JPS63158159A - Method and apparatus for preparing resin powder fused and coated steel sheet pile - Google Patents

Method and apparatus for preparing resin powder fused and coated steel sheet pile

Info

Publication number
JPS63158159A
JPS63158159A JP30529686A JP30529686A JPS63158159A JP S63158159 A JPS63158159 A JP S63158159A JP 30529686 A JP30529686 A JP 30529686A JP 30529686 A JP30529686 A JP 30529686A JP S63158159 A JPS63158159 A JP S63158159A
Authority
JP
Japan
Prior art keywords
powder
steel sheet
resin powder
sheet pile
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30529686A
Other languages
Japanese (ja)
Inventor
Fuminori Mukohara
向原 文典
Tsukasa Imazu
今津 司
Takao Kurisu
栗栖 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30529686A priority Critical patent/JPS63158159A/en
Publication of JPS63158159A publication Critical patent/JPS63158159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

PURPOSE:To efficiently and uniformly apply coating, in coating the concave surface of a steel sheet pile, by coating a joint part, a corner part and a flange part with a resin powder at first and subsequently coating a web part with said resin powder with a time lag before recovering the non-fused resin powder. CONSTITUTION:A resin powder sprinkling apparatus 10 is constituted by connecting a powder supply apparatus 11, the first powder supply port 12 for a joint part, a corner part and a flange part, the second powder supply port 12' for a web, a powder recovery apparatus 13 and a powder recovery port 14 by powder transport pipes 16', 16'', 16''' being powder recirculation means. In coating the concave surface of a steel sheet pile, a resin powder 17 is injected to the joint part, the corner part and the flange part at first by compressed air through the transport pipe 16' while the heated steel sheet pile 1 and the powder scattering apparatus 10 are relatively moved to coat said parts is subsequently injected to the web part through the transport pipe 16'' to coat the same. After a predetermined time, the non-fused resin powder remaining on the steel sheet pile 1 is sucked and recovered through a powder recovery part 14.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は鋼矢板の表面に有機樹脂の防食被覆を施す樹脂
粉体融着被覆鋼矢板の製造方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method and apparatus for manufacturing a resin powder fusion-coated steel sheet pile, which applies an anticorrosion coating of an organic resin to the surface of the steel sheet pile.

〈従来の技術〉 一般に鋼管杭、鋼管矢板、鋼矢板は、港湾、河川、海岸
などで構築物の構造や土砂の土留めの目的で使用されて
いる。これらの鋼材は、特に水面側では、河川水、廃水
、雨水、海水などの水や大気、太陽光などに曙され、ま
た流水、波浪あるいは流源物などの衝撃を受け、著しく
腐食を受けやすい状況にある。
<Prior Art> Generally, steel pipe piles, steel pipe sheet piles, and steel sheet piles are used for the purpose of constructing structures and retaining earth and sand in ports, rivers, coasts, etc. These steel materials, especially on the water surface, are exposed to water such as river water, wastewater, rainwater, seawater, the atmosphere, sunlight, etc., and are also subject to impact from running water, waves, or sources, and are extremely susceptible to corrosion. situation.

しかしながら、従来その効果的な腐食防止法がなく、無
機ジンク塗料やタール・エポキシ樹脂塗料による塗装、
エポキシ樹脂や不飽和ポリエステル樹脂によるFRP被
覆などによって腐食防止が図られてきたが、それらは機
械的強度、長期の耐久性等の点で、効果的な腐食防止法
ではなかった。
However, there is currently no effective corrosion prevention method, and painting with inorganic zinc paint or tar epoxy resin paint,
Corrosion prevention has been attempted by coating FRP with epoxy resin or unsaturated polyester resin, but these are not effective corrosion prevention methods in terms of mechanical strength, long-term durability, etc.

さらに、水中部の防食には従来から電気防食法が多く通
用されているが、干満帯や飛沫帯では効果的ではなく、
塗装に転っているが、その効果は前述のように十分では
ない。
Furthermore, cathodic protection methods have traditionally been widely used to prevent corrosion in underwater areas, but they are not effective in tidal zones or splash zones.
Painting has been applied, but the effect is not sufficient as mentioned above.

しかしその後、鋼管杭については、ラインパイプの防食
被覆技術を生かして、防食効果が高く耐久性の優れた被
覆材料であるポリオレフィン樹脂を押出成形したプラス
チック層を溶融状態で接着側を介して鋼管面上に密着さ
せる押出被覆法や、タール・ウレタン樹脂、ウレタンエ
ラストマー樹脂をエアーレススプレー塗装により鋼管表
面に被覆させる方法等によって、優れた防食被覆を有す
る製品が実用化され、性能、経済面で著しい改善がなさ
れた。
However, later on, steel pipe piles were developed by taking advantage of anti-corrosion coating technology for line pipes, and applying a plastic layer made by extruding polyolefin resin, which is a coating material with high anti-corrosion effects and excellent durability, to the steel pipe surface through the adhesive side in a molten state. Products with excellent anti-corrosion coatings have been put into practical use through methods such as extrusion coating methods in which the surfaces of steel pipes are coated with tar-urethane resins and urethane elastomer resins using airless spray coating, and they have achieved remarkable performance and economical benefits. Improvements have been made.

一方、鋼管矢板、鋼矢板については、爪部が両側に付い
ている等形状が複雑なため、前述の押出被覆法によるプ
ラスチック被覆ができず、タール・ウレタン樹脂、ウレ
タンエラストマー樹脂をエアーレススプレーにより被覆
する方法が適用され、著しい改善がなされた。
On the other hand, steel pipe sheet piles and steel sheet piles have complex shapes such as claws on both sides, so it is not possible to coat them with plastic using the extrusion coating method described above, so tar, urethane resin, and urethane elastomer resin can be coated with airless spray. A method of coating has been applied and significant improvements have been made.

〈発明が解決しようとする問題点〉 しかしながらエアーレススプレー法によるター”ルウレ
タン樹脂塗料やウレタンエラストマー樹脂塗料被覆は、
塗膜自体の吸水率が高く、ポリオレフィン系被覆に比較
してやや防食性に劣ることと、エアーレススプレー法で
は塗料の塗着効率は低く、塗料の飛散等の環境問題もあ
り、これらの欠点を改善する方法の出現が強く望まれて
いた。
<Problems to be solved by the invention> However, coating with tar urethane resin paint or urethane elastomer resin paint using the airless spray method is difficult.
The paint film itself has a high water absorption rate and is slightly inferior in corrosion resistance compared to polyolefin coatings, and the airless spray method has low paint transfer efficiency and environmental problems such as paint scattering. There was a strong desire for a method to improve this.

これらの欠点を解消すべく、鋼矢板に、架橋したポリエ
チレンシートをロールにより圧着被覆する方法として特
開昭59−224717号公報や特開昭59−2247
18号公報に開示されているが、これらには被覆時に気
泡を巻き込んだり、ポリエチレンシート圧着時にポリエ
チレンシートを変形させやすいという問題がある。
In order to eliminate these drawbacks, Japanese Patent Laid-Open No. 59-224717 and Japanese Patent Laid-Open No. 59-2247 disclose a method of applying a cross-linked polyethylene sheet to a steel sheet pile by pressure bonding with a roll.
Although these methods are disclosed in Japanese Patent No. 18, there are problems in that air bubbles are drawn in during coating, and the polyethylene sheet is easily deformed during pressure bonding.

また、樹脂粉体被覆法としては、流動浸漬法により鋼管
に全面塗装する方法が例えば特開昭59−42069号
公報等に、鋼管外面のみに塗装する方法が例えば特開昭
58−202073号公報等に開示され、鋼矢板に関し
ては片面に全面被覆する方法が例えば特開昭60−23
0848号公報に開示されているが、これにはポリオレ
フィン押しつけ時にポリオレフィンが変形するという問
題がある。
Furthermore, as a resin powder coating method, a method of coating the entire surface of a steel pipe by a fluidized dipping method is disclosed in, for example, Japanese Patent Application Laid-open No. 59-42069, and a method of coating only the outer surface of a steel pipe is described in, for example, Japanese Patent Application Laid-Open No. 58-202073. For steel sheet piles, a method of coating the entire surface on one side is disclosed in, for example, JP-A-60-23.
Although it is disclosed in Japanese Patent No. 0848, there is a problem that the polyolefin is deformed when the polyolefin is pressed.

また、特開昭60−223531号公報に開示されるよ
うに、鋼矢板を粉体の充填された槽内を通過させるか、
または流動槽内に鋼矢板を入れて過剰粉体を鋼矢板を反
転して回収する方法により被覆が可能であるが、この方
法では、鋼矢板凹面被覆において一度に粉体を鋼矢板に
被覆するために、ウェブ部で、凹面のため熱の対流が生
じ、ウェブ部の膜厚が、その他の部位に比較して大きく
なるという問題がある。
In addition, as disclosed in Japanese Patent Application Laid-open No. 60-223531, steel sheet piles may be passed through a tank filled with powder, or
Alternatively, it is possible to coat the steel sheet piles by putting them in a fluidized tank and collecting the excess powder by inverting the steel sheet piles, but in this method, the powder is coated on the steel sheet piles all at once in concave steel sheet pile coating. Therefore, there is a problem that heat convection occurs in the web part due to the concave surface, and the film thickness of the web part becomes larger than that of other parts.

本発明は上記のような事情に鑑みてなされたもので、上
述の問題点を解決し、鋼矢板の凹面に効率的かつ均一に
有機樹脂被覆を行うのに好適な樹脂粉体融着被覆鋼矢板
の製造方法および装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a resin powder fusion-coated steel suitable for solving the above-mentioned problems and efficiently and uniformly coating concave surfaces of steel sheet piles with organic resin. The object of the present invention is to provide a method and device for manufacturing sheet piles.

〈問題点を解決するための手段〉 本発明は、鋼矢板を脱錆、予熱した後、樹脂粉体融着を
行って、樹脂粉体融着被覆鋼矢板を製造するに際し、鋼
矢板に対し長手方向に相対的に移動する供給手段から樹
脂粉体を継手部、コーナ部、フランジ部に最初に供給撒
布した後、時間差を設けてウェブ部に樹脂粉体を供給撒
布し、後続して長手方向に前記供給手段と同一方向に相
対的に移動する回収手段からフランジ部、ウェブ部、継
手部、コーナ部の余剰樹脂粉体を回収することを特徴と
する被覆膜厚の均一な樹脂粉体融着被覆鋼矢板の製造方
法であり、 また、鋼矢板を脱錆、予熱した後、樹脂粉体融着を行っ
て樹脂粉体融着被覆鋼矢板を製造する装置であって、鋼
矢板の凹面の継手部、コーナ部、フランジ部に粉体供1
給する第1の粉体供給口と、ウェブ部に粉体供給する第
2の粉体供給口を鋼矢板長手方向に所定距離だけ離して
設けるとともに、前記第1と第2の供給口の間にウェブ
部とフランジ部を仕切る所定長さの型枠を設け、ウェブ
部を除く部分に先行して粉体供給できる粉体供給手段と
、鋼矢板の長手方向に前記第2の粉体供給口と所定間隔
離して配設された鋼矢板の凹面に沿う開口部を存した粉
体回収手段と、前記粉体供給手段と前記粉体回収手段の
間に配設され、粉体を循環させるための粉体循環手段と
、これら粉体供給手段、粉体回収手段および粉体循環手
段とを鋼矢板に対し相対的に移動可能とする駆動手段と
を有することを特徴とする被覆膜厚の均一な樹脂粉体融
着被覆鋼矢板の製造装置である。
<Means for Solving the Problems> The present invention provides a method for manufacturing resin powder fusion-coated steel sheet piles by derusting and preheating steel sheet piles, and then applying resin powder fusion bonding to the steel sheet piles. After first supplying and distributing resin powder to the joints, corners, and flange sections from a supply means that moves relatively in the longitudinal direction, the resin powder is supplied and dispersing to the web section with a time lag, and then the resin powder is supplied and distributed to the web section, and then the resin powder is supplied and distributed to the joint section, corner section, and flange section. Resin powder with a uniform coating film thickness, characterized in that excess resin powder at flange parts, web parts, joint parts, and corner parts is collected from a collection means that moves relatively in the same direction as the supply means. A method for producing steel sheet piles coated with body fusion bonding, and an apparatus for manufacturing steel sheet piles coated with resin powder bonding by derusting and preheating steel sheet piles, and then performing resin powder fusion bonding, the steel sheet piles Apply powder to the concave joints, corners, and flanges.
A first powder supply port for supplying powder to the web portion and a second powder supply port for supplying powder to the web portion are provided separated by a predetermined distance in the longitudinal direction of the steel sheet pile, and between the first and second supply ports. A formwork of a predetermined length is provided to partition the web part and the flange part, and a powder supplying means capable of supplying powder in advance to the part other than the web part, and the second powder supply port in the longitudinal direction of the steel sheet pile are provided. and a powder collection means having an opening along the concave surface of a steel sheet pile arranged to be separated by a predetermined distance from the powder supply means and the powder collection means, and arranged between the powder supply means and the powder collection means for circulating the powder. A method of reducing coating film thickness, characterized by having a powder circulation means, and a drive means that allows these powder supply means, powder collection means, and powder circulation means to be moved relative to the steel sheet pile. This is a manufacturing device for uniform resin powder fusion-coated steel sheet piles.

〈発明の構成〉 以下、本発明について、その好適な構成を図面に基づい
て説明する。
<Configuration of the Invention> Hereinafter, a preferred configuration of the present invention will be explained based on the drawings.

鋼矢板1は、第1図に示すように両側部が立ち上がり部
を形成し、この立ち上がり部の先端はそれぞれ爪部1a
 、 lbを形成している。
As shown in FIG. 1, the steel sheet pile 1 has rising parts on both sides, and the ends of the rising parts each have claw parts 1a.
, forming lb.

まず、鋼矢板1の被粉体融着面である凹面(第1図をシ
ョツトブラスト、サンドブラストや酸洗等の前処理を施
してミルスケールや錆等を除去した処理面に、好ましく
はクロム酸化合物2および/またはアクリル樹脂、ウレ
タン樹脂やエポキシ樹脂等からなるブライマー3を塗布
しておく。
First, the concave surface of the steel sheet pile 1 (see Figure 1), which is the surface to which the powder is fused, is pretreated with shot blasting, sandblasting, pickling, etc. to remove mill scale, rust, etc. A brimer 3 made of compound 2 and/or acrylic resin, urethane resin, epoxy resin, etc. is applied in advance.

この鋼矢板1を、図示しないインダクションヒーター、
電気炉、ガス炉等で200℃以上に加熱(予熱)し、こ
の加熱した鋼矢板1上に、後述するように樹脂粉体撒布
装置10を鋼矢板1に対し一定速度にて相対的に移動さ
せながら樹脂粉体17(第2図)を融着させる。ここで
、予熱温度を200℃以上としたのはラインの生産性か
ら、この程度が好ましく、さらに用いる樹脂粉体17の
種類に応じて加熱温度を選択すればよい。
This steel sheet pile 1 is connected to an induction heater (not shown),
The heated steel sheet pile 1 is heated (preheated) to 200° C. or higher using an electric furnace, gas furnace, etc., and a resin powder spreading device 10 is moved relative to the steel sheet pile 1 at a constant speed as described later. The resin powder 17 (FIG. 2) is fused while this is being carried out. Here, the reason why the preheating temperature is set to 200° C. or higher is preferably at this level from the viewpoint of line productivity, and the heating temperature may be selected depending on the type of resin powder 17 used.

樹脂粉体撒布装置10は、粉体供給手段である粉体供給
装置11および継手、コーナ、フランジ用の第1の粉体
供給口12とウェブ用の第2の粉体供給口12′ と、
粉体回収手段である粉体回収装置13および粉体回収口
14とが粉体循環手段である粉体輸送管16’  、1
6”  、16”にて連結されたもので、粉体供給装置
11と粉体回収装置13との間の輸送管16には粉体ふ
るい装置15を配設するのが好ましい。
The resin powder spreading device 10 includes a powder supply device 11 as a powder supply means, a first powder supply port 12 for joints, corners, and flanges, and a second powder supply port 12' for the web.
The powder recovery device 13, which is a powder recovery means, and the powder recovery port 14 are connected to a powder transport pipe 16', 1, which is a powder circulation means.
It is preferable that a powder sifting device 15 is disposed in the transport pipe 16 between the powder supply device 11 and the powder recovery device 13.

粉体供給口12 、12’ と粉体回収口14は、それ
ぞれ粉体輸送管16の前端と後端に配設され、継手部、
フランジ部、コーナ部へ粉体供給する供給口12とウェ
ブ部へ粉体供給する供給口12′ との間を間隔h (
m)離隔配設され、さらにウェブ部の粉体供給口12′
から粉体回収口14は間隔z (m)にて離隔配設され
ている。
The powder supply ports 12 and 12' and the powder recovery port 14 are arranged at the front end and rear end of the powder transport pipe 16, respectively, and the joint portion,
A gap h (
m) Powder supply port 12' in the web section, which is arranged at a distance;
The powder recovery ports 14 are spaced apart from each other by an interval z (m).

ここで、鋼矢板1の凹面被覆について、樹脂粉 一体撤
布装置10と樹脂粉体融着方法について説明する。
Here, regarding the concave surface coating of the steel sheet pile 1, the resin powder integrated removal device 10 and the resin powder fusion method will be described.

第3図ta+に示すように、樹脂粉体撒布装置10の粉
体供繕口12 、12’ は、粉体供給装置11に接続
された2本の粉体輸送管16’  、16”からそれぞ
れ分岐されたパイプ12a、  12b、  12c、
  12e、  12f。
As shown in FIG. 3 ta+, the powder supply ports 12 and 12' of the resin powder dispersing device 10 are connected to two powder transport pipes 16' and 16'' connected to the powder supply device 11, respectively. Branched pipes 12a, 12b, 12c,
12e, 12f.

12gおよび12a ’ の各先端が各々鋼矢板1の凹
面に間隔h(m)X!隔配置されて、拡開開口され、粉
体供給口12 、12’ を形成している。この各粉体
供給口12 、12’ は、鋼矢板の凹面から上方にわ
ずかに離隔されている。各粉体供給口12 、12’へ
の粉体の供給は、第4図に示すように鋼矢板の凹面に沿
って形成された粉体こぼれ防止型枠19が、各粉体供給
口を過ぎた時に2本の粉体輸送管16′。
The tips of 12g and 12a' are respectively placed on the concave surface of the steel sheet pile 1 at a distance h(m)X! The openings are spaced apart and widened to form powder supply ports 12 and 12'. Each powder supply port 12, 12' is slightly spaced upward from the concave surface of the steel sheet pile. Powder is supplied to each powder supply port 12, 12' by a powder spill prevention form 19 formed along the concave surface of the steel sheet pile, as shown in FIG. At the same time, two powder transport pipes 16' are used.

16″から供給される。また他端のこぼれ型枠19′が
、各粉体供給口をすぎた時粉体の供給は停止される。こ
の時、継手部、フランジ部、コーナ部に粉体供給する1
2a、  12b、  12c、  12e、  12
f。
16''. Also, when the spilling formwork 19' at the other end passes each powder supply port, the supply of powder is stopped. At this time, powder is supplied to the joint, flange, and corner. supply 1
2a, 12b, 12c, 12e, 12
f.

12gは、128′ に対しh / x分(x:移動速
度m7分)先に粉体供給される。さらにウェブ部の粉体
供給口128′ と所定間隔z  (m)を隔てて同一
形状の粉体回収口14が粉体輸送管16″に連設され、
この凹面から上方にわずかに離隔して配設される。また
、継手部、フランジ部、コーナ部へ供給された粉体は、
ウェブへ粉体がこぼれ落ちないように型枠20が第3図
に示すように設けられている。
12g is supplied as a powder h/x minutes (x: moving speed m7 minutes) earlier than 128'. Further, a powder recovery port 14 having the same shape as the powder supply port 128' of the web portion and a predetermined distance z (m) is connected to the powder transport pipe 16'',
It is arranged at a slight distance upward from this concave surface. In addition, the powder supplied to the joints, flanges, and corners is
A formwork 20 is provided as shown in FIG. 3 to prevent powder from spilling onto the web.

鋼矢板1の立ち上がり部外壁には、爪部1a。The outer wall of the rising portion of the steel sheet pile 1 has a claw portion 1a.

1bに接して断面り字形の型枠7.8が、例えば粘着テ
ープ等によって取付けられている。この型枠7゜8は、
樹脂粉体撒布装置10にて樹脂粉体17を供給する際、
この樹脂粉体17が下方にこぼれ落ちるのを防止するた
めのものである。
A formwork 7.8 having an angular cross-section is attached in contact with 1b using adhesive tape or the like, for example. This formwork 7°8 is
When supplying the resin powder 17 with the resin powder spraying device 10,
This is to prevent the resin powder 17 from spilling downward.

かかる形状の粉体供給口12 、12’ と粉体回収口
14とを有する樹脂粉体撒布装置10’を用いて有機樹
脂粉体17を鋼矢板1の凸面上に融着させるには、第2
図、第3図(alに示すように加熱した鋼矢板1の長さ
方向一端上方に樹脂粉体撒布装置10を位置させ、この
樹脂粉体撒布装置10を鋼矢板1の他端方向に、適当な
駆動手段(図示せず)によって移動速度x  m7分に
て移動させる。樹脂粉体撒布装置10を移動させないで
静止させ、鋼矢板lを例えばレール(図示せず)上に載
せ、x (m7分)にて移動させてもよく、要は樹脂粉
体撒布装置10と鋼矢板1とを相対的に移動速度x (
m7分)にて移動させるように構成すればよい。
In order to fuse the organic resin powder 17 onto the convex surface of the steel sheet pile 1 using the resin powder dispersing device 10' having the powder supply ports 12, 12' and the powder recovery port 14 having such a shape, the steps are as follows. 2
As shown in Fig. 3 (al), the resin powder spreading device 10 is positioned above one end in the length direction of the heated steel sheet pile 1, and the resin powder spreading device 10 is placed in the direction of the other end of the steel sheet pile 1. It is moved at a moving speed x m7 minutes by an appropriate drive means (not shown).The resin powder spraying device 10 is kept stationary without moving, and the steel sheet pile l is placed on, for example, a rail (not shown), and x ( The resin powder spraying device 10 and the steel sheet pile 1 may be moved at a relative moving speed x (
It may be configured to move at m7 minutes).

このように′鋼矢板1と粉体撒布装置10とを相対移動
させながら、粉体供給装置11に図示しない供給路から
供給された未使用の樹脂粉体17を、粉体輸送管16’
、16″を介して1.圧縮空気にて粉体供給口12 、
12’から鋼矢板1上に噴出塗布させる。
While relatively moving the steel sheet pile 1 and the powder spraying device 10 in this way, the unused resin powder 17 supplied to the powder supply device 11 from the supply path (not shown) is transferred to the powder transport pipe 16'.
, 16″ through 1. Powder supply port 12 with compressed air,
It is applied by spraying onto the steel sheet pile 1 from 12'.

z / x分後、粉体回収口14からは、粉体回収装置
13に内蔵された吸引ファン(図示せず)によって、鋼
矢板1に未融着の残った樹脂粉体17が吸い込まれ、鋼
矢板l上には融着された樹脂粉体融着被覆18が連続的
に形成される。
After z/x minutes, the resin powder 17 remaining unfused to the steel sheet pile 1 is sucked from the powder collection port 14 by a suction fan (not shown) built in the powder collection device 13. A resin powder fused coating 18 is continuously formed on the steel sheet pile l.

粉体回収口14から吸引、回収された樹脂粉体17は、
粉体輸送管16を経て粉体回収装置113から粉体ふる
い装置15へ送りこまれてふるいにかけられ、さらに粉
体供給装置11へ送られる。
The resin powder 17 sucked and collected from the powder collection port 14 is
The powder is sent from the powder recovery device 113 to the powder sieving device 15 via the powder transport pipe 16, sieved, and further sent to the powder supply device 11.

ここで、場合に応じて、前述の供給路から供給される未
使用の樹脂粉体17と混合され、あるいは回収された樹
脂粉体17のみが、粉体輸送管16′。
Here, depending on the case, only the unused resin powder 17 supplied from the above-mentioned supply path or the recovered resin powder 17 is mixed with the powder transport pipe 16'.

16′を経て粉体供給口12 、12’ から鋼矢板1
上に噴出塗布される。未使用の樹脂粉体17の供給は、
あらかじめ設定した粒度を超えるものが発生したり、熱
劣化等に応じて行えばよい。
16' and then the steel sheet pile 1 from the powder supply port 12 and 12'.
Sprayed on top. The supply of unused resin powder 17 is as follows:
This may be done in response to the occurrence of particles exceeding a preset particle size, thermal deterioration, etc.

これにより、樹脂粉体17を循環させて効率よく鋼矢板
1上に樹脂粉体融着被覆18を形成することができる(
第3図To)参照)。
Thereby, the resin powder 17 can be circulated to efficiently form the resin powder fused coating 18 on the steel sheet pile 1 (
(See Figure 3 To)).

この後、空冷、水冷等により40℃程度まで冷却する。Thereafter, it is cooled to about 40° C. by air cooling, water cooling, or the like.

ここで第3図fatに示すように、粉体供給口12゜1
2′ が鋼矢板1の凹面に平行に拡開開口されているこ
とにより被覆のむらが防止でき、型枠7.8゜19 、
19’ により樹脂粉体17の飛散が防止できる。
Here, as shown in Figure 3 fat, the powder supply port 12°1
2' is widened parallel to the concave surface of the steel sheet pile 1, which prevents uneven coating, and formwork 7.8°19,
19' can prevent the resin powder 17 from scattering.

なお、鋼矢FX1の凹面粉体供給口12 、12’ か
ら噴出塗布される樹脂粉体17を、最終的に形成される
融着被覆18の膜厚の3〜5倍以上の厚さにし、熱効率
よく融着被覆18を形成するのが好ましい。
In addition, the resin powder 17 sprayed and applied from the concave powder supply ports 12 and 12' of the Steel Arrow FX1 is made to have a thickness that is 3 to 5 times or more than the thickness of the fusion coating 18 that is finally formed. It is preferable to form the fusion coating 18 with good thermal efficiency.

また、あらかじめ予備実験等で、樹脂粉体融着被覆18
の所定膜厚を得るために鋼材表面温度、冷却温度等をそ
れぞれ設定した樹脂粉体17の鋼矢板1への接触時間を
y分とすると、z=xyの関係から、前述した相対移動
速度x  m7分に応じて、前記粉体供給口12と粉体
回収口14との間隔2およびyとをそ゛れぞれ適宜変え
てもよい。
In addition, in preliminary experiments etc., the resin powder fusion coating 18
If the contact time of the resin powder 17 with the steel sheet pile 1, for which the steel surface temperature, cooling temperature, etc. are set respectively, is y minutes in order to obtain a predetermined film thickness of , then from the relationship z=xy, the relative movement speed x The distance 2 and y between the powder supply port 12 and the powder recovery port 14 may be changed as appropriate depending on the m7 minutes.

次に、本発明に用いる樹脂粉体について述べる。Next, the resin powder used in the present invention will be described.

樹脂粉体としては、ポリエチレン、エチレン−酢酸ビニ
ル共重合体、エチレン−プロピレン共重合体、エチレン
−アクリルニトリル共重合体、ポリプロピレン、ポリ塩
化ビニル、ポリブテン、ポリエステル、ポリアミド、ポ
リエーテルケトン、ポリエーテルサルホン、PTFBな
どの含フン素樹脂粉体等の熱可望性樹脂があげらるにれ
らの有機樹脂粉体は、ポリオレフィン系の場合、無水マ
レイン酸、アクリル酸等で変性したポリオレフィンを一
層に塗布するが、あるいはこれらの上にさらに未変性の
ポリオレフィン粉体を重ね塗りして2層被覆としてもよ
い。
Examples of resin powder include polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-acrylonitrile copolymer, polypropylene, polyvinyl chloride, polybutene, polyester, polyamide, polyetherketone, polyethersal. In the case of polyolefin-based organic resin powders, thermoplastic resins such as fluorine-containing resin powders such as fluorine and PTFB are used. Alternatively, unmodified polyolefin powder may be further coated on top of these to form a two-layer coating.

前記有機樹脂粉体には、紫外線劣化防止剤、熱劣化防止
剤、カーボンブランクや着色顔料を使用し、接着剤を含
めた防食被覆の厚さは0.5mm以上とするのが好まし
い。0.5gm未満では、被覆にピンホールが発生する
危険があるからである。
It is preferable that an ultraviolet deterioration inhibitor, a heat deterioration inhibitor, a carbon blank, or a colored pigment be used in the organic resin powder, and the thickness of the anticorrosive coating including the adhesive is 0.5 mm or more. This is because if it is less than 0.5 gm, there is a risk that pinholes will occur in the coating.

また、有機樹脂粉体の粒度は50〜800 μmの範囲
がよく、好ましくは100〜450 μmがよい。粒度
が小さすぎると圧縮空気または自然落下により鋼矢板面
に供給する時、飛散が多く、塗布効率が低くなるのでコ
ストアップになる。一方粒度が大きすぎると、塗布効率
は良くなるが、粉体の溶融が不充分になりやすく、その
結果、被覆の表面が平滑になりにくい(噴量がある。
Further, the particle size of the organic resin powder is preferably in the range of 50 to 800 μm, preferably 100 to 450 μm. If the particle size is too small, there will be a lot of scattering when the powder is supplied to the steel sheet pile surface using compressed air or gravity, reducing coating efficiency and increasing costs. On the other hand, if the particle size is too large, the coating efficiency is improved, but the powder tends to be insufficiently melted, and as a result, the surface of the coating is difficult to achieve (there is a large amount of spray).

〈実施例〉 以下に、本発明の実施について説明する。なお、以下に
述べる第1〜2実施例にて用いる鋼矢板の凹面について
は、第5図に示すようにa −oの測定部位を設は樹脂
粉体融着被覆の膜厚と樹脂粉体の種類、凹面各部位との
関係を調べた。
<Example> The implementation of the present invention will be described below. In addition, regarding the concave surface of the steel sheet pile used in the first and second examples described below, the measurement points a - o were set as shown in Fig. 5, and the film thickness of the resin powder fusion coating and the resin powder We investigated the type of concavity and its relationship with each part of the concave surface.

[実施例1] 長さ5mの■型鋼矢板(寸法400w X 130h 
x13、Ot mm)の凹面をグリッドブラスト処理し
、クロメート処理剤(クロム酸化合物)を塗布した後鋼
矢板を100℃まで加熱し、エポキシプライマーを約3
0μm厚さにエアーレススプレー塗布し、さらに鋼矢板
を240℃まで予熱した。
[Example 1] 5m long ■-shaped steel sheet pile (dimensions 400w x 130h
After grid-blasting the concave surface of 13 mm x 13 Ot mm and applying a chromate treatment agent (chromic acid compound), the steel sheet pile was heated to 100℃, and an epoxy primer was applied to the
Airless spray coating was applied to a thickness of 0 μm, and the steel sheet pile was further preheated to 240°C.

その後、鋼矢板に継手部、コーナ部、フランジ部に先に
粉体供給されるよう粉体こぼれ防止用の型枠を取付け、
搬送ローラーで鋼矢板を1m/分の搬送速度で移動させ
ると共に、継手、コーナ、フランジ部への粉体供給口と
ウェブ部への粉体供給口との間隔を25cmとし、さら
にウェブ部の粉体供給口と粉体回収口との間隔を2mに
あらかじめ設定した樹脂粉体撒布装置にて、接着性ポリ
エチレン粉体(M I =3.0 、密度=0.925
 、融点=121℃、軟化点98℃、粒度100〜35
0 μm)を噴出塗布し、その後吸引回収する。鋼矢板
上の噴出塗布樹脂粉体の接触時間は2分間である。
After that, formwork to prevent powder spillage was attached to the steel sheet pile so that the powder was supplied to the joints, corners, and flanges first.
The steel sheet piles are moved at a transport speed of 1 m/min using transport rollers, and the distance between the powder supply ports to the joints, corners, and flanges and the powder supply ports to the web part is set to 25 cm, and the powder in the web part is Adhesive polyethylene powder (M I = 3.0, density = 0.925
, melting point = 121°C, softening point 98°C, particle size 100-35
0 μm) is spray applied and then collected by suction. The contact time of the spray-applied resin powder on the steel sheet pile is 2 minutes.

その後、鋼矢板の保有熱で鋼矢板上の粉体を表面まで完
全に融着し、空冷、続いて水冷し、平均膜厚2.5鶴の
凹面ポリエチレン被覆鋼矢板を得た。
Thereafter, the powder on the steel sheet pile was completely fused to the surface using the heat retained by the steel sheet pile, and the powder was cooled in air and subsequently in water to obtain a concave polyethylene-coated steel sheet pile with an average thickness of 2.5 mm.

この凹面ポリエチレン被覆の膜厚を電磁式膜厚計で第5
図に示す各部位a〜0ごとに測定したところ、第6図に
示すような結果を得た。
The film thickness of this concave polyethylene coating was measured using an electromagnetic film thickness meter.
When measurements were made for each site a to 0 shown in the figure, the results shown in FIG. 6 were obtained.

[実施例2コ 長さ5mの■型鋼矢板(寸法400w x 130h 
x 13.OLm)の凹面をグリッドブラスト処理し、
アクリルプライマーを約30μm塗布した後に鋼矢板を
260℃まで予熱した。
[Example 2] ■-shaped steel sheet pile with a length of 5 m (dimensions 400w x 130h)
x 13. Grid blasting the concave surface of OLm),
After applying an acrylic primer to a thickness of about 30 μm, the steel sheet pile was preheated to 260°C.

その後、鋼矢板に継手部、コーナ部、フランジ部に先に
粉体供給されるよう粉体こぼれ防止用の型枠を取付け、
搬送ローラで鋼矢板を1m/分の搬送速度で移動させる
と共に、継手、コーナ、フランジ部への粉体供給口とウ
ェブ部への粉体供給口との間隔を25cmとし、さらに
ウェブ部の粉体供給口と粉体回収口との間隔を1.5m
にあらかじめ設定した樹脂粉体撒布装置にて、ポリ塩化
ビニル樹脂粉体(粒度50〜150μm)を噴出塗布し
、その後吸引回収する。
After that, formwork to prevent powder spillage was attached to the steel sheet pile so that the powder was supplied to the joints, corners, and flanges first.
The steel sheet piles are moved at a transport speed of 1 m/min by transport rollers, and the distance between the powder supply ports to the joints, corners, and flanges and the powder supply ports to the web part is set to 25 cm, and the powder in the web part is The distance between the powder supply port and the powder collection port is 1.5m.
Polyvinyl chloride resin powder (particle size: 50 to 150 μm) is sprayed and applied using a resin powder spraying device set in advance, and then collected by suction.

鋼矢板上の噴出塗布樹脂粉体の接触時間は1.5分間で
ある。
The contact time of the jet-applied resin powder on the steel sheet pile is 1.5 minutes.

その後、鋼矢板の保有熱で鋼矢板上の粉体を表面まで完
全に融着し、空冷続いて水冷し、平均膜厚2.5fi厚
さの凹面ポリ塩化ビニル被覆鋼矢板を得た。
Thereafter, the powder on the steel sheet pile was completely fused to the surface by the heat retained by the steel sheet pile, and the powder was air-cooled and then water-cooled to obtain a concave polyvinyl chloride-coated steel sheet pile with an average film thickness of 2.5 fi.

この凹面ポリ塩化ビニル被覆の膜厚を電磁式膜厚計で第
5図に示す各部位a〜0ごとに測定したところ、第7図
に示すような結果を得た。
When the film thickness of this concave polyvinyl chloride coating was measured using an electromagnetic film thickness meter at each site a to 0 shown in FIG. 5, the results shown in FIG. 7 were obtained.

[比較例1] ポリエチレン粉体を充填した槽内に、260℃に予熱し
た鋼矢板を通過させて、鋼矢板の凹面にポリエチレン被
覆を施した。この凹面ポリエチレン被覆の膜厚を測定し
た結果を、第6図に併せて示した。
[Comparative Example 1] A steel sheet pile preheated to 260° C. was passed through a tank filled with polyethylene powder to coat the concave surface of the steel sheet pile with polyethylene. The results of measuring the film thickness of this concave polyethylene coating are also shown in FIG.

[比較例2] 塩化ポリビニル粉体を充填した槽内に、260℃に予熱
した鋼矢板を通過させて、鋼矢板の凹面にポリ塩化ビニ
ル被覆を施した。この凹面ポリ塩化ビニル被覆の膜厚を
測定した結果を、第7図に併せて示した。
[Comparative Example 2] A steel sheet pile preheated to 260° C. was passed through a tank filled with polyvinyl chloride powder to coat the concave surface of the steel sheet pile with polyvinyl chloride. The results of measuring the film thickness of this concave polyvinyl chloride coating are also shown in FIG.

〈発明の効果〉 以上詳述したように、本発明によれば、月矢板の凹面の
ウェブ部の熱の対流による膜厚変動がおさえられ、樹脂
粉体融着被覆がほぼ均一の厚さに施される。また実ライ
ン上でも高精度で効率よく樹脂粉体融着被覆を行うこと
ができるので、製造工程の簡略化や低コスト化等、生産
面の上でも育利である等の効果がある。
<Effects of the Invention> As described in detail above, according to the present invention, variations in film thickness due to heat convection on the concave web portion of the moon sheet pile are suppressed, and the resin powder fused coating has a substantially uniform thickness. administered. Further, since resin powder fusion coating can be performed efficiently and with high precision even on an actual line, there are effects such as simplification of the manufacturing process and cost reduction, which is advantageous in terms of production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、樹脂粉体融着被覆鋼矢板の被覆構成図、第2
図は、樹脂粉体撒布装置を用いて鋼矢板へ樹脂粉体融着
被覆をする方法を示す説明図、第3図(alは、鋼矢板
の凹面へ樹脂粉体融着被覆を施す場合の粉体供給口と鋼
矢板との関係を示す端面図、第3図ら)は、それによっ
て得られる樹脂粉体融着鋼矢板の端面図、第4図は、鋼
矢板の凹面被覆の際の粉体こぼれ防止用型枠の取付は状
態を示す斜視図、第5図は、本発明による鋼矢板の樹脂
粉体融着被覆厚測定部位を示す説明図、第6図は、本発
明によるポリエチレン被覆鋼矢板の凹面での各部位の膜
厚分布を示す図、第7図は、本発明によるポリ塩化ビニ
ル被覆鋼矢板の凹面での各部位の膜厚分布を示す図であ
る。 1・・・鋼矢板、 2・・・クロム酸化合物、3・・・
ブライマー、 ? 、 8.19.20・・・型 枠、
10・・・樹脂粉体撒布装置、 11・・・粉体供給装
置(粉体供給手段)、 12・・・粉体供給口(粉体供
給手段)、13・・・粉体回収装置(粉体回収手段)、
 14・・・粉体回収口(粉体回収手段)、 15・・
・粉体ふるい装置、16・・・粉体輸送管(粉体wXN
手段)、 17・・・樹脂粉体、 18・・・樹脂粉体
融着被覆 特許出願人    川崎製鉄株式会社 第  1  図 第  2  図 第  3  図 (a) (b) 第  4  図 第5図 第6図 測定部位
Figure 1 is a coating configuration diagram of resin powder fusion coated steel sheet pile, Figure 2
The figure is an explanatory diagram showing a method of applying resin powder fusion coating to steel sheet piles using a resin powder spraying device, and Figure 3 (al is an explanatory diagram showing the method of applying resin powder fusion coating to the concave surface of steel sheet piles). Figure 3) is an end view showing the relationship between the powder supply port and the steel sheet pile, and Figure 4 is an end view of the resulting resin powder-fused steel sheet pile. A perspective view showing the state of installation of the formwork for preventing body spillage, Fig. 5 is an explanatory view showing the resin powder fused coating thickness measurement site of the steel sheet pile according to the present invention, and Fig. 6 is a perspective view showing the installation state of the formwork for preventing body spillage. FIG. 7 is a diagram showing the film thickness distribution of each part on the concave surface of the steel sheet pile, and FIG. 7 is a diagram showing the film thickness distribution of each part on the concave surface of the polyvinyl chloride-coated steel sheet pile according to the present invention. 1... Steel sheet pile, 2... Chromic acid compound, 3...
Brimer, ? , 8.19.20... Formwork,
DESCRIPTION OF SYMBOLS 10...Resin powder spreading device, 11...Powder supply device (powder supply means), 12...Powder supply port (powder supply means), 13...Powder recovery device (powder supply means) body recovery means),
14...Powder collection port (powder collection means), 15...
・Powder sieving device, 16...Powder transport pipe (powder wXN
Means), 17...Resin powder, 18...Resin powder fusion coating Patent applicant Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 Figure 5 Figure 6 Measurement area

Claims (2)

【特許請求の範囲】[Claims] (1)鋼矢板を脱錆、予熱した後、樹脂粉体融着を行っ
て、樹脂粉体凹面被覆鋼矢板を製造するに際し、鋼矢板
に対し長手方向に相対的に移動する供給手段から樹脂粉
体を継手部、コーナ部、フランジ部に最初に供給撒布し
た後、時間差を設けてウェブ部に樹脂粉体を供給撒布し
、後続して長手方向に前記供給手段と同一方向に相対的
に移動する回収手段からフランジ部、ウェブ部、継手部
、コーナ部の余剰樹脂粉体を回収することを特徴とする
被覆膜厚の均一な樹脂粉体融着被覆鋼矢板の製造方法。
(1) After derusting and preheating the steel sheet piles, resin powder is fused to produce resin powder concave-coated steel sheet piles. After first supplying and distributing the powder to the joint, corner, and flange, the resin powder is supplied to the web at a time lag, and then the resin powder is applied to the web in the longitudinal direction relative to the supply means. A method for producing a resin powder fusion-coated steel sheet pile having a uniform coating thickness, the method comprising collecting excess resin powder from a flange portion, web portion, joint portion, and corner portion from a moving collection means.
(2)鋼矢板を脱錆、予熱した後、樹脂粉体融着を行っ
て樹脂粉体凹面被覆鋼矢板を製造する装置であって、鋼
矢板の凹面の継手部、コーナ部、フランジ部に粉体供給
する第1の粉体供給口と、ウェブ部に粉体供給する第2
の粉体供給口を鋼矢板長手方向に所定距離だけ離して設
けるとともに、前記第1と第2の供給口の間にウェブ部
とフランジ部を仕切る所定長さの型枠を設け、ウェブ部
を除く部分に先行して粉体供給できる粉体供給手段と、
鋼矢板の長手方向に前記第2の粉体供給口と所定間隔離
して配設された鋼矢板の凹面に沿う開口部を有した粉体
回収手段と、前記粉体供給手段と前記粉体回収手段の間
に配設され、粉体を循環させるための粉体循環手段と、
これら粉体供給手段、粉体回収手段および粉体循環手段
とを鋼矢板に対し相対的に移動可能とする駆動手段とを
有することを特徴とする被覆膜厚の均一な樹脂粉体融着
被覆鋼矢板の製造装置。
(2) A device for producing resin powder concave-coated steel sheet piles by derusting and preheating steel sheet piles, and then performing resin powder fusion on the concave joints, corners, and flanges of the steel sheet piles. A first powder supply port for supplying powder, and a second powder supply port for supplying powder to the web portion.
Powder supply ports are provided a predetermined distance apart in the longitudinal direction of the steel sheet piles, and a formwork of a predetermined length is provided between the first and second supply ports to partition the web portion and the flange portion, and the web portion is separated by a predetermined distance. a powder supply means capable of supplying powder in advance of the part to be removed;
A powder recovery means having an opening along the concave surface of the steel sheet pile, which is arranged to be separated from the second powder supply port by a predetermined distance in the longitudinal direction of the steel sheet pile, the powder supply means, and the powder recovery means. a powder circulation means disposed between the means for circulating the powder;
Resin powder fusion with a uniform coating thickness, characterized by having a drive means that allows these powder supply means, powder collection means, and powder circulation means to be moved relative to the steel sheet pile. Manufacturing equipment for coated steel sheet piles.
JP30529686A 1986-12-23 1986-12-23 Method and apparatus for preparing resin powder fused and coated steel sheet pile Pending JPS63158159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30529686A JPS63158159A (en) 1986-12-23 1986-12-23 Method and apparatus for preparing resin powder fused and coated steel sheet pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30529686A JPS63158159A (en) 1986-12-23 1986-12-23 Method and apparatus for preparing resin powder fused and coated steel sheet pile

Publications (1)

Publication Number Publication Date
JPS63158159A true JPS63158159A (en) 1988-07-01

Family

ID=17943390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30529686A Pending JPS63158159A (en) 1986-12-23 1986-12-23 Method and apparatus for preparing resin powder fused and coated steel sheet pile

Country Status (1)

Country Link
JP (1) JPS63158159A (en)

Similar Documents

Publication Publication Date Title
EP0445556B1 (en) Process for coating a metal strip with plastic powder
CA1259531A (en) Method and apparatus for applying metal cladding on surfaces and products formed thereby
EP0137663B1 (en) Impact resistant moisture impermeable resinous coating and method of applying same
US3904346A (en) Electrostatic powder coating process
CN105927802A (en) Inside-outside plastic-coated steel pipe and manufacturing process thereof
JPS62183887A (en) Manufacture of metallic pipe in continuous length and pipe manufacturing line thereof
CN1088489A (en) The coating process of can seam and device thereof
JPS63158159A (en) Method and apparatus for preparing resin powder fused and coated steel sheet pile
JPS63158161A (en) Method and apparatus for preparing resin powder fused and coated steel sheet pile
JPS62234573A (en) Method and device for producing steel sheet pile coated with fused resin powder
MXPA03006198A (en) Process for continuously and chromate free coating a pipe in a fluidized bed.
JP2997481B2 (en) Rust prevention coating method for reinforcing steel
JP6864935B1 (en) Manufacturing equipment and manufacturing method for painted coated steel
JPS6372377A (en) Preparation of steel material coated with polyolefin resin powder by fusion bonding
JPH10281389A (en) Heavy corrosion protective covering steel pipe and heavy corrosion protective covering steel pipe pile, and its manufacture and its manufacturing device
Lam et al. A new approach to high performance polyolefin coatings
JPS6027521A (en) Coating equipment of steel sheet pile
JPS5987074A (en) Plastic lining method for steel pipe
CN110328069A (en) Quick curing method and its device after belt steel surface electrostatic spraying powder
JPS59156471A (en) Application of rust-preventive material onto welded part of steel plate
JPH022624B2 (en)
JPS63171682A (en) Anticorrosive coating method for projecting side of steel sheet pile
RU2193456C2 (en) Method of cooling pipe provided with coat
JPS6171872A (en) Method and apparatus for coating seam welded joint of welded can
JPH10286909A (en) Steel pipe and steel-pipe pile with heavy-duty anti-corrosion coating, and its manufacture