JPS63157973A - Liquid chromatography - Google Patents

Liquid chromatography

Info

Publication number
JPS63157973A
JPS63157973A JP61305681A JP30568186A JPS63157973A JP S63157973 A JPS63157973 A JP S63157973A JP 61305681 A JP61305681 A JP 61305681A JP 30568186 A JP30568186 A JP 30568186A JP S63157973 A JPS63157973 A JP S63157973A
Authority
JP
Japan
Prior art keywords
particles
particle
carrier particles
coating layer
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61305681A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawasaki
力 川崎
Wataru Kobayashi
亘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP61305681A priority Critical patent/JPS63157973A/en
Publication of JPS63157973A publication Critical patent/JPS63157973A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and chromatographically separate a particle dispersed phase from a particle dispersion with a high accuracy, by filling and using carrier particles, having a specific particle size and coated with an apatite based compound as a coating layer as stationary phase adsorbent particles in a column. CONSTITUTION:The size of carrier particles (a) made of a material which is preferably glass, ceramic, metal or resin is adjusted to a particle size sufficient to chromatographically separate a particle dispersed phase from a particle dispersion, e.g. cell, organelle, etc., and an apatite based compound, preferably hydroxyapatite, fluoroapatite or chloroapatite is applied to the surfaces of the carrier particles (a) by spray, etc., to form a coating layer (b). The resultant carrier particles (a) as stationary phase adsorbent particles are then filled in a column to separate the above-mentioned particle dispersion by liquid chromatography. Thereby the particle dispersed phase is efficiently separated by chromatography with a high accuracy.

Description

【発明の詳細な説明】 イ、発明の目的 〔産業上の利用分野〕 本発明は、液体クロマトグラフィーに関する。[Detailed description of the invention] B. Purpose of the invention [Industrial application field] The present invention relates to liquid chromatography.

更に詳しくは細胞やオルガネラなどの粒子分散液(又は
懸濁液)からその粒子分散質を効果的にクロマト分離(
分取)することを可能とした手法に関する。
More specifically, it is possible to effectively chromatographically separate particle dispersoids from particle dispersions (or suspensions) of cells, organelles, etc.
Regarding the method that made it possible to perform preparative separation.

〔従来の技術〕[Conventional technology]

アパタイト系化合物は一般式M1゜(204) 6x2
の基本組成をもつ六方晶系P63/mに属する化合物で
ある。上記基本組成を倍にした単斜晶系P2./bとし
てとらえる場合もある。その具体的な代表化合物として
、M=Ca、Z= P、X=OH−?l’あるハイドロ
キシアパタイト(Hydroyyapatite、 C
a+o (PO4) 6 (OH)2 、六方晶系単位
格子=a A b =120°、aAc=bAc=90
°、 Ial=lbl=8.42人、 1cl= 6.
88人)、X=Fである7 ロー ノyアパタイト、X
=CIであるクロロアパタイト等が挙げられる。
Apatite compounds have the general formula M1゜(204) 6x2
It is a compound belonging to the hexagonal system P63/m with the basic composition of Monoclinic system P2 with double the above basic composition. /b. As specific representative compounds, M=Ca, Z=P, X=OH-? l' Hydroxyapatite (C
a+o (PO4) 6 (OH)2, hexagonal unit cell = a A b = 120°, aAc = bAc = 90
°, Ial=lbl=8.42 people, 1cl=6.
88 people), 7 low apatite, where X=F,
=CI, such as chloroapatite.

アパタイト系化合物は総じて優れた吸着性を有する。以
下代表的化合物であるハイドロキシアパタイト(HAp
と略記する)を具体例にして説明する。
Apatite compounds generally have excellent adsorption properties. Hydroxyapatite (HAp), a representative compound, is shown below.
(abbreviated as ) will be explained using a specific example.

HApIk子はカラムクロマトグラフィーの固定相吸着
剤(カラム内充填剤)として優れたクロマト分離能(物
質分離・展開能)を有し、該粒子を固定相吸着剤とする
クロマトグラフィー(HApクロマトグラフィー)は、
他の吸着剤例えばイオン交換樹脂・活性アルミナ・炭酸
カルシウムなどを用いる場合には困難であった、微細な
構造差を有する物質量の相互分離、例えば分子量104
〜109ダルトンの生体関連高分子(免疫グロブリン・
インターフェロン・酵素類等の蛋白質類、RNA・ D
NA拳プラスミド類の核酸類、ウィルス類など)につい
ても鋭敏・高精度に分取操作をすることが可能であり、
例えばバイオテクノロジー分野での遺伝子組換え、細胞
融合、細胞大量倍養法等により合成された各種の目的有
用物質の高純度分離精製等に不可欠な手段として活用さ
れるに至っている。
HApIk particles have excellent chromatographic separation ability (substance separation and development ability) as a stationary phase adsorbent (in-column packing material) for column chromatography, and chromatography using these particles as a stationary phase adsorbent (HAp chromatography) teeth,
Mutual separation of substances with minute structural differences, which was difficult when using other adsorbents such as ion exchange resins, activated alumina, and calcium carbonate, for example, molecular weight 104
~109 Dalton bio-relevant polymers (immunoglobulins,
Proteins such as interferon and enzymes, RNA/D
It is also possible to carry out preparative operations with sensitivity and high precision for nucleic acids such as NA-Fist plasmids, viruses, etc.
For example, in the field of biotechnology, it has come to be utilized as an indispensable means for high-purity separation and purification of various useful substances synthesized by genetic recombination, cell fusion, cell mass cultivation, etc.

HAp粒子としては下記のような各種タイプがある。There are various types of HAp particles as shown below.

(1)Aタイプ チゼリウス式製造法(A、 Ti5elius、 S、
 Hjert図、132(+!35B))で得たHAp
結晶粒子、即ちブルスハイト結晶粒子(Brushit
e:GaHPO4m 2H20)を出発物質として該結
晶を水中に懸濁してアルカリを作用させることにより生
成させたHAp結晶粒子であり、出発物質たるプルスハ
イト結晶粒子の形状を実質的にそのまま引き継いだ1通
常厚さ1〜3Bm、平均直径(長軸方向)数1107z
程度の板状もしくは鱗片状の実質的に単結晶の粒子であ
る。
(1) A type Ti5elius manufacturing method (A, Ti5elius, S,
HAp obtained with Hjert diagram, 132 (+!35B))
Crystal grains, namely brushheit crystal grains (Brushite crystal grains)
e: HAp crystal particles produced from GaHPO4m2H20) as a starting material by suspending the crystals in water and reacting with an alkali, and having a normal thickness of 1, which substantially inherits the shape of the starting material, the purushite crystal particles. Size 1-3Bm, average diameter (long axis direction) number 1107z
They are substantially single-crystal particles that are somewhat plate-like or scale-like.

(2)Bタイプ HAp微細結晶−次粒子を凝集させた二次粒子。(2) B type HAp microcrystal-secondary particles that are aggregated secondary particles.

このタイプの粒子は一般に下記のような要領で製造され
る。即ちGa(OH)2. CaCl2 、 Ca (
NO3) 2、Ca (CH3000) 2などc7)
Ca塩水溶液又は懸濁液と、NH4I 2PO4、(N
H4) 2  HPO4、H3PO4などのP04塩水
溶液とを塩基性条件下で混合する。そうすると通常0.
17Lm以下の微細なHAp−次結晶粒子が生成する。
This type of particle is generally produced as follows. That is, Ga(OH)2. CaCl2, Ca (
NO3) 2, Ca (CH3000) 2, etc.c7)
Ca salt aqueous solution or suspension and NH4I 2PO4, (N
H4) 2 Mix with an aqueous P04 salt solution such as HPO4 or H3PO4 under basic conditions. Then it is usually 0.
Fine HAp-order crystal particles of 17 Lm or less are produced.

その−次粒子懸濁液をスプレー乾燥処理することにより
HAp−次粒子が乾燥凝集した直径1〜10ILm程度
の実質的に球状の二次粒子体が得られる。
By spray-drying the secondary particle suspension, substantially spherical secondary particles having a diameter of about 1 to 10 ILm are obtained by drying and aggregating the HAp secondary particles.

(3)Cタイプ 本出願人の先の提案(特願昭81−181188号)に
係る製造法により得られるHApの実質的に単結晶の粒
子。即ちプルスハイト結晶粒子を出発物質とし、これを
一旦脱水相転移温度以上〜分解温度以下の範囲で加熱し
てモネタイト結晶粒子(Monetite:GaHPO
4)に脱水相転移させ、それにアルカリを作用させてH
Apの実質的に単結晶の粒子を生成させる。これにより
得られるHAp粒子は出発物質たる比較的大型の板状も
しくは鱗片状のプルスハイト結晶粒子が脱水相転移によ
りモネタイトに相転移したときの内部歪み力で結晶体面
内で数μm程度の大きさの細片に自然に砕は状態となっ
た厚さ1〜3gm、直径数μmの全体的に大きさ・形の
揃ったもので、前記AタイプのHAp粒子即ち出発物質
たるプルスハイト結晶粒子の大きさ争形をそのまま引き
継いだ形態の板状もしくは鱗片状粒子よりも大きさ・形
のバラツキ幅が小さく、該Aタイプのものよりもクロマ
トグラフィー用吸着剤として優れる。
(3) Type C Substantially single-crystal particles of HAp obtained by the production method according to the applicant's previous proposal (Japanese Patent Application No. 81-181188). That is, prusheite crystal particles are used as a starting material, and this is heated in a range from above the dehydration phase transition temperature to below the decomposition temperature to form monetite crystal particles (Monetite: GaHPO
4) is subjected to dehydration phase transition, and alkali is applied to it to transform H
Substantially single crystal particles of Ap are produced. The HAp particles obtained in this way are formed into particles with a size of several μm within the plane of the crystal due to the internal strain force when the relatively large plate-like or scale-like purusheit crystal particles, which are the starting material, undergo a phase transition to monetite due to dehydration phase transition. They are naturally crushed into small pieces with a thickness of 1 to 3 gm and a diameter of several μm, and have an overall uniform size and shape, and are the same size as the above-mentioned type A HAp particles, that is, the pruscite crystal particles that are the starting material. The variation in size and shape is smaller than that of the plate-like or scale-like particles that inherited the same type A type, and it is superior as an adsorbent for chromatography than the A type.

プルスハイト結晶粒子を脱水相転移処理して予め生産し
たモネタイト結晶粒子、又は既存のモネタイト結晶粒子
、若しくはブルスハイトからモネタイトへ至る中間体物
質粒子であって全体的に大きさ・形の揃った、或は揃う
ように処置したものを出発物質として、それにアルカリ
を作用させて得るようにしてもよい。
monetite crystal particles pre-produced by dehydration phase transition treatment of bullshite crystal particles, existing monetite crystal particles, or intermediate material particles from bullshite to monetite that are uniform in size and shape as a whole, or It may be obtained by treating the starting material so that it is uniform and treating it with an alkali.

(4)Dタイプ 本出願人の先の提案(特願昭81−49888号)に係
る焼成結合HAp粒子。即ち前記Bタイプの凝集二次粒
子を更に約300℃以上〜分解温度以下の温度で加熱焼
成したもので、−次粒子相互が強固に結合して耐圧力崩
壊性に優れる。
(4) Type D sintered bonded HAp particles according to the applicant's previous proposal (Japanese Patent Application No. 81-49888). That is, the agglomerated secondary particles of the B type are further heated and calcined at a temperature of about 300° C. or above and below the decomposition temperature, and the secondary particles are strongly bonded to each other and have excellent pressure collapse resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

クロマト分離操作する原料液に含まれる目的物質が分子
オーダで溶存しているものである場合には上記各種の7
パタイト化合物粒子は何れもその溶存する目的物質をク
ロマト分離するための固定相吸着剤として有効に利用で
きる。
If the target substance contained in the raw material liquid to be subjected to chromatographic separation is dissolved in molecular order, the above 7.
Patite compound particles can be effectively used as a stationary phase adsorbent for chromatographically separating the target substance dissolved therein.

目的物質が分子オーダ以上の比較的大径の単体もしくは
凝集粒子として分散している粒子分散液(又は懸濁液)
、例えば数#Lmオーダの細胞の分散液や〜0.1pm
オーグのオルガネラの分散液などである場合にはそれ等
の粒子分散質を高精度・能率的にクロマト分離させるた
めには固定相吸着剤としての粒子はそれ等の分散質粒子
よりもはるかに大径の粒子、例えば5071mとか10
0gm、或はそれ以上の大径粒子であることが必要であ
る(細胞やオルガネラ等はカラムのフィルタを通過し、
固定相吸着剤粒子はフィルタを通過しないことが必要)
A particle dispersion (or suspension) in which the target substance is dispersed as single or aggregated particles with a relatively large diameter of molecular order or more.
, for example, a dispersion of cells on the order of several #Lm or ~0.1 pm.
In the case of dispersions of organelles, etc., in order to perform chromatographic separation of these particle dispersoids with high precision and efficiency, the particles used as a stationary phase adsorbent must be much larger than the dispersoid particles. Particles of diameter, for example 5071m or 10
It is necessary to have large-diameter particles of 0 gm or more (cells, organelles, etc. pass through the filter of the column,
Stationary phase adsorbent particles must not pass through the filter)
.

ところが上記各種の7パタイト化合物粒子は平均粒径数
gmオーダのものを主体とするものであるから分散液の
粒子分散質を高精度・能率的にクロマト分離させるには
粒径的に小さくて適格性がなく、実際上細胞やオルガネ
ラ等のクロマト分離は不能である。
However, since the various heppatite compound particles mentioned above mainly have an average particle size on the order of several gm, they are small in size and suitable for chromatographic separation of particle dispersoids in a dispersion liquid with high precision and efficiency. chromatographic separation of cells, organelles, etc. is practically impossible.

本発明は用いる固定相吸着剤粒子に工夫を加えて、細胞
やオルガネラなどの粒子分散液からその粒子分散質を液
体クロマトグラフィーにより高精度・能率的にクロマト
分離することができるようにしたものである。
In the present invention, the stationary phase adsorbent particles used are modified to enable highly accurate and efficient chromatographic separation of particle dispersoids from a particle dispersion of cells, organelles, etc. using liquid chromatography. be.

口、発明の構成 〔問題点を解決するための手段〕 本発明は、細胞やオルガネラなどの粒子分散液からその
粒子分散質を液体クロマトグラフィーにより分離するに
当り、カラムに充填使用する固定相吸着剤粒子として、
担体粒子の表面にアパタイト系化合物を被覆層として担
持させてなり、且つ担体粒子の大きさを選定して全体の
粒径な前記粒子分散質をクロマト分離するに十分な大き
さの粒径に調製した粒子を使用する、ことを特徴とする
液体クロマトグラフィー要旨とする。
Summary: Structure of the Invention [Means for Solving Problems] The present invention is directed to a stationary phase adsorption system packed in a column and used in separating particle dispersoids from particle dispersions such as cells and organelles by liquid chromatography. As agent particles,
An apatite-based compound is supported as a coating layer on the surface of carrier particles, and the size of the carrier particles is selected to have a particle size large enough to chromatographically separate the particle dispersoid with the overall particle size. The gist of liquid chromatography is that it uses particles of

〔作 用〕[For production]

上記のアパタイト系化合物被覆形の吸着剤粒子の形状争
大きさは核として使用する担体粒子の形状・大きさに略
対応したものとなる。従って担体粒子として所望の形状
・大きさのものを使用することによりそれに略対応した
球形等の所望の形状で、且つ所望の大きさ、例えば50
gmとか100 gmとか、或はそれ以上の所望の大粒
径で、しかも粒径のバラツキ範囲が狭く、形状・大きさ
が実質的に揃った吸着剤粒子としての7パタイト系化合
物粒子を自由に調整して得ることができる。
The shape and size of the adsorbent particles coated with the apatite compound described above approximately correspond to the shape and size of the carrier particles used as the core. Therefore, by using carrier particles of a desired shape and size, it is possible to obtain a desired shape such as a spherical shape approximately corresponding to the carrier particle and a desired size, for example, 50 mm.
gm, 100 gm, or more, with a narrow range of variation in particle size, and virtually uniform shape and size. You can get it by adjusting.

従って、原料液が細胞やオルガネラ等の粒子分散液であ
る場合において、その粒子分散質をクロマト分離するた
めに粒径的に十分に適合した所望大粒径の吸着剤粒子を
容易に調製して使用できるから、該粒子分散質を液体ク
ロマトグラフィーにより高精度・能率的にクロマト分離
(分取)することが可能となる。
Therefore, when the raw material liquid is a particle dispersion of cells, organelles, etc., it is possible to easily prepare adsorbent particles with a desired large particle size that is sufficiently compatible in terms of particle size in order to chromatographically separate the particle dispersoid. Since it can be used, it becomes possible to chromatographically separate (fractionate) the particle dispersoid with high precision and efficiency by liquid chromatography.

核としての担体粒子を耐圧力崩壊性を有するものにする
ことにより大容量カラム内に大量に充填使用しても圧力
崩壊せず、カラム内全体の所定の流体流通性が長期にわ
たって安定に保持される。
By making the carrier particles as the core resistant to pressure collapse, the pressure does not collapse even when used in large quantities in a large-capacity column, and the specified fluid flowability throughout the column is stably maintained over a long period of time. Ru.

有効成分たるアパタイト系化合約分は核としての担体粒
子表面の被覆層分だけで足り、担体粒子分を含む全体体
積との量比は少く、有効成分たるアパタイト系化合物の
使用量を大幅に少なくすることができ、安価に量産する
ことができる。従って実験室的にも工業的にも低コスト
にクロマト分離操作を実行することが可能となる。
The amount of the apatite compound that is the active ingredient is only the coating layer on the surface of the carrier particle as a core, and the ratio to the total volume including the carrier particle is small, so the amount of the apatite compound that is the active ingredient used is significantly reduced. It can be mass-produced at low cost. Therefore, it becomes possible to carry out chromatographic separation operations at low cost both in the laboratory and industrially.

〔実施例〕〔Example〕

第1図は球形の担体粒子aと、該担体粒子の表面を覆っ
て固着しているアパタイト系化合物の被覆層すとからな
る吸着剤粒子の一部切欠き拡大模型図である。
FIG. 1 is an enlarged partially cutaway schematic diagram of an adsorbent particle consisting of a spherical carrier particle a and a coating layer of an apatite compound that covers and adheres to the surface of the carrier particle.

担体粒子aは耐圧力崩壊性を有する5例えばガラス、セ
ラミック、金属、樹脂などを所望の形状会大きさの担体
粒子として加工製造したものである。分級した砂粒−砂
鉄・小石など耐圧力崩壊性を有する天然粒状物も利用し
得る。
The carrier particles a are produced by processing a material having pressure collapse resistance, such as glass, ceramic, metal, resin, etc., into carrier particles having a desired shape and size. Natural granules that are resistant to pressure collapse, such as classified sand grains, iron sand, and pebbles, can also be used.

被覆層すたるアパタイト系化合物はハイドロキシアパタ
イト、フロールアパタイト、クロロアパタイト等である
The apatite compound that forms the coating layer includes hydroxyapatite, fluorapatite, chloroapatite, and the like.

担体粒子&の表面に対するアパタイト系化合物被覆層す
の形成は種々の方法で行うことができる。
The apatite compound coating layer can be formed on the surface of the carrier particles by various methods.

例1 例えば0.1 #Lmφオーダのアパタイト系化合物微
粉末の適当濃度の懸濁液を5Qpmφとか100 ルm
φ等の所望形状−大きさの担体粒子に対してスプレー処
理して付着・乾燥させる。これにより担体粒子aの表面
にアパタイト系化合物微粉末の凝集固着被覆層すが形成
される。
Example 1 For example, a suspension of an appropriate concentration of apatite compound fine powder on the order of 0.1 #Lmφ is 5Qpmφ or 100 lm
Carrier particles of a desired shape and size, such as φ, are sprayed to adhere and dry. As a result, an agglomerated and fixed coating layer of fine apatite compound powder is formed on the surface of the carrier particles a.

例2 例1において被覆層すの担体粒子aの表面への固着力、
被覆層すを構成するアパタイト系化合物微粉末相互の凝
集固化力を増強するために、担体粒子aにスプレーする
アパタイト系化合物微粉末の懸濁液中に適当なバインダ
剤を適当濃度で溶存させておくこともできる。
Example 2 In Example 1, the adhesion force of the coating layer to the surface of carrier particles a,
In order to enhance the mutual coagulation and solidification power of the apatite compound fine powder constituting the coating layer, an appropriate binder agent is dissolved at an appropriate concentration in the suspension of the apatite compound fine powder to be sprayed onto the carrier particles a. You can also leave it there.

例3 例1・例2においてアパタイト系化合物微粉末の凝集固
着被覆層すを形成した担体粒子aを更に加熱炉等で適当
な温度でシンター(焼成)処理する。これにより担体粒
子8表面に被覆層すが焼付き的に付着し、又被覆層すを
構成するアパタイト系化合物微粉末相互も焼き固められ
て被覆層の機械的強度が向上する。
Example 3 The carrier particles a on which the agglomerated and fixed coating layer of fine apatite compound powder was formed in Examples 1 and 2 are further sintered (fired) in a heating furnace or the like at an appropriate temperature. As a result, the coating layer adheres to the surface of the carrier particles 8 in a baking manner, and the apatite compound fine powder constituting the coating layer is also baked and solidified, thereby improving the mechanical strength of the coating layer.

例4 担体粒子8表面に対して適当濃度の接着剤液をスプレー
・浸漬等で適用して接着剤液で濡らし状態にし、次いで
乾燥状態のアパタイト系化合物微粉末をまぶして被覆層
すとして付着させ、乾燥する。更には例3のようにシン
ター処理する。
Example 4 An adhesive liquid of an appropriate concentration is applied to the surface of the carrier particles 8 by spraying or dipping to wet the surface with the adhesive liquid, and then a dry apatite compound fine powder is sprinkled on the surface to form a coating layer. ,dry. Furthermore, sinter processing is performed as in Example 3.

アパタイト系化合物の微粉末はハイドロキシアパタイト
では前述BタイプのCa塩とPO4塩の化学反応により
生成される微細な一次結晶粒子を利用することができる
。A−Dタイプの粒子の微細分を分級して利用すること
もできる。大径粒子を微粉に砕き処理して使用すること
もできる。
For the fine powder of the apatite compound, in the case of hydroxyapatite, fine primary crystal particles produced by the chemical reaction of the above-mentioned B type Ca salt and PO4 salt can be used. It is also possible to classify and utilize fine fractions of A-D type particles. Large particles can also be used after being crushed into fine powder.

担体粒子aの表面に形成するアパタイト系化合物被覆層
すの層厚は薄いものでよく、例えば担体粒子aの粒径の
1/lO以下でも実用に十分に供し得る。
The thickness of the apatite compound coating layer formed on the surface of the carrier particles a may be thin; for example, a thickness of 1/1O or less of the particle size of the carrier particles a may be sufficient for practical use.

担体粒子aは球形に限らず、立方体O直方体・板状・円
柱体Φ円錐体・角錐体・鯖片状令イガ状体など任意の形
状にすることができる。
The carrier particles a are not limited to a spherical shape, but can be in any shape such as a cube, a rectangular parallelepiped, a plate, a cylinder, a cone, a pyramid, a mackerel-like shape, and a bur-like shape.

実施例1 A、固定相用吸着剤粒子の調製 担体粒子aとして平均粒径1100JLの粒度バラツキ
範囲の小さい球形ガラスピーズを用いた。これにCa 
(OH) 2 とNH4H2PO4とより生成した、微
細で実質的に格子欠陥のない即ちストイキオメトリツク
(Stoichiometric)なハイドロキシアバ
タイ)(HAp)結晶粒子の懸濁水(HAp結晶粒子径
0.1gmオーダ、懸濁濃度1.65%)をスプレー処
理して乾燥することにより個々の球形ガラスピーズの外
表面にHAp微粉末の薄い(層厚l〜2ILm程度)凝
集固着被覆層すを形成した。次いで該被覆層すを形成し
た球形ガラスピーズaを電気炉に入れて650°C・3
0分間加熱処理した。これにより被覆層すが担体粒子a
たる球形ガラスピーズの表面に焼付き的に強固に付着し
、又被覆層すを構成するHAp微粉末相互も強固に結合
化状態となった、大粒径の被覆形吸着剤粒子を簡単に得
ることができた。
Example 1 A. Preparation of adsorbent particles for stationary phase As carrier particles a, spherical glass beads with an average particle size of 1100 JL and a small particle size variation range were used. In this Ca
(OH) 2 and NH4H2PO4, a suspension of fine, substantially lattice defect-free, ie, stoichiometric (HAp) crystal particles (HAp crystal particle size on the order of 0.1 gm, A thin (layer thickness of about 1 to 2 IL m) cohesive and fixed coating layer of fine HAp powder was formed on the outer surface of each spherical glass beads by spraying and drying a suspension of 1.65% (suspension concentration: 1.65%). Next, the spherical glass beads a with the coating layer formed thereon were placed in an electric furnace at 650°C.
Heat treatment was performed for 0 minutes. As a result, the coating layer is covered with carrier particles a.
Easily obtain large-sized coated adsorbent particles that firmly adhere to the surface of barrel-shaped spherical glass beads in a seizing manner, and also firmly bond the HAp fine powder constituting the coating layer to each other. I was able to do that.

B、クロマト分離 上記Aで調製した吸着剤粒子を固定相(カラム内充填剤
)として使用してウサギ赤血球の等張懸濁液(サンプル
)からの赤血球クロマト分離を下記のような条件で実行
した。第2図はそれにより得たクロマトグラムである。
B. Chromatographic separation Using the adsorbent particles prepared in A above as the stationary phase (column packing material), chromatographic separation of red blood cells from an isotonic suspension (sample) of rabbit red blood cells was performed under the following conditions. . FIG. 2 is a chromatogram obtained thereby.

■カラム:内径6■、吸着剤充填有効長33cm、lQ
Q#Lmフィルタ ■サンプル:ウサギの赤血球原液0.3ml■検定:流
量= 1.0ml /win、圧力= 1.5kg/c
m2■緩衝液: 10−3MKP(KユHPO4、KH
2PO4の等モル混合液) 、 0.9%NaCl 第2図のクロマトグラムにおいて横軸のフラクション(
fraction、分画)4は装置スタートS→8.5
ml後から8.5mJL後まで(中心7.5n+J1 
) 、フラクション11はスタートS→2(1,5mj
2後から22.5m文後まで(中心21.5m文)の部
分を示した。
■Column: Inner diameter 6■, adsorbent filling effective length 33cm, lQ
Q#Lm filter Sample: Rabbit red blood cell stock solution 0.3ml Test: flow rate = 1.0ml/win, pressure = 1.5kg/c
m2 ■ Buffer: 10-3MKP (KyuHPO4, KH
Equimolar mixture of 2PO4), 0.9% NaCl In the chromatogram in Figure 2, the fraction on the horizontal axis (
fraction, fraction) 4 is device start S → 8.5
From after ml to after 8.5mJL (center 7.5n+J1
), fraction 11 is start S → 2 (1,5 mj
The part from after 2 to 22.5m sentence (center 21.5m sentence) is shown.

C1再クロマト分1111 (1) 第3図は上記第2図のクロマトグラムにおけるフラクシ
ョン4部分を下記のような条件で再クロマト分離して得
たクロマトグラムである。
C1 rechromatogram 1111 (1) FIG. 3 is a chromatogram obtained by rechromatographically separating fraction 4 in the chromatogram shown in FIG. 2 above under the following conditions.

■カラム:前記Bの■と同じ、充填固定相も同じ。■Column: Same as ■ in B above, packed stationary phase is also the same.

■サンプル=4分画1.8m文 ■検定二流量= 1.hu /l1in、圧力= 1.
5kg/cm2■緩衝液: 10−2MKP 、 0.
9%NaCID、再りロマト分#(2) 第4図は前記第2図のクロマトグラムにおけるフラクシ
ョン11部分を下記のような条件で再クロマト分離して
得たクロマトグラムである。
■Sample = 4 fractions 1.8m ■Certification 2 flow rate = 1. hu/l1in, pressure=1.
5kg/cm2 Buffer: 10-2MKP, 0.
9% NaCID, rechromatogram #(2) FIG. 4 is a chromatogram obtained by rechromatographically separating fraction 11 in the chromatogram shown in FIG. 2 under the following conditions.

■カラム:前記Bの■と同じ、充填固定相も同じ。■Column: Same as ■ in B above, packed stationary phase is also the same.

■サンプル:11分画1.81文 ■検定二流量= 1.(141/win、圧力= 1.
5kg/cm2■緩衝液:前記Bの■と同じ。
■Sample: 11 fractions 1.81 sentences ■Certification 2 flow rate = 1. (141/win, pressure = 1.
5kg/cm2 ■ Buffer: Same as B above.

実施例2 A、固定相用吸着剤粒子・の調製 担体粒子aとして平均粒径50ILmの粒バラツキ範囲
の小さい球形ガラスピーズを用い、他は実施例1のAと
同様の要領で被覆形吸着剤粒子を調製した。
Example 2 A. Preparation of adsorbent particles for stationary phase A coated adsorbent was prepared in the same manner as in Example 1 A except that spherical glass beads with an average particle size of 50 ILm and a small particle variation range were used as carrier particles a. Particles were prepared.

B、クロマト分離 上記Aで調製した吸着剤粒子を固定相として使用して a、ウシ血清アルブミン(BSA、bovine 5e
ru+w alb冒1n) b、リゾチーム(lysozyme) C,チトクロームc (cytochro+*e c)
以上a−cの3種混合懸濁液のクロマト分離を下記のよ
うな条件で実行した。第5図はそれにより得たクロマト
グラムである。
B. Chromatographic separation using the adsorbent particles prepared in A above as the stationary phase a. Bovine serum albumin (BSA, bovine 5e)
ru+w alb affected 1n) b, lysozyme C, cytochrome c (cytochro+*e c)
Chromatographic separation of the mixed suspension of the three species a to c above was carried out under the following conditions. FIG. 5 is a chromatogram obtained thereby.

■カラム:内径6■璽、吸着剤充填有効長33cm、フ
ィルタ5ILm ■サンプル:濃度比、BSA :リゾチーム:チトクロ
ームCの混合液0.5閣文 ■検定二流量= 0.5mJll /win、圧力= 
1kg/am2■緩衝液: KP、初期濃度を1O−3
として傾き3.5IIIMII1文の線形グラジェント
を形成させる。
■Column: Inner diameter 6 ■Silver, effective length filled with adsorbent 33cm, filter 5ILm ■Sample: Concentration ratio, BSA:Lysozyme:Cytochrome C mixture 0.5mm ■Certification flow rate = 0.5mJll /win, Pressure =
1kg/am2 Buffer: KP, initial concentration 1O-3
A linear gradient with a slope of 3.5IIIMII1 is formed.

ハ、発明の効果 以上のように本発明に依れば、液体クロマトグラフィー
により細胞やオルガネラなどの粒子分散液からその粒子
分散質を高精度・能率的にクロマト分離(分取)するこ
とが可能となるもので、所期の目的がよく達成される。
C. Effects of the Invention As described above, according to the present invention, it is possible to chromatographically separate (preparate) particle dispersoids from a particle dispersion of cells, organelles, etc. with high precision and efficiency using liquid chromatography. As a result, the intended purpose is well achieved.

【図面の簡単な説明】 第1図は本発明で用いる吸着剤粒子の構造模型図、第2
図乃至第5図は夫々実施例で実行したクロマト分離操作
で得られたクロマトグラムである。 aは担体、bはその表面のアパタイト系化合物被覆層。 uJu’IL7)DaコUDqJO5qD○
[Brief explanation of the drawings] Figure 1 is a structural model diagram of adsorbent particles used in the present invention, Figure 2 is a structural model diagram of adsorbent particles used in the present invention,
Figures 5 to 5 are chromatograms obtained in the chromatographic separation operations carried out in Examples. a is a carrier, and b is an apatite compound coating layer on the surface thereof. uJu'IL7) DakoUDqJO5qD○

Claims (3)

【特許請求の範囲】[Claims] (1)細胞やオルガネラなどの粒子分散液からその粒子
分散質を液体クロマトグラフィーにより分離するに当り
、 カラムに充填使用する固定相吸着剤粒子として、担体粒
子の表面にアパタイト系化合物を被覆層として担持させ
てなり、且つ担体粒子の大きさを選定して全体の粒径を
前記粒子分散質をクロマト分離するに十分な大きさの粒
径に調製した粒子を使用する、 ことを特徴とする液体クロマトグラフィー。
(1) When separating particle dispersoids from particle dispersions such as cells and organelles by liquid chromatography, an apatite-based compound is coated on the surface of carrier particles as a coating layer as a stationary phase adsorbent particle to be used in a column. A liquid characterized by using particles that are supported on the particles and whose overall particle size is adjusted to be large enough to chromatographically separate the particle dispersoid by selecting the size of the carrier particles. Chromatography.
(2)担体粒子はその材質がガラス、セラミック、金属
、又は樹脂である、特許請求の範囲第(1)項に記載の
吸着剤。
(2) The adsorbent according to claim (1), wherein the material of the carrier particles is glass, ceramic, metal, or resin.
(3)アパタイト系化合物はハイドロキシアパタイト、
フロールアパタイト、又はクロロアパタイトである、特
許請求の範囲第(1)項に記載の吸着剤。
(3) Apatite compounds include hydroxyapatite,
The adsorbent according to claim (1), which is fluorapatite or chloroapatite.
JP61305681A 1986-12-22 1986-12-22 Liquid chromatography Pending JPS63157973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61305681A JPS63157973A (en) 1986-12-22 1986-12-22 Liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61305681A JPS63157973A (en) 1986-12-22 1986-12-22 Liquid chromatography

Publications (1)

Publication Number Publication Date
JPS63157973A true JPS63157973A (en) 1988-06-30

Family

ID=17948073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305681A Pending JPS63157973A (en) 1986-12-22 1986-12-22 Liquid chromatography

Country Status (1)

Country Link
JP (1) JPS63157973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182563A (en) * 1987-01-24 1988-07-27 Sangi:Kk Packing material for chromatograph
JPS6413453A (en) * 1987-07-08 1989-01-18 Asahi Optical Co Ltd Packing agent for liquid chromatography
JPH02147857A (en) * 1988-11-29 1990-06-06 Kobe Steel Ltd Spherical carrier for chromatography separation and production thereof
GB2282548A (en) * 1993-10-05 1995-04-12 Asahi Optical Co Ltd Granular polymer composite for immobilisation of antigen or antibody
JP2007290988A (en) * 2006-04-24 2007-11-08 Kao Corp Bacterial plaque formation inhibitor
JP2008297284A (en) * 2007-06-04 2008-12-11 Kao Corp Dental plaque-formation inhibitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182563A (en) * 1987-01-24 1988-07-27 Sangi:Kk Packing material for chromatograph
JPS6413453A (en) * 1987-07-08 1989-01-18 Asahi Optical Co Ltd Packing agent for liquid chromatography
JPH02147857A (en) * 1988-11-29 1990-06-06 Kobe Steel Ltd Spherical carrier for chromatography separation and production thereof
GB2282548A (en) * 1993-10-05 1995-04-12 Asahi Optical Co Ltd Granular polymer composite for immobilisation of antigen or antibody
US5540995A (en) * 1993-10-05 1996-07-30 Asahi Kogaku Kogyo Kabushiki Kaisha Granular polymer composite and production process thereof as well as diagnostic agent
GB2282548B (en) * 1993-10-05 1998-04-29 Asahi Optical Co Ltd Granular polymer composite and production process thereof
US5897953A (en) * 1993-10-05 1999-04-27 Asahi Kogaku Kogyo Kabushiki Kaisha Granular polymer composite and production process thereof as well as diagnostic agent
JP2007290988A (en) * 2006-04-24 2007-11-08 Kao Corp Bacterial plaque formation inhibitor
JP2008297284A (en) * 2007-06-04 2008-12-11 Kao Corp Dental plaque-formation inhibitor

Similar Documents

Publication Publication Date Title
US20060021941A1 (en) Composite chromatographic sorbent of mineral oxide beads with hydroxyapatite-filled pores
US4781904A (en) Calcium-phosphate type hydroxyapatite for chromatographic separation and process for producing same
US4794171A (en) Calcium-phosphate type hydroxyapatite and process for producing same
EP1785185B1 (en) Method for producing adsorbent, adsorbent, and adsorption apparatus
EP0274608A1 (en) Adsorbent employing an apatite compound
JPS62206445A (en) Adsorbent for chromatography, manufacture thereof and chromatography column using the same
US5030611A (en) Porous ceramics material
JPS63157973A (en) Liquid chromatography
JP2004330113A (en) Production method of adsorbent and adsorbent
JPH04118047A (en) Adsorbent and filler for separation and refining and manufacture thereof
US5217699A (en) Calcium-phosphate type hydroxyapatite
GB2474354A (en) Virus purification method using sintered hydroxyapatite particles
JPS63221844A (en) Adsorbent
JPH01155263A (en) Filler for liquid chromatography and preparation thereof
JPS61266306A (en) Fine spherical particle of crystalline aluminosilicate and its preparation
JP7133748B1 (en) Adsorbents and adsorption devices
JP7133747B1 (en) Adsorbent and method for producing adsorbent
JPH0327349A (en) Separation of protein, peptide and amino acid
JP4005338B2 (en) Antibody-immobilized carrier and method for producing the same
JP3352757B2 (en) Packing material for liquid chromatography
JPS62202808A (en) Production of crystal grain of hydroxyapatite for chromatography
JPH07289886A (en) Highly apatite dispersed composite ceramics and its production
JPH1059999A (en) Separation and purification of antibody
US5728463A (en) Stationary phase material for chromatography
JPH10153589A (en) Column for liquid chromatography