JPS63157314A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS63157314A
JPS63157314A JP30512586A JP30512586A JPS63157314A JP S63157314 A JPS63157314 A JP S63157314A JP 30512586 A JP30512586 A JP 30512586A JP 30512586 A JP30512586 A JP 30512586A JP S63157314 A JPS63157314 A JP S63157314A
Authority
JP
Japan
Prior art keywords
substrate
magnetic
recording medium
magnetic recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30512586A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Tetsuya Nakazumi
中住 哲也
Nanao Kawai
河合 七雄
Tomoji Kawai
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP30512586A priority Critical patent/JPS63157314A/en
Publication of JPS63157314A publication Critical patent/JPS63157314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate production of a magnetic recording medium having a large squareness ratio and coercive force and excellent magnetic characteristics by using a substrate having a semiconductor characteristic and forming a magnetic metallic layer on the surface of such substrate. CONSTITUTION:This medium is formed by using the substrate having the semiconductor characteristic and forming the magnetic metallic layer on the surface of such substrate. An insulating film, for example, plastic film, on which a semiconductor film is disposed, is usable or a film consisting of a semiconductor material alone is usable as the substrate having the semiconductor characteristic. At least one kind of iron, Co or Ni is preferably used for the magnetic metallic layer. The magnetic metallic layer is formed by immersing the above-mentioned substrate into a soln. contg. these magnetic metal ions and reducing agent and projecting light of the energy larger than the energy of the band gap of the semiconductor material constituting the substrate to reduce and deposit the magnetic metal ions on the substrate surface. The magnetic recording medium having the large squareness ratio and coercive force and the excellent magnetic characteristics is thereby easily obtd. with high productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は磁性層が鉄、コバルト、ニッケルなどの強磁
性金属の薄膜にて構成された磁気記録媒体とその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic recording medium in which a magnetic layer is made of a thin film of a ferromagnetic metal such as iron, cobalt, or nickel, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

この種の磁気記録媒体は、一般的に汎用されている非磁
性の基板上に磁性粉末を結合剤樹脂中に分散結着させて
なる磁性層を設けた構成の塗布型媒体に較べて、磁性層
の薄膜化が容易でかつ磁性層中に結合剤樹脂を含まない
ことから、高密度記録に適した媒体として近年特に注目
されている。
This type of magnetic recording medium has a magnetic layer that is formed by dispersing and bonding magnetic powder in a binder resin on a generally used non-magnetic substrate. Since the layer can be easily made thin and the magnetic layer does not contain a binder resin, it has attracted particular attention in recent years as a medium suitable for high-density recording.

従来、このような磁性金属層を有してなる磁気記録媒体
は、ポリエステルフィルムなどのプラスチックフィルム
上に磁性金属層を真空蒸着法などの方法により気相中で
薄膜形成させるか、あるいは無電解メッキによる液相メ
ッキ法で析出被着させることによりつくられている。特
に、後者の液相メッキ法は、真空蒸着法などよりも生産
性にすぐれ、かつ均一な磁性金属層の形成が容易である
ことから、その実用化が古くから検討されている。
Conventionally, magnetic recording media having such a magnetic metal layer have been produced by forming a thin film of the magnetic metal layer on a plastic film such as a polyester film in a gas phase using a method such as vacuum evaporation, or by electroless plating. It is made by depositing and depositing it using a liquid phase plating method. In particular, the latter liquid phase plating method has been considered for practical use for a long time because it has better productivity than vacuum evaporation methods and it is easier to form a uniform magnetic metal layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の液相メッキ法は、上述の如き利点
を有しているものの、無電解メッキのため、メッキする
べきプラスチックフィルムに予めエツチング処理、感受
性化処理および活性化処理などの多くの前処理を施して
おく必要があり、このような前処理を施さなければ磁性
金属をうまく析出形成できないという難点があった。し
かも、上記前処理によると、たとえばエツチング処理で
はクロムが、感受性化処理ではスズが、また活性化処理
ではパラジウムが、プラスチックフィルム表面に残るこ
ととなるため、これら金属がその上に形成される磁性金
属層の磁気特性に悪影響をおよぼすおそれがあり、通常
では角型比(残留磁化/飽和磁化)の低下や保磁力が充
分に大きくならないといった問題を引きおこしていた。
However, although the conventional liquid phase plating method has the above-mentioned advantages, because it is electroless plating, the plastic film to be plated must be subjected to many pretreatments such as etching treatment, sensitization treatment, and activation treatment. It is necessary to perform a pretreatment, and there is a problem in that the magnetic metal cannot be successfully deposited and formed unless such pretreatment is performed. Moreover, according to the above pretreatment, for example, chromium remains on the surface of the plastic film in the etching process, tin in the sensitization process, and palladium in the activation process. This may adversely affect the magnetic properties of the metal layer, and usually causes problems such as a decrease in squareness ratio (residual magnetization/saturation magnetization) and insufficient coercive force.

したがって、この発明は、気相中薄膜形成法よりも生産
性などの面ですぐれる液相メッキ法の上述の問題点を克
服して、角型比や保磁力の大きい磁気特性にすぐれる磁
気記録媒体を上記液相メッキ法で得ることを目的として
いる。
Therefore, the present invention overcomes the above-mentioned problems of the liquid phase plating method, which is superior to the vapor phase thin film forming method in terms of productivity, etc. The purpose is to obtain a recording medium by the liquid phase plating method described above.

[問題点を解決するための手段] この発明者らは、上記の目的を達成するために鋭意検討
した結果、液相メッキ法により磁性金属層を形成するに
あたり、メッキ形成するべき基板として従来用いられた
ことのない特定のものを使用し、かつメッキ形成を光触
媒反応を利用して行うことにより、角型比や保磁力の大
きい磁気特性にすぐれる磁気記録媒体を生産性良好に得
ることができることを知った。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the inventors found that when forming a magnetic metal layer by liquid phase plating, the present inventors found that, when forming a magnetic metal layer by liquid phase plating, By using a specific material that has never been used before, and by forming the plating using a photocatalytic reaction, it is possible to obtain magnetic recording media with excellent magnetic properties such as a large squareness ratio and coercive force with good productivity. I learned that I can do it.

この発明は、上記知見に基づく改良された液相メッキ法
とこの方法にてつくられる磁気特性にすぐれ、その基板
構成が従来とは全(異なる磁気記録媒体を提供しようと
するものである。すなわち、この発明は、半導体特性を
有する基板とこの基板表面に形成された磁性金属層とか
らなることを特徴とする磁気記録媒体に係る第1′の発
明と、磁性金属イオンおよび還元剤を含む溶媒中に半導
体特性を有する基板を浸し、上記基板を構成する半導体
物質のバンドギャップのエネルギーより大きなエネルギ
ーを有する光を照射することにより、上記基板の表面に
磁性金属イオンを還元析出させて〔発明の構成・作用] この発明においては、既述のとおり、液相メッキ法に光
触媒反応を応用したものであるが、この光触媒反応とは
、一般に半導体物質を水などの溶媒に浸してこれに上記
物質の価電子帯から伝導帯までのバンドギャップのエネ
ルギーより大きなエネルギーを有する光を照射したとき
に、伝導帯に電子を、価電子帯に正孔を生じ、これら電
子および正孔は半導体物質の中でただちに拡散して物質
表面に達し、その囲りに存在する溶媒がたとえば水であ
って上記伝導帯の電位が水素還元電位より高ければ上記
電子は表面に存在する水分子(またはプロトン)を還元
して水素を発生させ、また上記正孔は価電子帯の電位に
応じて周囲の水や万機物の電子を奪い酸化分解をおこす
ものであり、このように酸化還元反応を酸化剤や還元剤
を用いることなく効率的に行わせつるものとして近年特
に注目をあびているものである。
The present invention aims to provide an improved liquid phase plating method based on the above findings, and a magnetic recording medium that has excellent magnetic properties produced by this method, and whose substrate structure is completely different from that of the conventional one. The present invention relates to a first aspect of the present invention relating to a magnetic recording medium characterized by comprising a substrate having semiconductor properties and a magnetic metal layer formed on the surface of the substrate, and a solvent containing magnetic metal ions and a reducing agent. A substrate having semiconductor properties is immersed in the medium and irradiated with light having an energy greater than the band gap energy of the semiconductor material constituting the substrate, thereby reducing and precipitating magnetic metal ions on the surface of the substrate. Structure/Operation] As mentioned above, the present invention applies a photocatalytic reaction to the liquid phase plating method. Generally speaking, this photocatalytic reaction involves soaking a semiconductor material in a solvent such as water and then adding the above-mentioned material to the liquid-phase plating method. When irradiated with light having an energy greater than the energy of the band gap from the valence band to the conduction band, electrons are generated in the conduction band and holes are generated in the valence band, and these electrons and holes are released into the semiconductor material. If the surrounding solvent is water, for example, and the potential of the conduction band is higher than the hydrogen reduction potential, the electrons will reduce the water molecules (or protons) present on the surface. In addition, depending on the potential of the valence band, the holes take away electrons from surrounding water and other objects, causing oxidation and decomposition. This method has attracted particular attention in recent years as it can be carried out efficiently without the use of chemicals.

この発明者らは、上記の光触媒反応を液相メッキ法にお
ける磁性金属の析出に応用するべく、メッキ形成用の基
板として従来用いられたことのない半導体特性を有する
もの、たとえばプラスチックフィルム上に半導体物質と
してTiO□の膜を形成してなるものを用い、この基板
を磁性金属イオンとともに還元剤を含ませてなる溶媒中
に浸すようにしてみたところ、光照射により生じて上記
基板(のTiO2膜)の表面に拡散した電子および正孔
のうち後者の正孔は周囲の還元剤と反応して消滅し、電
子のみが基板表面に残存する結果、この基板は周囲の磁
性金属イオンの還元電位より高くなってこの金属イオン
を強く引きつけるとともにこれを金属に還元し、これに
よって基板表面に極めて密着の良い磁性金属層が形成さ
れた磁気記録媒体が得られることを見い出したものであ
る。
In order to apply the above-mentioned photocatalytic reaction to the deposition of magnetic metal in liquid phase plating, the inventors developed a substrate for plating that has semiconductor characteristics that has not been previously used, such as a plastic film. When we tried to use a TiO□ film as a substance and immerse this substrate in a solvent containing magnetic metal ions and a reducing agent, the TiO2 film formed on the substrate (the TiO2 film on the substrate) was formed by light irradiation. ) Of the electrons and holes diffused on the surface of the substrate, the latter holes react with the surrounding reducing agent and disappear, leaving only the electrons on the substrate surface. It was discovered that the metal ions can be strongly attracted to the metal ions and reduced to metal, thereby producing a magnetic recording medium in which a magnetic metal layer with extremely good adhesion is formed on the substrate surface.

そして、このようにして形成された磁性金属層は、従来
の無電解メッキにて形成されたものに比しより均一であ
り、しかもメッキ形成するべき基板に前記したような前
処理を施す必要が全くないため、メッキ形成作業の容易
化を図れるとともに、前処理金属の残存に起因した磁気
特性の劣化をきたすことがなく、角型比や保磁力の向上
に大きく寄与させることができる。そのうえ、上記方法
にあっては、光照射時の光の強さおよび光照射時間をコ
ントロールすることにより、磁性金属の析出をコントロ
ールできるため、得られる磁気記録媒体の磁気特性を正
確かつ確実にコントロールすることが可能となる。
The magnetic metal layer formed in this way is more uniform than that formed by conventional electroless plating, and it is not necessary to perform the above-mentioned pretreatment on the substrate to be plated. Since there is no metal at all, the plating work can be facilitated, and there is no deterioration of magnetic properties due to residual pre-treated metal, which can greatly contribute to improving the squareness ratio and coercive force. Furthermore, in the above method, the precipitation of magnetic metal can be controlled by controlling the light intensity and light irradiation time during light irradiation, so the magnetic properties of the resulting magnetic recording medium can be controlled accurately and reliably. It becomes possible to do so.

以下、上記の光触媒反応を利用したこの発明の磁気記録
媒体の製造方法につき、上記媒体の構成要素とともに詳
しく説明する。
Hereinafter, a method for manufacturing a magnetic recording medium of the present invention using the above-mentioned photocatalytic reaction will be explained in detail together with the constituent elements of the above-mentioned medium.

この発明において用いられる半導体特性を有する基板と
しては、磁気記録媒体の用途目的に応じて、プラスチッ
クフィルムを代表例とする絶縁フィルム上に半導体物質
の膜を形成してなるものか、あるいは半導体物質単独か
らなる基板のいずれかが用いられる。これらの厚み構成
は、その用途に応じて決められるが、たとえば前者の例
では絶縁フィルムの厚みが5〜100戸程度でこの上に
設けられる半導体物質の膜が0.005〜5pn程度の
ものが可撓性を有する基板として特に好ましく用いられ
る。なお、上記半導体物質の膜は、上記物質の種類に応
じて真空蒸着法、スパッタリング法、塗布法またはこれ
と熱分解法とを組み合わせた方法などにて形成すること
ができる。
Depending on the purpose of the magnetic recording medium, the substrate having semiconductor properties used in this invention may be one formed by forming a film of a semiconductor material on an insulating film, typically a plastic film, or one made of a semiconductor material alone. Either one of the following substrates is used. These thickness structures are determined depending on the application, but for example, in the former example, the thickness of the insulating film is about 5 to 100 pn, and the semiconductor material film provided on it is about 0.005 to 5 pn. It is particularly preferably used as a flexible substrate. Note that the film of the semiconductor material can be formed by a vacuum evaporation method, a sputtering method, a coating method, or a method combining these with a thermal decomposition method, depending on the type of the material.

ここに使用する半導体物質としては、半導体特性を有す
るものであれば公知のものをいずれも使用でき、場合に
よっては磁性体の使用も可能である。その具体例として
は、S i、GaAs、GaP。
As the semiconductor material used here, any known material can be used as long as it has semiconductor properties, and in some cases, it is also possible to use a magnetic material. Specific examples include Si, GaAs, and GaP.

CdS、5nTi03 、Ink、CdSe、TiO,
2、MoS2、F e20.、 I n20a、WO2
などが挙げられ、これらの中でも成膜や成形上などの面
でも有利なSi、TiO2、Fe2O3、GaAsなど
が特に好ましい。
CdS, 5nTi03, Ink, CdSe, TiO,
2, MoS2, Fe20. , I n20a, WO2
Among these, Si, TiO2, Fe2O3, GaAs, etc., which are advantageous in terms of film formation and molding, are particularly preferred.

この発明においては、まず上記の半導体特性を有する基
板を磁性金属イオンおよび還元剤を含ませた溶媒中に浸
漬する。上記溶媒としては通常水を用いるが、還元剤を
溶解できまた磁性金属塩を金属イオンとして溶存させる
ときができさらに光触媒反応に不活性なものであれば、
水以外の極性溶媒を用いてもよい。還元剤としては無’
ML fNメッキに用いられているものがいずれも使用
可能であり、たとえば次亜リン酸ソーダ、ヒドラジン、
ホルマリン、エタノール、ギ酸、ギ酸ナトリウムなどが
挙げられる。磁性金属イオンは、鉄、コ/イルトおよび
ニッケルの中から選ばれた少なくとも一種の金属からな
るイオンが一般的であるが、これらにさらに他種の金)
4イオンを加えたものであってもよい。これらイオンは
、相当する金(4の硫酸塩、塩化物、硝酸塩などを溶媒
に溶解させることにより、溶媒中に含ませることができ
る。
In this invention, first, a substrate having the above semiconductor properties is immersed in a solvent containing magnetic metal ions and a reducing agent. Water is usually used as the solvent, but water can be used as long as it can dissolve the reducing agent, dissolve the magnetic metal salt as metal ions, and is inert to the photocatalytic reaction.
Polar solvents other than water may also be used. Nothing as a reducing agent
Any of those used for ML fN plating can be used, such as sodium hypophosphite, hydrazine,
Examples include formalin, ethanol, formic acid, and sodium formate. Magnetic metal ions are generally ions made of at least one metal selected from iron, co/ilte, and nickel, but in addition to these, other types of gold are also used.
4 ions may be added. These ions can be included in a solvent by dissolving the corresponding gold (sulfate, chloride, nitrate, etc. of 4) in the solvent.

なお、上記還元剤の使用量としては、溶媒中5〜30’
j/l程度とすればよい。また、磁性金属イオンは、形
成するべき磁性金属層の厚みなどに応じてその使用層が
決められるが、一般には前記の如き磁性金属塩が溶媒中
5〜40y/l程度となるようにするのが望ましい。
The amount of the reducing agent used is 5-30' in the solvent.
It may be about j/l. In addition, the layer to be used for magnetic metal ions is determined depending on the thickness of the magnetic metal layer to be formed, but in general, the amount of the magnetic metal salt as described above in the solvent is about 5 to 40 y/l. is desirable.

なおまた、上記溶媒中には必要に応じて適宜の錯化剤や
PH調整剤を含ませてもよい。錯化剤としては磁性金属
イオンを有効に錯化して磁性金属の均一かつ安定な析出
を補助しうるものが用いられ、具体的にはクエン酸ソー
ダ、酒石酸ソーダなどが挙げられる。使用lは、溶媒中
10〜80y/l程度とすればよい。また、PH調整剤
としては、ホウ酸、硫酸アンモニウム、苛性ソーダ、苛
性カリ、アンモニアなどが用いられ、溶媒のPHが75
〜10.5、好適には8.5〜95の範囲となるように
その使用量を決めるのが望ましい。
Furthermore, the above-mentioned solvent may contain an appropriate complexing agent or pH adjuster, if necessary. As the complexing agent, one that can effectively complex magnetic metal ions and assist in uniform and stable precipitation of the magnetic metal is used, and specific examples thereof include sodium citrate and sodium tartrate. The amount of liter used may be about 10 to 80 y/l in the solvent. In addition, as a pH adjuster, boric acid, ammonium sulfate, caustic soda, caustic potash, ammonia, etc. are used, and the pH of the solvent is 75.
It is desirable to determine the amount to be used so that it is in the range of 10.5 to 10.5, preferably 8.5 to 95.

溶媒の温度は、これが高すぎると磁性金属の均一な析出
付着を難しくするため、還元剤などの種須に応じた適切
な温度に設定するのが好ましい。
If the temperature of the solvent is too high, it will be difficult to uniformly deposit and adhere the magnetic metal, so it is preferable to set the temperature appropriately depending on the source of the reducing agent or the like.

一般には、用いる還元剤が熱的に分解しない温度、通常
90°C以下、好適には60〜85°Cの温度とするの
がよい。
Generally, the temperature is preferably set at a temperature at which the reducing agent used does not decompose thermally, usually 90°C or less, preferably 60 to 85°C.

この発明においてはこのような溶媒に前記基板を浸した
状態で光を照射する。この光は既述のとおり基板を構成
する半導体物質のバンドギャップのエネルギーより大き
いエネルギーを有するものであり、通常は200〜80
0nmの波長を有する光が適している。また、照射光は
単色光である必要は特になく、キセノンランプまたは水
銀ランプを光源とした多色光を適用することができる。
In the present invention, light is irradiated while the substrate is immersed in such a solvent. As mentioned above, this light has an energy greater than the bandgap energy of the semiconductor material constituting the substrate, and usually has an energy of 200 to 80
Light with a wavelength of 0 nm is suitable. Further, the irradiation light does not need to be monochromatic light, and polychromatic light using a xenon lamp or a mercury lamp as a light source can be applied.

上記の光照射により、溶媒中の半導体特性を有する基板
は半導体物質のバンドギャップ以上の光を吸収して励起
され、伝導帯に電子を、価電子帯に正孔を生じるととも
に、これら電子および正孔は基板表面に速やかに拡散し
、そのうちの正孔は周囲の還元剤によって還元消滅する
一方、還元剤は酸化分解される。正孔が消滅した基板表
面は電子のみが存在することによってその4位が周囲に
存在する磁性金属イオンの還元電位より高くなると、こ
れら金属イオンを容易に引きつけてこれを相当する金属
に還元する。
By the above light irradiation, the substrate with semiconductor properties in the solvent is excited by absorbing light that is larger than the band gap of the semiconductor material, producing electrons in the conduction band and holes in the valence band. The holes quickly diffuse to the substrate surface, and while the holes are reduced and annihilated by the surrounding reducing agent, the reducing agent is oxidized and decomposed. Since only electrons exist on the surface of the substrate where holes have disappeared, when the 4th position becomes higher than the reduction potential of the surrounding magnetic metal ions, it easily attracts these metal ions and reduces them to the corresponding metal.

上記還元剤の酸化分解および磁性金属イオンの還元反応
は、基板表面に光触媒的に形成された正孔および電子に
よっておこるものであって、その際の液温を低く設定で
きるため、光照射を1〜60分間程度続けることにより
、基板表面に非常に均一で従来の如き前処理金属に起因
した磁気特性の劣化が全くみられない磁性金属層を形成
することができる。この磁性金属層の厚みは、用途目的
に応じて広範囲に設定できるものであるが、一般には0
.1〜5声程度とするのが望ましい。
The oxidative decomposition of the reducing agent and the reduction reaction of the magnetic metal ions occur using holes and electrons photocatalytically formed on the substrate surface, and since the liquid temperature at that time can be set low, the light irradiation is reduced to 1. By continuing the treatment for about 60 minutes, it is possible to form a very uniform magnetic metal layer on the surface of the substrate, with no deterioration in magnetic properties caused by conventional pretreatment metals. The thickness of this magnetic metal layer can be set over a wide range depending on the purpose of use, but it is generally 0.
.. It is desirable to have about 1 to 5 voices.

なお、このようにして磁性金属層を形成したのち、不活
性ガス雰囲気中あるいは真空中で100〜400°C5
好適には200〜300°Cの温度で熱処理するように
してもよい。これにより磁性金属の結晶化が促進されて
保磁力や飽和磁化量さらには角型比の向上を図れる場合
がある。
In addition, after forming the magnetic metal layer in this way, it is heated at 100 to 400°C5 in an inert gas atmosphere or in vacuum.
The heat treatment may preferably be carried out at a temperature of 200 to 300°C. This may promote the crystallization of the magnetic metal and improve the coercive force, saturation magnetization, and squareness ratio.

かくして得られるこの発明の磁気記録媒体は、半導体特
性を有する基板とこの基板表面に形成された磁性金属層
とからなるものであって、角型比や保磁力が大きく、従
来の媒体に比し磁気特性にすぐれるという特徴を有して
おり、上記基板の材質構成などに応じて磁気テープ、磁
気ディスク、磁気ドラムなどの各種形態で利用すること
ができる。
The thus obtained magnetic recording medium of the present invention is composed of a substrate having semiconductor properties and a magnetic metal layer formed on the surface of this substrate, and has a large squareness ratio and coercive force, and has a large squareness ratio and a large coercive force compared to conventional media. It is characterized by excellent magnetic properties, and can be used in various forms such as magnetic tapes, magnetic disks, and magnetic drums depending on the material composition of the substrate.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明においては、半導体特性を有す
る基板を用いてかつ光触媒反応を利用することにより、
気相中での薄膜形成法に比し生産性などの面で有利な液
相メッキ法によって角型比や保磁力が大きくて磁気特性
にすぐれる磁気記録媒体を製造容易に得ることができる
という格別の効果が得られるものである。
As described above, in this invention, by using a substrate having semiconductor properties and utilizing a photocatalytic reaction,
The liquid-phase plating method, which is advantageous in terms of productivity compared to thin film formation methods in the gas phase, makes it possible to easily produce magnetic recording media with large squareness ratios, high coercive force, and excellent magnetic properties. This is something that gives you an exceptional effect.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 塩化コバルト       2051’次亜リン酸ソー
ダ         15yクエン酸ンーダ     
   4(1ホ    ウ    酸        
      20gI水              
       11上記の成分を溶解混合しこれにさら
に苛性ソーダを適量加えてPHを9.0に調整し、80
°Cに加熱した。この液に、厚さ70P、直径8.9側
のポリエチレンテレフタレートフィルムの表面にスパッ
タリング法により厚さ0.1pのSiの膜を形成してな
る基板を、浸漬したのち、出力IKII/のキセノンラ
ンプを用いて5分間光照射した。その後、液中から上記
基板を取り出し、水洗乾燥することにより、上記基板の
Si膜上に0.2声厚の磁性コバルト金属層が形成され
てなるこの発明に係る磁気記録媒体を得た。
Example 1 Cobalt chloride 2051' Sodium hypophosphite 15y Sodium citric acid
4 (1 boric acid
20gI water
11 Dissolve and mix the above ingredients and add an appropriate amount of caustic soda to adjust the pH to 9.0.
Heated to °C. A substrate consisting of a 0.1p thick Si film formed by sputtering on the surface of a polyethylene terephthalate film with a thickness of 70p and a diameter of 8.9cm was immersed in this solution, and then a xenon lamp with an output of IKII/ was immersed. It was irradiated with light for 5 minutes. Thereafter, the substrate was taken out of the solution, washed with water, and dried to obtain a magnetic recording medium according to the present invention in which a magnetic cobalt metal layer with a thickness of 0.2 tone was formed on the Si film of the substrate.

実施例2 厚さ70−9直径8.9 amのポリエチレンテレフタ
レートフィルムの表面に有機チタネート(テトライソプ
ロピルチタネート)を塗布したのち、空気中80 ’C
で加熱して上記チタネートを熱分解することにより、厚
さ0.01−のTiO2の膜を形成した。これを半導体
特性を有する基板として用いた以外は、実施例1と同様
にしてこの発明に係る磁気記録媒体を作製した。
Example 2 After applying organic titanate (tetraisopropyl titanate) to the surface of a polyethylene terephthalate film with a thickness of 70-9 and a diameter of 8.9 am, the film was heated at 80'C in air.
The titanate was thermally decomposed by heating to form a 0.01-thick TiO2 film. A magnetic recording medium according to the present invention was produced in the same manner as in Example 1 except that this was used as a substrate having semiconductor properties.

実施例3 厚さ0.5 rm 、直径5cmの単結晶のSiからな
る基板を半導体特性を有する基板として用いた以外は、
実施例1と同様にしてこの発明に係る磁気記録媒体を作
製した。
Example 3 Except that a substrate made of single crystal Si with a thickness of 0.5 rm and a diameter of 5 cm was used as a substrate having semiconductor properties.
A magnetic recording medium according to the present invention was produced in the same manner as in Example 1.

比較例 厚さ7 Q )tyn 、直径8.90のポリエチレン
テレフタレートフィルムを重クロム酸カリウムと硫酸と
の混合溶液中でエツチング処理したのち、5nCJ2溶
液中で感受性化処理し、さらにPdCl2溶液中で活性
化処理を行った。これら前処理を施してなる上記フィル
ムを基板とし、この基板を実施例1と同様のコバルトイ
オンを含む液に浸漬し、90°Cで3分間無電解メッキ
を行うことにより、上記基板上に0.22厚の磁性コバ
ルト金属層が形成されてなる比較用の磁気記録媒体を得
た。
Comparative Example A polyethylene terephthalate film with a thickness of 7 Q oxidation treatment was performed. The above film subjected to these pretreatments was used as a substrate, and this substrate was immersed in the same solution containing cobalt ions as in Example 1, and electroless plating was performed at 90°C for 3 minutes. A comparative magnetic recording medium was obtained in which a magnetic cobalt metal layer with a thickness of .22 mm was formed.

以上の実施例1〜3および比較例の各媒体につき、その
保磁力および角型比を測定した結果は、下記の表に示さ
れるとおりであった。
The coercive force and squareness ratio of each of the media of Examples 1 to 3 and Comparative Example were measured, and the results were as shown in the table below.

上表から明らかなように、この発明の磁気記録媒体は、
気相中での薄膜形成法に比し生産性などの面で有利な液
相メッキ法で得ることができるうえに、従来の液相メッ
キ法に係る比較例のものに比し保磁力や角型比が大きく
磁気特性によりすぐれたものであることが判る。
As is clear from the above table, the magnetic recording medium of the present invention has
It can be obtained by liquid phase plating, which is more advantageous in terms of productivity than thin film formation in the gas phase, and also has lower coercive force and angle than comparative examples of conventional liquid phase plating. It can be seen that the type ratio is large and the magnetic properties are excellent.

Claims (6)

【特許請求の範囲】[Claims] (1)半導体特性を有する基板とこの基板表面に形成さ
れた磁性金属層とからなることを特徴とする磁気記録媒
体。
(1) A magnetic recording medium comprising a substrate having semiconductor properties and a magnetic metal layer formed on the surface of the substrate.
(2)半導体特性を有する基板が絶縁フィルム上に半導
体物質の膜を形成してなるものからなる特許請求の範囲
第(1)項記載の磁気記録媒体。
(2) A magnetic recording medium according to claim (1), wherein the substrate having semiconductor properties is formed by forming a film of a semiconductor material on an insulating film.
(3)絶縁フィルムがプラスチックフィルムからなる特
許請求の範囲第(2)項記載の磁気記録媒体。
(3) The magnetic recording medium according to claim (2), wherein the insulating film is a plastic film.
(4)半導体特性を有する基板が半導体物質単独からな
るものである特許請求の範囲第(1)項記載の磁気記録
媒体。
(4) The magnetic recording medium according to claim (1), wherein the substrate having semiconductor properties is made solely of a semiconductor material.
(5)磁性金属層が鉄、コバルトおよびニッケルの中か
ら選ばれた少なくとも一種の金属からなる特許請求の範
囲第(1)〜(4)項のいずれかに記載の磁気記録媒体
(5) The magnetic recording medium according to any one of claims (1) to (4), wherein the magnetic metal layer is made of at least one metal selected from iron, cobalt, and nickel.
(6)磁性金属イオンおよび還元剤を含む溶媒中に半導
体特性を有する基板を浸し、上記基板を構成する半導体
物質のバンドギャップのエネルギーより大きなエネルギ
ーを有する光を照射することにより、上記基板の表面に
磁性金属イオンを還元析出させて磁性金属層を形成する
ことを特徴とする磁気記録媒体の製造方法。
(6) A substrate having semiconductor properties is immersed in a solvent containing magnetic metal ions and a reducing agent, and the surface of the substrate is irradiated with light having an energy greater than the energy of the band gap of the semiconductor material constituting the substrate. A method for manufacturing a magnetic recording medium, comprising forming a magnetic metal layer by reducing and precipitating magnetic metal ions.
JP30512586A 1986-12-20 1986-12-20 Magnetic recording medium and its production Pending JPS63157314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30512586A JPS63157314A (en) 1986-12-20 1986-12-20 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30512586A JPS63157314A (en) 1986-12-20 1986-12-20 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS63157314A true JPS63157314A (en) 1988-06-30

Family

ID=17941396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30512586A Pending JPS63157314A (en) 1986-12-20 1986-12-20 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS63157314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314725A (en) * 1992-02-17 1994-05-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Photo-plating process
US5424252A (en) * 1991-10-04 1995-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Photo-plating solution and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424252A (en) * 1991-10-04 1995-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Photo-plating solution and process
US5314725A (en) * 1992-02-17 1994-05-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Photo-plating process

Similar Documents

Publication Publication Date Title
Charbonnier et al. Plasma treatment process for palladium chemisorption onto polymers before electroless deposition
US4250225A (en) Process for the production of a magnetic recording medium
US5424252A (en) Photo-plating solution and process
JPS586781B2 (en) Kinzoku Haku Makakei Seihou
Osaka et al. An electron diffraction study on mixed PdCl2/SnCl2 catalysts for electroless plating
JPS6315990B2 (en)
US3791340A (en) Method of depositing a metal pattern on a surface
US3282723A (en) Electroless deposition and method of producing such electroless deposition
US4981725A (en) Process and composition for sensitizing articles for metallization
JPS63157314A (en) Magnetic recording medium and its production
US3423214A (en) Magnetic cobalt and cobalt alloy plating bath and process
JP3237098B2 (en) Electroless palladium plating method and electroless plating bath used therein
US3269854A (en) Process of rendering substrates catalytic to electroless cobalt deposition and article produced
JP3846331B2 (en) Method for producing fine particle dispersion
US4006269A (en) Photodeposition of metals on a non-conductive substrate
US2829059A (en) Electroless chromium plating
US4748056A (en) Process and composition for sensitizing articles for metallization
US4440805A (en) Stabilized dispersion for electroless plating catalysts using corrosion inhibitors as stabilizers
JPS6120302A (en) Ferromagnetic powder and manufacture thereof
US4662944A (en) Process and composition for sensitizing articles for metallization
Baylis et al. Tin (IV) Sensitizer for Photoselective Metal Deposition of Cobalt and Nickel from Alkaline Baths
JPS62207877A (en) Method for plating plastic with metal
JPH05214547A (en) Electroless plating method
JPS61168533A (en) Production of ferromagnetic powder
JP4631056B2 (en) Aqueous solution for forming ferrite film, method for producing ferrite film, and ferrite film