JPS63157481A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS63157481A
JPS63157481A JP30700486A JP30700486A JPS63157481A JP S63157481 A JPS63157481 A JP S63157481A JP 30700486 A JP30700486 A JP 30700486A JP 30700486 A JP30700486 A JP 30700486A JP S63157481 A JPS63157481 A JP S63157481A
Authority
JP
Japan
Prior art keywords
gate
buffer layer
electrodes
source
source electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30700486A
Other languages
Japanese (ja)
Other versions
JPH0673356B2 (en
Inventor
Yukio Kaneko
幸雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30700486A priority Critical patent/JPH0673356B2/en
Publication of JPS63157481A publication Critical patent/JPS63157481A/en
Publication of JPH0673356B2 publication Critical patent/JPH0673356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To decrease the electrostatic capacity between gate and source electrodes and to obtain a low-noise FET by a method wherein insulating regions, which reach an insulative substrate from the surface of a buffer layer, are each provided between the gate and source electrodes formed on the buffer layer provided for augmenting a transconductance. CONSTITUTION:An N-type active layer 3 of a prescribed pattern is provided on the surface of a P-type buffer layer 2 on an insulative substrate 1 and a gate 4 and gate electrodes 7, which are connected to the gate 4 and are led out on the buffer layer 2, are made. A drain electrode 8 and each source electrode 6 surrounding the gate electrodes 7 are provided and moreover, insulating regions (ion-implanted layers) 5a, which reach the substrate 1 from the surface of the buffer layer 2 and are formed by implanting neutral ions, are each made between the source electrodes 6 and the gate electrodes 7. According to this constitution, the electrostatic capacity between the gate and source electrodes is remarkedly decreased and a high gain and low-noise GaAs FET can be easily obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ〈以降FETと称す)に
関し、特に低雑音の砒化ガリウムFETの構造に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to field effect transistors (hereinafter referred to as FETs), and particularly to the structure of low-noise gallium arsenide FETs.

〔従来の技術〕[Conventional technology]

従来、この種の低雑音のFETでは、主要パラメーター
であるトランスコンダクタンス−を大きくするために、
n型の能動層と絶縁性基板の間に、低濃度のP型の不純
物層からなるバッファ層を設けている。
Conventionally, in this type of low-noise FET, in order to increase the main parameter, transconductance,
A buffer layer made of a low concentration P-type impurity layer is provided between the n-type active layer and the insulating substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

通常、FETのトランスコンダクタンスは、第3図に示
すように、バッファ層の不純物濃度が高くなる程大きく
なる。しかしながら通常ゲート電極及びソース電極の引
出し部分がバッファ層の上に直接あるいは酸化膜等の誘
電体膜を介して設けられているので、バッファ層の不純
物濃度が高くなるにつれてバッファ層の比抵抗が低くな
り、ゲート及びソース電極間の静電容量値は、第3図に
示すように増大する。
Generally, the transconductance of an FET increases as the impurity concentration of the buffer layer increases, as shown in FIG. However, since the lead-out portions of the gate electrode and source electrode are usually provided on the buffer layer directly or through a dielectric film such as an oxide film, the resistivity of the buffer layer decreases as the impurity concentration of the buffer layer increases. Therefore, the capacitance value between the gate and source electrodes increases as shown in FIG.

又、低雑音FETの利得は第4図に示すように、トラン
スコンダクタンスが大きくなる程増大するが、ゲート及
びソース電極間の静電容量値が太きくなるにつれて曲線
全体が下にシフトして利得は下がる。
Furthermore, as shown in Figure 4, the gain of a low-noise FET increases as the transconductance increases, but as the capacitance value between the gate and source electrodes increases, the entire curve shifts downward and the gain decreases. goes down.

上述した従来のFETでは、バッファ層の不純物濃度及
びその厚さを制御することにより、トランスコンダクタ
ンス及び静電容量値の最適値を選び利得が最も良くなる
ようにしていたが、利得の大幅な改善が困難な上に制御
が難しいという欠点がある。
In the conventional FET mentioned above, the optimal values of transconductance and capacitance are selected to obtain the best gain by controlling the impurity concentration and thickness of the buffer layer, but this method has significantly improved the gain. The disadvantage is that it is difficult to control and difficult to control.

〔問題点を解決するための単段〕[Single step to solve problems]

本発明の電界効果トランジスタは、絶縁性基板上のバッ
ファ層表面に形成した所定のパターンの能動層上に設け
られたゲートと該ゲートと接続されかつ前記バッファ層
上に延長して設けられたゲート電極と前記能動層のソー
スの部分と接続しかつ前記バッファ層上に延長して設け
られたソース電極とを少くとも備え、前記バッファ層の
前記ゲート電極と前記ソース電極との間に表面から前記
絶縁性基板に至る絶縁領域が設けられてなる。
The field effect transistor of the present invention includes a gate provided on an active layer having a predetermined pattern formed on the surface of a buffer layer on an insulating substrate, and a gate connected to the gate and provided extending on the buffer layer. a source electrode connected to a source portion of the active layer and extending above the buffer layer; An insulating region extending to the insulating substrate is provided.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)及び(b)はそれぞれ本発明の第1の実施
例の平面図及びA−A線断面図である。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line A--A, respectively, of a first embodiment of the present invention.

この実施例は、絶縁性基板1表面に形成した不純物濃度
が2 X 10 ”原子/ crs 3で厚さが3μm
のP型のバッファ層2表面に所定のパターンのN型の能
動層3を設け、能動層3表面上にゲート幅300μmの
ゲート4を設け、ゲート4に接続されかつバッファ層2
上に引出した面積が1600μm2のゲート電極7を設
け、能動層のドレインと接続されたトレイン電極8及び
ソースと接続され、かつゲート電極4を囲むソース電極
6を設け、更にソース電極6とゲート電極7との間にバ
ッファ層2表面から絶縁性基板1に至る中性子のイオン
注入により形成されたイオン注入層5aからなる絶縁領
域を設けている。
In this example, the impurity concentration formed on the surface of the insulating substrate 1 is 2 x 10'' atoms/crs 3, and the thickness is 3 μm.
An N-type active layer 3 having a predetermined pattern is provided on the surface of the P-type buffer layer 2, a gate 4 with a gate width of 300 μm is provided on the surface of the active layer 3, and the gate 4 is connected to the buffer layer 2.
A gate electrode 7 with an area of 1600 μm2 drawn out above is provided, a train electrode 8 connected to the drain of the active layer and a source electrode 6 connected to the source and surrounding the gate electrode 4 are provided, and the source electrode 6 and the gate electrode An insulating region made of an ion implantation layer 5a formed by ion implantation of neutrons from the surface of the buffer layer 2 to the insulating substrate 1 is provided between the buffer layer 2 and the insulating substrate 1.

この実施例は、トランスコダクタンスが45m5で、ゲ
ート及びソース電極7及び6間の静電容量は0.1pF
となり、絶縁領域5aが無い場合の0.41)Fに比べ
て0.3pF程度低減されている。従って、この実施例
では、周波数が12 G H2において、雑音指数1.
4dB、利得9.5dBの特性が安定に得られる。
In this example, the transcoductance is 45 m5 and the capacitance between the gate and source electrodes 7 and 6 is 0.1 pF.
This is reduced by about 0.3 pF compared to 0.41) F when there is no insulating region 5a. Therefore, in this example, at a frequency of 12 GH2, the noise figure is 1.
Characteristics of 4 dB and gain of 9.5 dB can be stably obtained.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

この実施例では、絶縁領域として、第1の実施例のイオ
ン注入層5aの替りに絶縁用の溝5bを設けている。
In this embodiment, an insulating groove 5b is provided as an insulating region instead of the ion-implanted layer 5a of the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、トランスコンダクタンス
を大きくするために設けたバッファ層上に形成したゲー
ト及びソース電極の間に、バッファ層表面から絶縁性基
板に至る絶縁領域を設けることにより、ゲート及びソー
ス電極間の静電容量を大幅に低減することが出来、その
結果として利得が高く高周波特性の優れた低雑音の砒化
ガリウム電界効果トランジスタを容易に実現できるとい
う効果がある。
As explained above, the present invention provides an insulating region extending from the surface of the buffer layer to an insulating substrate between the gate and source electrodes formed on the buffer layer provided to increase transconductance. The capacitance between the source electrodes can be significantly reduced, and as a result, a gallium arsenide field effect transistor with high gain, excellent high frequency characteristics, and low noise can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)はそれぞれ本発明の第1の実施
例の平面図及びA−A線断面図、第2図は本発明の第2
の実施例の断面図、第3図はバッファ層の不純物濃度に
対するトランスコンダクタンス及びソース・ゲート電極
間の静電容重特性図、第4図はトランスコンダクタンス
−利得特性図である。 1・・・絶縁静基板、2・・・バッファ層、3・・・能
動層、4・・・ゲート、5a・・・イオン注入層、5b
・・・溝、6・・・ソース電極、7・・・ゲート電極、
8・・・ドレイン電極。
FIGS. 1(a) and (b) are a plan view and a sectional view taken along the line A-A of the first embodiment of the present invention, respectively, and FIG. 2 is a second embodiment of the present invention.
FIG. 3 is a graph showing the transconductance and capacitance between the source and gate electrodes with respect to the impurity concentration of the buffer layer, and FIG. 4 is a graph showing the transconductance-gain characteristics. DESCRIPTION OF SYMBOLS 1... Insulating static substrate, 2... Buffer layer, 3... Active layer, 4... Gate, 5a... Ion implantation layer, 5b
... Groove, 6... Source electrode, 7... Gate electrode,
8...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板上のバッファ層表面に形成した所定のパタ
ーンの能動層上に設けられたゲートと該ゲートと接続さ
れかつ前記バッファ層上に延長して設けられたゲート電
極と前記能動層のソースの部分と接続しかつ前記バッフ
ァ層上に延長して設けられたソース電極とを少くとも備
え、前記バッファ層の前記ゲート電極と前記ソース電極
との間に表面から前記絶縁性基板に至る絶縁領域が設け
られたことを特徴とする電界効果トランジスタ。
A gate provided on an active layer having a predetermined pattern formed on a surface of a buffer layer on an insulating substrate, a gate electrode connected to the gate and provided extending on the buffer layer, and a source of the active layer. an insulating region extending from the surface to the insulating substrate between the gate electrode and the source electrode of the buffer layer; A field effect transistor characterized by being provided.
JP30700486A 1986-12-22 1986-12-22 Field effect transistor Expired - Lifetime JPH0673356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30700486A JPH0673356B2 (en) 1986-12-22 1986-12-22 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30700486A JPH0673356B2 (en) 1986-12-22 1986-12-22 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS63157481A true JPS63157481A (en) 1988-06-30
JPH0673356B2 JPH0673356B2 (en) 1994-09-14

Family

ID=17963858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30700486A Expired - Lifetime JPH0673356B2 (en) 1986-12-22 1986-12-22 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH0673356B2 (en)

Also Published As

Publication number Publication date
JPH0673356B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US6166404A (en) Semiconductor device in which at least two field effect transistors having different threshold voltages are formed on a common base
JPH023938A (en) Field effect transistor
US3873372A (en) Method for producing improved transistor devices
US4851889A (en) Insulated gate field effect transistor with vertical channel
US4816880A (en) Junction field effect transistor
US4466008A (en) Field effect transistor
US3804681A (en) Method for making a schottky-barrier field effect transistor
US5187379A (en) Field effect transistor and manufacturing method therefor
US7615809B2 (en) Junction field effect transistor and method of manufacturing the same
KR100271344B1 (en) Field effect transistor with reduced delay variation
US3983572A (en) Semiconductor devices
US4951099A (en) Opposed gate-source transistor
KR950007361B1 (en) Field effect transistor
JPS63157481A (en) Field-effect transistor
US5389807A (en) Field effect transistor
KR930020731A (en) Dual gate metal semiconductor field effect transistor and manufacturing method thereof
JPH0289324A (en) Modulation dope field effect transistor
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
US6051455A (en) Method of making plurality of FETs having different threshold values
JPH05235045A (en) Field-effect transistor
JPS61294873A (en) Field effect type transistor
JP2867420B2 (en) Compound semiconductor device
JPS6332273B2 (en)
JPS60100472A (en) Field effect transistor
EP0744774A2 (en) Field effect transistor and method for producing same