成形法によっては可塑剤を配合する。可塑剤として
はメチルセルロース、ヒドロキシプロピルメチルセルロ
ース、カルボキンメチルセルロース、ヒドロキシエチル
セルロースなど、水に溶解し増粘効果のあるものが好ま
しい。
Also, depending on the molding method, a plasticizer may be added. Preferred plasticizers are those that dissolve in water and have a thickening effect, such as methyl cellulose, hydroxypropyl methyl cellulose, carboxyl methyl cellulose, and hydroxyethyl cellulose.

この水硬性無機質材料と骨材を主成分とする原料に、ポ
リエチレン、ポリメチルメタクリレート、ポリプロピレ
ン、ポリスチレンなどの有機物粒子を配合する。この有
機物粒子は、粒子径5〜200μmで圧縮強度10kg
/c論2以上のものが好ましい。
Organic particles such as polyethylene, polymethyl methacrylate, polypropylene, and polystyrene are blended into the raw material whose main components are this hydraulic inorganic material and aggregate. These organic particles have a particle size of 5 to 200 μm and a compressive strength of 10 kg.
/c theory 2 or higher is preferred.

粒子径が5μmよりも小さいと、凍害に対する効果を発
揮させにくく、場合によっては悪影響を与える可能性が
あり、逆に200μmを超えると、強度等の他の物性に
影響を与えたり、容積当たりの全気泡量が同じでも、凍
結により膨張した水が気泡にまで到達する距離が長くな
り、気泡の効果が小さくなるためである。又、この有機
物粒子の配合割合は全無機質材料に対して1〜50容積
%配合するのが好ましい。1容積%未満であると、膨張
水の気泡への到達距離が長くなって効果がなくなるため
であり、50容積%を題えると強度などの物性が低下す
るためである。この有機物粒子は、成形迄に破壊すれば
効果が得られなくなるため圧縮強度は10kg/cm2
以上のものが好ましい、又、有機物粒子は焼成行程で焼
失、〃気化させてしまうものであるから、発泡もしくは
中空状のものが好ましν1゜ この後、水を加えて成形材料を調製する。水は成形可能
な範囲の成形性を成形材料に与え且つ水硬性無機質材料
の硬化に必要な1以上であればよく、できるだけ少量配
合するのが好ましい。
If the particle size is smaller than 5 μm, it will be difficult to exert the effect against frost damage, and in some cases, it may have a negative effect.On the other hand, if it exceeds 200 μm, it may affect other physical properties such as strength or reduce the amount per volume. This is because even if the total amount of bubbles is the same, the distance that water expanded due to freezing reaches the bubbles becomes longer and the effect of the bubbles becomes smaller. Further, the blending ratio of the organic particles is preferably 1 to 50% by volume based on the total inorganic material. This is because if it is less than 1% by volume, the distance that the expanded water reaches the bubbles becomes longer and the effect is lost, and if it is less than 50% by volume, physical properties such as strength will deteriorate. If these organic particles are destroyed before molding, the effect will no longer be obtained, so the compressive strength is 10 kg/cm2.
The above are preferable, and since the organic particles are burned out or vaporized during the firing process, foamed or hollow particles are preferable ν1°.After this, water is added to prepare the molding material. Water may be one or more water which provides moldability within the moldable range to the molding material and which is necessary for curing the hydraulic inorganic material, and it is preferable to mix as little as possible.

この成形材料は加圧成形、押出成形、注型等、常法にし
たがって成形される。成形品の表面には成形と同時に模
様付けを行ったり、二次的に加圧成形やロールプレス等
により模様付けを行うことができる。
This molding material is molded according to conventional methods such as pressure molding, extrusion molding, and casting. A pattern can be applied to the surface of the molded product at the same time as molding, or a pattern can be applied secondarily by pressure molding, roll pressing, or the like.

このようにして得られた成形品は、必要であれば、予備
的に水利硬化させる。硬化の程度は取り扱いができる程
度以上であればよい。
The molded article thus obtained is preliminarily water cured, if necessary. The degree of curing may be at least as long as it can be handled.

次に、この予備硬化させた成形品を焼成する。Next, this precured molded product is fired.

焼成温度は有機物粒子が気化する300℃以上の温度で
10〜60分間、好ましくは30〜50分間焼成を行う
、この場合、成形品の厚さが薄いものは短くても良く、
厚いものは長時間を要する。この焼成の際に成形品の表
面に釉薬を施したり、その他の塗料を塗装して表面化粧
を同時に行ってもかまわなり1゜ 焼成した後は、成形品の強度を回復させるために再水利
処理する方が望ましい。再水和処理は、湿熱養生、水中
養生、オートクレーブ養生等通常の方法で打なうことが
できる。
The firing temperature is 10 to 60 minutes, preferably 30 to 50 minutes, at a temperature of 300°C or higher at which the organic particles are vaporized. In this case, the thickness of the molded product may be shorter if the thickness is thin.
Thick items require a long time. During this firing, the surface of the molded product may be glazed or painted with other paints to decorate the surface at the same time. After 1° firing, the molded product should be rewatered to restore its strength. It is preferable to do so. Rehydration treatment can be carried out by conventional methods such as moist heat curing, water curing, and autoclave curing.

このようにして耐凍害性に優れ、高密度、高強度の無機
質硬化体が製造される。
In this way, an inorganic cured product with excellent frost damage resistance, high density, and high strength is produced.

次に、本発明の実施例を示すが、本発明は以下の実施例
に限定されるものではない。
Next, examples of the present invention will be shown, but the present invention is not limited to the following examples.

(実施例1) 普通ポルトランドセメント100重量部、シャモッ) 
100重量部、6クラスアスベスト10重量部、メチル
セルロース2,0重量部、粒径10〜60μ鴎のポリエ
チレン粒子を全無機質材料に対して5容積%及び水を全
固形分に対して28重量%混合して成形材料を調製した
(第1表)。
(Example 1) 100 parts by weight of ordinary Portland cement, chamot)
100 parts by weight, 10 parts by weight of Class 6 asbestos, 2.0 parts by weight of methyl cellulose, 5% by volume of polyethylene particles with a particle size of 10-60μ based on the total inorganic material, and 28% by weight of water based on the total solid content. A molding material was prepared (Table 1).

この成形材料により押出成形(真空押出機、スクリュー
径75■)を行った。得られた成形品を7日間自然養生
した後、釉薬をスプレーした、この後、800℃の焼成
温度で1時間焼成し、更に1時間水中に浸漬して吸水さ
せた後180℃で6時間オートクレーブで水利硬化させ
、無機質硬化体を製造した。
Extrusion molding (vacuum extruder, screw diameter 75 mm) was performed using this molding material. After the obtained molded product was naturally cured for 7 days, a glaze was sprayed on it. After that, it was fired at a firing temperature of 800°C for 1 hour, and then immersed in water for another 1 hour to absorb water, and then autoclaved at 180°C for 6 hours. The material was water cured to produce an inorganic cured product.

この無機質硬化体の比重、曲げ強度、凍結融解試験を行
って凍害発生サイクル数を測定した。結果をtJS2表
に併せ示す。
The specific gravity, bending strength, and freeze-thaw test of this inorganic cured product were conducted to measure the number of cycles in which frost damage occurred. The results are also shown in the tJS2 table.

(実施例2) ン粒子を全無8!質材料に対して10容積%配合した以
外は実施例1と同様にして無機質硬化体を9I遺した。
(Example 2) No particles at all! An inorganic cured product 9I was prepared in the same manner as in Example 1 except that 10% by volume was added to the quality material.

この無機質硬化体についても実施例1と同様の測定を行
った。結果を第1表に併せ示す。
The same measurements as in Example 1 were also performed on this inorganic cured product. The results are also shown in Table 1.

(実施例3) 有機物粒子として粒径50〜150μ鶴のポリエチレン
粒子を全無機質材料に対して10容積%配合した以外は
実施例1と同様にして無機質硬化体を製造した。
(Example 3) An inorganic cured body was produced in the same manner as in Example 1 except that polyethylene particles having a particle size of 50 to 150 μm were blended in an amount of 10% by volume based on the total inorganic material as organic particles.

この無機質硬化体についても実施例1と同様の測定を行
った。結果を第1表に併せ示す。
The same measurements as in Example 1 were also performed on this inorganic cured product. The results are also shown in Table 1.

(実施例4) 普通ポルトランドセメント100重量部、8号けい砂1
00重量部、6クラス7スベス)10重量部、メチルセ
ルロース2.0重量部、粒径20〜80μ鎗の中空状の
ポリメチルメタクリレート粒子を全無機質材料に対して
5容積%及び水を全固形分に対して28重量%混合して
成形材料を調製した。
(Example 4) 100 parts by weight of ordinary Portland cement, 1 part of No. 8 silica sand
00 parts by weight, 6 class 7 smooth) 10 parts by weight, 2.0 parts by weight of methyl cellulose, 5% by volume of hollow polymethyl methacrylate particles with a particle size of 20-80μ based on the total inorganic material, and water as a total solid content. A molding material was prepared by mixing 28% by weight.

二の古V、紺1!1−上n坤東青妊乏C盲カ坤中瀾 フ
クリユー径75m−)を行った。得られた成形品を7日
問自然養生した後、300℃の焼成温度で1時間焼成し
、更に1時間水中に浸漬して吸水させた後180℃で6
時間オートクレーブで水和硬化させ、無機質硬化体を製
造した。
Second Old V, Navy 1! 1-Jankon East Blue Pregnancy C Blind Kagon Middle Ran Fukuriyu Diameter 75m-) was carried out. The obtained molded product was naturally cured for 7 days, then fired at a firing temperature of 300°C for 1 hour, and immersed in water for another 1 hour to absorb water, and then heated at 180°C for 6 hours.
It was hydrated and cured in an autoclave for hours to produce an inorganic cured product.

この無機質硬化体について実施例1と同様の測定を行っ
た。結果を第1表に併せ示す。
The same measurements as in Example 1 were performed on this inorganic cured body. The results are also shown in Table 1.

(実施例5) 有機物粒子として粒径50〜150μmのポリエチレン
粒子を全無機質材料に対して5容積%配合し、焼成温度
を450℃とした以外は実施例4と同様にして無機質硬
化体を製造した。
(Example 5) An inorganic cured body was produced in the same manner as in Example 4, except that 5% by volume of polyethylene particles with a particle size of 50 to 150 μm were blended as organic particles to the total inorganic material, and the firing temperature was 450°C. did.

この無機質硬化体についても実施例1と同様の測定を行
った。結果を第1表に併せ示す。
The same measurements as in Example 1 were also performed on this inorganic cured product. The results are also shown in Table 1.

(実施例6) 加圧成形により成形品を製造した以外は実施例5と同様
にして無機質硬化体を!!aL、同様の測定を行った。
(Example 6) An inorganic cured body was produced in the same manner as in Example 5, except that the molded product was manufactured by pressure molding! ! aL, similar measurements were performed.

(比較例1) 普通ポルトランドセメン)100重量部、シャモット1
00重量部、6クラスアスベスト10重量部、メチルセ
ルロース2.0重量部、水を全固形分に対して28重麓
%混合し混練して成形材料を13I&!シた。
(Comparative Example 1) 100 parts by weight of ordinary Portland cement, 1 chamotte
00 parts by weight, 10 parts by weight of Class 6 asbestos, 2.0 parts by weight of methyl cellulose, and water at 28% by weight based on the total solid content and kneaded to make a molding material of 13I&! Shita.

この成形材料により押出成形(真空押出機、スクリュー
径75■)を行った。得られた成形品を1日間自然養生
した後、180℃で6時間オートクレーブで水和硬化さ
せ、無機質硬化体を!!遺した。
Extrusion molding (vacuum extruder, screw diameter 75 mm) was performed using this molding material. After the obtained molded product was naturally cured for one day, it was hydrated and cured in an autoclave at 180°C for 6 hours to form an inorganic cured product! ! I left it behind.

この無機質硬化体について実施例1と同様の測定を行っ
た。結果を第1表に併せ示す。
The same measurements as in Example 1 were performed on this inorganic cured product. The results are also shown in Table 1.

(比較例2) 成形材料に有機物粒子として粒径10〜60μmのポリ
エチレン粒子を全無機質材料に対して5容積%配合した
以外は比較例1と同様にして無機質硬化体を製造した。
(Comparative Example 2) An inorganic cured body was produced in the same manner as in Comparative Example 1, except that polyethylene particles having a particle size of 10 to 60 μm were blended as organic particles in the molding material in an amount of 5% by volume based on the total inorganic material.

この無機質硬化体について実施例1と同様の測定を行っ
た。結果をf@1表に併せ示す。
The same measurements as in Example 1 were performed on this inorganic cured body. The results are also shown in table f@1.

(比較例3) 釉薬をスプレーし、800℃で焼成した以外は比較例】
と同様にして無機質硬化体を製造した。
(Comparative example 3) Comparative example except that glaze was sprayed and fired at 800°C]
An inorganic cured body was produced in the same manner as above.

この無機質硬化体についても実施例1と同様の測定を行
った。結果を第1表に併せ示す。
The same measurements as in Example 1 were also performed on this inorganic cured product. The results are also shown in Table 1.

(比較例4) 加圧成形により成形品を製造した以外は比較例1と同様
にして無機質硬化体を製造し、同様の測定を行った。結
果をPI3表に併せて示す。
(Comparative Example 4) An inorganic cured body was manufactured in the same manner as in Comparative Example 1, except that the molded product was manufactured by pressure molding, and the same measurements were performed. The results are also shown in the PI3 table.

第1表の結果より、比較例のものにあっては、凍結融解
試験が150サイクル以下で凍害が発生したが、本発明
の実施例にあってはいずれも300サイクルで異常なし
であり、耐凍害性に優れた高強度の無機質硬化体が得ら
れることが判った。
From the results in Table 1, in the comparative example, frost damage occurred after 150 cycles or less of the freeze-thaw test, but in the examples of the present invention, no abnormality occurred after 300 cycles. It was found that a high-strength inorganic cured product with excellent frost damage resistance could be obtained.

[発明の効果] 本発明にあっては、水硬性無機質材料と骨材を主成分と
し、有機物粒子を配合すると共に水を配合し混練して成
形材料を調製し、この成形材料を成形賦形した後焼成し
て有機物粒子を焼失させることを特徴とするものであり
、配合した有機物粒子を焼失させることにより、内部に
気泡を形成でき、この気泡により耐凍害性を向上させる
ことができ、又、従来のようにAE剤を用いなくても内
部に気泡を導入できることから、低混水比の成形材料も
用いることができ、高密度、高強度の無機質硬化体を製
造することができる。
[Effect of the invention] In the present invention, a molding material is prepared by mixing a hydraulic inorganic material and an aggregate as main components, blending organic particles, and water and kneading, and molding the molding material. It is characterized by burning out the organic particles by burning out the blended organic particles, and by burning out the blended organic particles, air bubbles can be formed inside, and these air bubbles can improve frost damage resistance. Since air bubbles can be introduced inside without using an AE agent as in the conventional method, a molding material with a low water mixing ratio can also be used, and an inorganic cured body with high density and high strength can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] (1)水硬性無機質材料と骨材を主成分とし、有機物粒
子を配合すると共に水を配合し混練して成形材料を調製
し、この成形材料を成形賦形した後焼成して有機物粒子
を焼失させることを特徴とする無機質硬化体の製造方法
(1) A molding material is prepared by mixing hydraulic inorganic material and aggregate as main components, organic particles and water, and kneading the molding material. After molding and shaping, this molding material is fired to burn off the organic particles. A method for producing an inorganic cured body, the method comprising:
(2)有機物粒子が、粒子径5〜200μmで圧縮強度
10kg/cm^2以上であり、全無機質材料に対して
1〜50容積%配合することを特徴とする特許請求の範
囲第1項記載の無機質硬化体の製造方法。
(2) The organic particles have a particle size of 5 to 200 μm and a compressive strength of 10 kg/cm^2 or more, and are blended in an amount of 1 to 50% by volume based on the total inorganic material. A method for producing an inorganic cured product.
JP30685986A 1986-12-23 1986-12-23 Manufacture of inorganic hardened body Pending JPS63159272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30685986A JPS63159272A (en) 1986-12-23 1986-12-23 Manufacture of inorganic hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30685986A JPS63159272A (en) 1986-12-23 1986-12-23 Manufacture of inorganic hardened body

Publications (1)

Publication Number Publication Date
JPS63159272A true JPS63159272A (en) 1988-07-02

Family

ID=17962109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30685986A Pending JPS63159272A (en) 1986-12-23 1986-12-23 Manufacture of inorganic hardened body

Country Status (1)

Country Link
JP (1) JPS63159272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645288B1 (en) * 1998-12-21 2003-11-11 Schlumberger Technology Corporation Cementing compositions and application of such compositions for cementing oil wells or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645288B1 (en) * 1998-12-21 2003-11-11 Schlumberger Technology Corporation Cementing compositions and application of such compositions for cementing oil wells or the like

Similar Documents

Publication Publication Date Title
JPH0543666B2 (en)
JPH0225876B2 (en)
JPH02289456A (en) Asbestos-free inorganic hardened body and production thereof
JP2001261414A (en) Concrete having self-wetting/aging function and its executing method
JPS63159272A (en) Manufacture of inorganic hardened body
US4832746A (en) Cured extruded articles of metal fiber-reinforced hydraulic materials, and method for production thereof
JPH01172263A (en) Production of pottery article
JPH06293546A (en) Production of hydraulic and inorganic material molding
JPS6042263A (en) Manufacture of cement moldings
RU2251540C1 (en) Foam-ceramic items production method
JP2579298B2 (en) Method for producing porous cement molding
JPH0688854B2 (en) Manufacturing method of lightweight cellular concrete
JP3090085B2 (en) Manufacturing method of cement ceramic products
JPH049747B2 (en)
JPH11189447A (en) Artificial lightweight aggregate, production of the same aggregate and lightweight concrete using the same aggregate
JP3212573B2 (en) Sheet molding composition such as stone-like sheet, and method for producing sheet using the same
JP2868547B2 (en) Lightweight cement building materials
JPS6021839A (en) Manufacture of cement moldings
JPH02229752A (en) Cement composition
JPH11314977A (en) Lightweight concrete composition and its production
JPH05279097A (en) Heat-resistant cement composition
RU1822399C (en) Mix composition for manufacturing heat-insulating blocks
JPH078747B2 (en) Method of manufacturing ceramic products
JPS6385072A (en) Manufacture of lightweight foamed concrete products
JPH04325455A (en) Ceramic product and its manufacture