JPS63157108A - Optical dividing and combining circuit - Google Patents

Optical dividing and combining circuit

Info

Publication number
JPS63157108A
JPS63157108A JP30581386A JP30581386A JPS63157108A JP S63157108 A JPS63157108 A JP S63157108A JP 30581386 A JP30581386 A JP 30581386A JP 30581386 A JP30581386 A JP 30581386A JP S63157108 A JPS63157108 A JP S63157108A
Authority
JP
Japan
Prior art keywords
waveguide
light
filter
substrate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30581386A
Other languages
Japanese (ja)
Inventor
Ryoichi Sugawara
良一 菅原
Eiji Okuda
奥田 栄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP30581386A priority Critical patent/JPS63157108A/en
Publication of JPS63157108A publication Critical patent/JPS63157108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the assembly operability by allowing all waveguide ends to face once side edge of a substrate, providing a groove on a branch part and providing a partial transmitting and reflecting filter in the groove, and also, providing an optical reflecting body on a turning-back part. CONSTITUTION:All waveguide ends of an input and an output are allowed to face one substrate side edge 1a. On the surface of a substrate 1, a groove 7 for parting the waveguide is carved and provided, and in this groove 7, an interference filter 8 is fitted and installed. In this constitution, when mixed light beams whose wavelengths are, for instance, 0.85mum and 1.3mum are made incident on an input path 2, the light beam whose wavelength is 0.85mum is led to a reflected light waveguide 3 by the filter 8, and the light beam whose wavelength is 1.3mum is led to a transmission light waveguide 4. The light beam propagated through this waveguide 4 reaches a turning-back part 5 and reflected by a reflecting body 10, propagated as it is in a waveguide 4b, transmits through an interference filter 9, and thereafter, emitted from the waveguide end of the side edge 1a and made incident on an optical fiber 11c. The light beam reflected by the filter 8 is made incident on an optical fiber 11b. In such a way, the assembly operability is improved, and also the assembly work can be executed easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、伝送光を波長あるいはパワーで分割したり合
流させるために用いられる光分割合流回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical splitting/combining circuit used to split or combine transmitted light according to wavelength or power.

〔従来技術の説明〕[Description of prior art]

導波路型の光分割合流回路として従来、第を図に示す構
造のものが知られている(例えば信学技報0QElr!
−29,特開昭1−/9r’lOl’等)。
Conventionally, a waveguide-type light splitting/combining circuit with a structure shown in the figure is known (for example, IEICE Technical Report 0QElr!
-29, JP-A-1-/9r'lOl', etc.).

同図のものは、81基板上に、5i02− TiO2系
の光導波路27.コra−2rfを直線的に突出形成し
、回路中の各分岐部で導波路を分断してこの分断箇所に
干渉フィルタ、29 a−j 9 Gを介装して、基板
上に立設したフィルタガイドと溝によってフィルタを保
持させている。
In the figure, a 5i02-TiO2 optical waveguide 27. is placed on a substrate 81. A RA-2RF was formed to protrude linearly, the waveguide was divided at each branch part in the circuit, and an interference filter, 29 a-j 9 G, was interposed at this divided part, and it was installed upright on the board. The filter is held by the filter guide and groove.

上記のフィルタは、その面法線が両分岐路の光軸の成す
角を二等分する如く傾斜させである。
The above filter is inclined so that its surface normal bisects the angle formed by the optical axes of both branch paths.

また各導波路の端部は基板側縁よりも内側で終っており
、これら導波路端には、基板上に設けられたファイバガ
イド30a〜30eで、挾持固定した光7アイパ2ta
−26,eが接続される。
Furthermore, the ends of each waveguide end inside the side edge of the substrate, and at the ends of these waveguides, optical fiber guides 30a to 30e provided on the substrate sandwich and fix optical fibers 2ta.
-26,e is connected.

上記回路において、四種の波長の混合光を導波路27に
入射させると、伝搬光は第1の分岐部の干渉フィルタ2
ワaで、フィルタの波長選択特性に応じた透過光と反射
光とに分波され、このうち透過光は導波路、2J’a中
を伝搬して第2の分岐部の干渉フィルタ29bに至り、
このフィルタを透過した特定波長光は光ファイバJ4C
に出力され、フィルタ!9bで反射された歿りの波長光
は光ファイバ21、bに出力される。また第1フイルタ
29aで反射された光は導波路2rC1を伝搬して第3
の分岐部の干渉フィルタ2qCに至り、一部がフィルタ
を透過して導波路コIfを伝搬した後、光7アイパコ≦
eに出力され、またフィルタ29Cで反射された光は導
波路2reを伝搬した後、光7アイパ、!6dに出力さ
れる。
In the above circuit, when mixed light of four different wavelengths is input to the waveguide 27, the propagating light passes through the interference filter 2 of the first branch.
At wave a, the light is split into transmitted light and reflected light according to the wavelength selection characteristics of the filter, and the transmitted light propagates through the waveguide 2J'a and reaches the interference filter 29b at the second branch. ,
The specific wavelength light transmitted through this filter is passed through the optical fiber J4C.
Output to and filter! The light of the other wavelength reflected by the optical fiber 9b is output to the optical fiber 21,b. Further, the light reflected by the first filter 29a propagates through the waveguide 2rC1 and passes through the third filter.
reaches the interference filter 2qC at the branching part of , and a part of the light passes through the filter and propagates through the waveguide if, and then the light 7 ipaco≦
After the light output to e and reflected by the filter 29C propagates through the waveguide 2re, the light 7aipa, ! 6d.

このようKして、入力用光ファイバ24aを通して導波
路、!7に入射した四種の波長の混合光は、各波長光に
分割されて光ファイバ2≦b 、 260 。
In this way, the input optical fiber 24a is passed through the waveguide, ! The mixed light of four wavelengths incident on the optical fiber 7 is divided into light of each wavelength and is passed through the optical fiber 2≦b, 260.

、?gd、2teにそれぞれ出力される。また導波路2
1rb、2IrC中を逆に各波長光が伝搬するとこれら
の伝送光は導波路2raに合流し、導波路2ra。
,? They are output to gd and 2te, respectively. Also, waveguide 2
When light of each wavelength propagates reversely through IrC 1rb and 2IrC, these transmitted lights merge into waveguide 2ra.

2tdを伝搬する光はフィルタj9alcよって導波路
27中に合流する。
The light propagating through 2td merges into waveguide 27 through filter j9alc.

このようにして上記回路は、互いに異なる二種の波長の
混合光を各波長毎に分割したり、あるいは各波長光を合
流させる分波合波回路として機能する。また従来の他の
分波合波回路例(例えば特開昭4/−/61乙02)を
@5図に示す。
In this way, the circuit functions as a demultiplexing/multiplexing circuit that divides mixed light of two different wavelengths into each wavelength, or combines the lights of each wavelength. Further, another example of a conventional demultiplexing and multiplexing circuit (for example, Japanese Patent Application Laid-open No. 4/1983-61 Otsu 02) is shown in Fig. @5.

本例のものは1つの基板3rK、導波路32゜33.3
’lを設け、このうち導波路32と33とを基板側縁の
法線に対し対称に傾斜配置するとともに、両路端を側縁
で連結し、また導波路3≠を導波路33に平行に且つ独
立して設け、導波路32と33との連結部及び導波路3
≠の端部が露出している基板側縁に、特定波長光を透過
(又は反射)し、他の波長光を反射(又は透過)する干
渉フィルタ膜3jを設け、さらに上記の導波路が設けら
れた基板の側縁に透明スペーサー36を接合し、このス
ペーサー360側縁に反射膜37を設けている。
In this example, one substrate 3rK, waveguide 32°33.3
waveguides 32 and 33 are arranged symmetrically and inclined with respect to the normal to the side edge of the substrate, and both ends are connected at the side edge, and waveguide 3≠ is parallel to waveguide 33. The connecting portion between the waveguides 32 and 33 and the waveguide 3
An interference filter film 3j that transmits (or reflects) light of a specific wavelength and reflects (or transmits) light of other wavelengths is provided on the side edge of the substrate where the end of ≠ is exposed, and the above-mentioned waveguide is further provided. A transparent spacer 36 is bonded to the side edge of the substrate, and a reflective film 37 is provided on the side edge of the spacer 360.

上記の回路では、例えば二種の波長λ1.λ2の混合光
を導波路32に入射させると、フィルタ膜3夕によって
伝搬光のうちλ1の波長光は反射されて導波路33に入
射し、またλ2の波長光はフィルタ膜33を透過し、反
射膜37で反射されフィルタ膜35を再度透過した後導
波路3≠に入射し、波長λ1及びλ2の光をそれぞれ導
波路33及び3≠から取り出すことができる。
In the above circuit, for example, two wavelengths λ1. When the mixed light of λ2 is made to enter the waveguide 32, the light of the wavelength λ1 of the propagating light is reflected by the filter film 3 and enters the waveguide 33, and the light of the wavelength λ2 is transmitted through the filter film 33. After being reflected by the reflective film 37 and transmitted through the filter film 35 again, the light enters the waveguide 3≠, and the lights with wavelengths λ1 and λ2 can be taken out from the waveguides 33 and 3≠, respectively.

また逆に、導波路33へ波長λ1の光を、また導波路3
≠に波長λ2の光をそれぞれ入射させれば、これら両波
長の混合した光を導波路32から取り出すことができる
Conversely, the light of wavelength λ1 is sent to the waveguide 33, and the light of wavelength λ1 is sent to the waveguide 33.
If light with a wavelength λ2 is made incident on each of the wavelengths ≠, a mixture of these two wavelengths can be extracted from the waveguide 32.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第t1図の構造では、光の入出力のために導波路の端部
に接読される光7アイパ等の部材が基板上の周辺に分散
して、しかも異なる角度で配置され、したがって回路を
装置内に組み付ける場合に導波回路基板に大きな配置ス
ペースを要するとともに、組み立て時に作業が煩雑にな
るという間順がある。
In the structure shown in Fig. t1, components such as an optical 7-eyeper that is read directly at the end of the waveguide for inputting and outputting light are distributed around the board and are arranged at different angles, so that the circuit is When assembled into a device, the waveguide circuit board requires a large installation space and the assembly process becomes complicated.

また第5図の従来構造では、干渉フィルタ膜3jに接す
る導波路32.33の連結部と導波路3グの端部との位
置関係に合せて、スペーサー36の厚みを厳密に加工仕
上げする必要があり、また導波回路基板に接合する作業
を必要とするため製作に手間がかかり、量産に適してい
ないという問題がある。
In addition, in the conventional structure shown in FIG. 5, the thickness of the spacer 36 must be precisely processed to match the positional relationship between the connecting portion of the waveguides 32 and 33 in contact with the interference filter film 3j and the end of the waveguide 3g. Furthermore, since it requires bonding to a waveguide circuit board, it is time-consuming to manufacture, making it unsuitable for mass production.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題を解決する本発明の分割合流回路は、基板に
形成した光導波回路中に、分岐部と、分岐した一方の導
波路を折り返す折り返し部とを設けて、全ての導波路端
を基板の一側縁に臨ませ、前記分岐部に導波路を分断す
る溝を設けて該溝中に部分透過反射フィルタを介装する
とともに、前記折り返し部に光反射体を配置した。
The splitting and merging circuit of the present invention that solves the above problems is provided with a branching part and a folding part for folding back one of the branched waveguides in an optical waveguide circuit formed on a substrate, so that all waveguide ends are connected to the substrate. A groove for dividing the waveguide was provided in the branch part facing one side edge of the waveguide, a partially transmitting reflection filter was interposed in the groove, and a light reflector was arranged in the folded part.

〔作 用〕[For production]

導波路中を伝搬する光は、分岐部にあるフィルタによっ
て透過光と夏射光とに波長あるいはパワー分割され、分
割された光は分岐路を伝搬した後、折り返し部で反射体
により反射されてそのまま折り返し導波路中を伝搬し、
必要に応じて多段階に設けられた上記の分岐と反射折り
返しとを繰り返した後、各伝搬光はすべて基板の一側縁
に入力端とともに配置された出力端から取り出される。
The light propagating through the waveguide is split in wavelength or power into transmitted light and summer radiation by a filter in the branching section, and after propagating through the branching section, the split light is reflected by a reflector at the folding section and remains as it is. Propagates in a folded waveguide,
After repeating the above-mentioned branching and reflection folding, which are provided in multiple stages as necessary, all of the propagating lights are taken out from the output end, which is arranged along with the input end on one side edge of the substrate.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳細に説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図において、lはガラス、合成樹脂等の透明板から
成る基板で、この基板lには周辺よりも高屈折率の領域
から成る光導波路が、二段階イオン交換法等の方法で埋
め込み形成しである。
In Figure 1, l is a substrate made of a transparent plate made of glass, synthetic resin, etc., and an optical waveguide consisting of a region with a higher refractive index than the surrounding area is embedded in this substrate l by a method such as a two-step ion exchange method. It is.

上記の光導波路は、入力路2と、この入力路λから一定
角度(例えば、200)を成して分岐する反射光導波路
3および入力路の延長上にある透過光導波路ψとを有し
、透過光導波路ψは基板の側縁/b付近で入射i側に向
けて折り返す折り返し部jを有し、この折り返し部jで
導波路角部が基板側縁lbK露出しており、折り返し部
5前後の入射路tIaと反射路ダbとは、基板側縁lb
の面法線に対し一定角(−例として1O0)を成して対
称に光軸な傾けた略V字型を成している。
The optical waveguide has an input path 2, a reflective optical waveguide 3 branching from the input path λ at a certain angle (for example, 200 degrees), and a transmission optical waveguide ψ extending from the input path, The transmitted light waveguide ψ has a folded part j that is folded back toward the incident i side near the side edge /b of the substrate, and at this folded part j, the corner part of the waveguide is exposed at the substrate side edge lbK, and around the folded part 5 The incident path tIa and the reflection path dab are at the substrate side edge lb.
The optical axis is symmetrically inclined at a constant angle (for example, 100) with respect to the surface normal of the lens, forming a substantially V-shape.

そして反射光導波路3および透過光導波路ゲは端部付近
に曲線状にカーブする曲り部を形成して、基板側縁/a
から一定距離の範囲で光軸な基板側縁/aK対し垂直と
している。
The reflected light waveguide 3 and the transmitted light waveguide 3 form a curved part near the end of the substrate side edge/a.
The optical axis is perpendicular to the substrate side edge /aK within a certain distance from the optical axis.

また入出労金ての導波路端を一方の基板側縁/aに臨ま
せである。そして基板表面には、導波路分岐部6で導波
路を分断する溝7が基板の側縁/a。
In addition, the end of the waveguide for input and output is made to face the side edge /a of one of the substrates. On the surface of the substrate, there is a groove 7 that divides the waveguide at the waveguide branching portion 6 at the side edge /a of the substrate.

/b K対し平行に且つ基板全幅にわたり刻設してあり
、この溝7中の分岐部乙の箇所には特定波長の光を透過
(又は反射)シ、他の波長光を反射(又は?j過)する
干渉フィルタrが嵌装してあり、このフィルタの面法線
が入力路コと反射光導波路3との成す角を二等分するよ
うに両導波路2,3を傾斜させである。−例として溝7
を幅jOμm。
/b is engraved parallel to K and over the entire width of the board, and the branch part B in this groove 7 transmits (or reflects) light of a specific wavelength and reflects light of other wavelengths (or ?j An interference filter (r) is fitted in which the waveguides 2 and 3 are inclined so that the normal to the surface of this filter bisects the angle formed by the input path and the reflective optical waveguide 3. . -Groove 7 as an example
The width is jOμm.

深さ200μmとし、厚さ170μmに研磨薄板化した
フィルタtを入れ、紫外線硬化型の光学接着剤で固定す
る。また溝7の、透過光導波路を分断する箇所には、伝
搬光中のノイズ光をカットするための特定波長バンドパ
スフィルタ9を嵌装する。
A filter t polished and thinned to a depth of 200 μm and a thickness of 170 μm is inserted and fixed with an ultraviolet curing optical adhesive. Further, a specific wavelength bandpass filter 9 for cutting noise light in the propagating light is fitted in the groove 7 at a location where the transmitted light waveguide is divided.

例えばフィルタ!を5i02膜とTiO2膜とを交互に
積層した波長7μm以上の光を透過させる長波長パスフ
ィルタとし、フィルタ9として波長へ3μmK透過帯の
中心があるバンドパスフィルタを用いる。またフィルタ
透過光導波路の折り返し部jが露出している基板側縁/
bには光反射体10を配置する。この反射体10は例え
ばOu、Ag等の蒸着膜あるいは干渉フィルタなどが使
用でき、厚み5ooXのCu膜の場合波長へ3μmで9
6%の反射率が得られる。そして入力路2、反射光及び
憑過光各出力路3.グbの端部には光ファイバ//a、
//b。
For example, a filter! is a long-wavelength pass filter that transmits light with a wavelength of 7 μm or more, which is made by alternately laminating 5i02 films and TiO2 films, and a band-pass filter having a center transmission band of 3 μmK wavelength is used as filter 9. Also, the side edge of the substrate where the folded part j of the filter-transmitted optical waveguide is exposed/
A light reflector 10 is placed at b. For this reflector 10, a deposited film of Ou, Ag, etc. or an interference filter can be used, and in the case of a Cu film with a thickness of 50X, the wavelength is 3 μm and 9
A reflectance of 6% is obtained. and an input path 2, and output paths 3 for each of the reflected light and the transmitted light. At the end of the group b, there is an optical fiber //a,
//b.

Iloを接続する。Connect Ilo.

第2図に本発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

本例が第1図のものと異なる点は、フィルタ透過光導波
路ダの折り返し部!を基板側縁tbよりも内側に位置さ
せ、この折り返し部Sの角を切断するように且つ溝7に
平行に他の向/2を刻設し、この溝12中の折り返し部
jの位置に薄板状の光反射体IOを嵌装し、紫外線硬化
型の光学接着剤等で固定している。
The difference between this example and the one in FIG. 1 is the folded portion of the filter-transmitting optical waveguide! is located inside the side edge tb of the substrate, and another direction /2 is carved in parallel to the groove 7 so as to cut the corner of this folded part S, and at the position of the folded part j in this groove 12. A thin plate-shaped light reflector IO is fitted and fixed with an ultraviolet curing optical adhesive or the like.

第1図、第2図の回路において、例えばo、rsμm及
び/、3μmの二種の波長の混合光を入力路λへ入射さ
せると、干渉フィルタrで波長o、rrμmの光はほと
んど反射されて反射光導波路3へ導かれ、また波長/、
Jμmの光はほとんど透過して透過光導波路ダヘ導かれ
る。この導波路ダを伝搬する波長/、Jμmの光は、導
波路弘の折り返し部5に至り、反射体10で反射されて
折り返し部以降の導波路グb内をそのまま伝搬し、フィ
ルタタを透過した後、基板側縁/aの導波路端から出て
光7アイパ/10K入射する。フィルタrで反射された
Olに58mの波長光は基板側縁/a上の導波路端から
出射して光7アイパ//bに入射す、る。
In the circuits shown in Figures 1 and 2, for example, when mixed light of two wavelengths o, rsμm and/or 3μm is input to the input path λ, most of the light with wavelengths o and rrμm is reflected by the interference filter r. is guided to the reflected light waveguide 3, and the wavelength /,
Most of the light of J μm is transmitted and guided to the transmitted light waveguide. The light with a wavelength of /, Jμm propagating through this waveguide reaches the folded part 5 of the waveguide, is reflected by the reflector 10, propagates as it is in the waveguide b after the folded part, and is transmitted through the filter. After that, the light exits from the waveguide end of the substrate side edge /a and enters the light at 7 eye per/10K. The 58 m wavelength light O1 reflected by the filter r is emitted from the waveguide end on the substrate side edge /a and enters the light 7 eyeper//b.

上記の回路を用いて挿入損失を測定したところ、波長o
、rsttmのチャンネAt’O,jd13.波長/、
3μmチャンネルで/、IC1Bであった。その内訳は
、007dBがフィルタ嵌入溝7による損失、0.2C
IBが入力路2及びフィルタ反射光導波路3による損失
、O、J (iBが入力路2とフィルタ透過光導波路l
IKよる損失である。
When we measured the insertion loss using the above circuit, we found that the wavelength o
, rsttm channel At'O, jd13. wavelength/,
It was IC1B in the 3 μm channel. The breakdown is as follows: 007dB is the loss due to the filter fitting groove 7, and 0.2C
IB is the loss due to the input path 2 and the filter-reflecting optical waveguide 3, O, J (iB is the loss due to the input path 2 and the filter-transmitting optical waveguide l
This is a loss due to IK.

また遠端漏話減衰量は30dB以上であった。Further, the far end crosstalk attenuation was 30 dB or more.

第3図に本発明の他の実施例を示す。FIG. 3 shows another embodiment of the invention.

本例は導波回路中に3ケ所の分岐部6 a + 6 b
 rd0と、3ケ所の折り返し部ja、jb、jcを設
け、これら3ケ所の分岐部を通る1本の溝7中に、波長
選択特性の5%なる1種の干渉フィルタra 、 lr
b 。
In this example, there are three branch parts 6a + 6b in the waveguide circuit.
rd0 and three folded parts ja, jb, and jc are provided, and in one groove 7 passing through these three branching parts, one type of interference filter ra, lr having a wavelength selection characteristic of 5% is provided.
b.

IQ 、 rdを間隔をおいて固定している。回路パタ
ーンは、第1段のフィルタ、raを透過した後反射体1
0で反射され折り返し路を進む光を第2段フィルタrb
に導き、このフィルタの透過光を第1の折り返し路を通
して光ファイバ//Cに出射させ、反射光は第2段のフ
ィルタ反射光導波路で反射体10に導き、第2段折り返
し路で第3フィルタtOK導き、このフィルタrcの透
過光を導波路を通して光ファイバ//dに出射させ、ま
た反射光は第3段の反射光導波路を通して反射体ioに
導き第3段の折り返し路を伝搬させてフィルタ、1’(
1を透過させた後、光ファイバ//eに出射させるよう
にしている。
IQ and rd are fixed at intervals. The circuit pattern consists of a reflector 1 after passing through the first stage filter and ra.
The light reflected at 0 and traveling along the return path is passed through the second stage filter rb.
The transmitted light of this filter is emitted to the optical fiber //C through the first folding path, and the reflected light is guided to the reflector 10 by the second-stage filter reflection waveguide, and the reflected light is guided to the reflector 10 by the second-stage filter reflection waveguide. The filter tOK is guided, and the transmitted light of this filter rc is emitted to the optical fiber //d through the waveguide, and the reflected light is guided to the reflector io through the third-stage reflective optical waveguide and propagated through the third-stage folded path. Filter, 1'(
After transmitting the light 1, the light is emitted to the optical fiber //e.

上記の回路において入力路/りに例えば17種の波長0
.71rlLm 、 0.!#μm 、 /、2μm 
、 /、3/1mの光を含む混合光を入射させると第1
段フィルタIraを波長Oi2μm付近より長波長の光
を透過する長波長バスフィルタとしておけば0.7rμ
m波長光だけが反射されて光ファイバ/rbVc出力さ
れ、フィルタraを透過した残りの波長光は第2段フィ
ルタC0Jrμmバンドパスフィルタ)tbに至り、こ
こでo、rrμm波長光がフィルタを透過して光ファイ
バ/rCに出射する。
In the above circuit, for example, 17 types of wavelength 0 are input to the input path.
.. 71rlLm, 0. ! #μm, /, 2μm
, /, When mixed light including light of 3/1 m is incident, the first
If the stage filter Ira is set as a long wavelength bass filter that transmits light with a wavelength longer than the wavelength Oi around 2 μm, it will be 0.7 rμ.
Only the m wavelength light is reflected and outputted from the optical fiber/rbVc, and the remaining wavelength light that has passed through the filter ra reaches the second stage filter C0Jrμm bandpass filter)tb, where the o and rrμm wavelength light passes through the filter. and outputs it to an optical fiber/rC.

またフィルタrbで反射された八2μmと八3μmの混
合光は第3段のフィルタ(7,2μmバンドパスフィル
タ)rCに至り、ここでへコμmの光はフィルタrCを
透過した後光ファイバlrdに出射し、フィルタICで
反射された八3μmの光は第グ段フィルタ(/、3μm
バンドパスフィルタ)rdでノイズ光がカットされた後
、光ファイバ/♂eに出射する。
In addition, the mixed light of 82 μm and 83 μm reflected by filter rb reaches the third stage filter (7.2 μm band pass filter) rC, where the light of 8 μm passes through filter rC and is connected to optical fiber lrd. The 83 μm light emitted from the filter IC and reflected by the filter IC passes through the 8th stage filter
After the noise light is cut by the bandpass filter (bandpass filter) rd, it is emitted to the optical fiber /♂e.

以上本発明を分波器について説明したが、本発明の回路
は合波器あるいは双方向用の分波合波器としても用い得
ることは言うまでもない。
Although the present invention has been described above regarding a duplexer, it goes without saying that the circuit of the present invention can also be used as a multiplexer or a bidirectional multiplexer/multiplexer.

またフィルタとして、波長選択性のない部分透過反射フ
ィルタを用いることにより、分岐・合流回路、とじても
使用可能である。
Further, by using a partially transmitting/reflecting filter without wavelength selectivity as a filter, it can also be used as a branch/combiner circuit.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分岐部から分岐する一方の導波路を折
り返すことによってすべての導波路端を基板の一側縁に
臨ませたので、光ファイバを接続する際(、複数のファ
イバを並列一体化した7アイバアレイを用いてすべての
導波路端に同時に接続することができ、組立作業性が大
幅に向上する。
According to the present invention, by folding back one of the waveguides branching from the branch part, all the waveguide ends are exposed to one side edge of the substrate. Using the 7-eyebar array, all waveguide ends can be connected simultaneously, greatly improving assembly workability.

また装置内に組み込んだ場合にも小さなスペースで済む
Furthermore, when it is incorporated into a device, it requires only a small space.

また入出力端を基板の一辺に集中させるための分岐伝搬
光の方向転換も導波路を通したまま行なうようにしてい
るので、前述した従来の透明スペーサー付加型に比べて
組立て作業が容易になり、且つ導波回路は周知の7オ)
 IJソグラフイ技術を用いて高精密にパターン化でき
るため、損失の少ない安定した品質の光分割合流回路が
得られる。
In addition, the direction change of branched propagation light to concentrate the input and output ends on one side of the substrate is performed while passing through the waveguide, making assembly easier than the conventional transparent spacer added type mentioned above. , and the waveguide circuit is well-known 7)
Since it can be patterned with high precision using IJ lithography technology, a light splitting/combining circuit with low loss and stable quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

8F17図は本発明の第7の実施例を示す平面図、第一
図は本発明の第2の実施例を示す平面図、第3図は本発
明の第3の実施例を示す平面図、第グ図は従来の分割合
流回路の例を示す平面図、第3図は従来の他の例を示す
平面図である。 l・・・・・・基 板 2・・曲入力路3・・・・・・
フィルタ反射光導波路 グ・・・・・・フィルタ透過光導波路 !・・・・・・折り返し部 6・・・・・・分岐部7、
/コ・・・・・・溝!、ワ・・・・・・フィルタ10・
・・・・・光反射体 //a、 /lb、 //C・・
開光ファイバ 1【ゴを?、1 第1図 第2図 第3図
8F17 is a plan view showing the seventh embodiment of the present invention, Fig. 1 is a plan view showing the second embodiment of the invention, Fig. 3 is a plan view showing the third embodiment of the invention, FIG. 3 is a plan view showing an example of a conventional dividing and merging circuit, and FIG. 3 is a plan view showing another example of the conventional circuit. l... Board 2... Song input path 3...
Filter reflection optical waveguide...Filter transmission optical waveguide! ...Turning section 6... Branching section 7,
/ Ko... Groove! , Wa... Filter 10.
...Light reflector //a, /lb, //C...
Opening fiber 1 [Go? , 1 Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)基板に形成した光導波回路中に、分岐部と、分岐
した一方の導波路を折り返す折り返し部とを設けて、全
ての導波路端を基板の一側縁に臨ませ、前記分岐部に導
波路を分断する溝を設けて該溝中に部分透過反射フィル
タを介装するとともに、前記折り返し部に光反射体を配
置したことを特徴とする光分割合流回路。
(1) In the optical waveguide circuit formed on the substrate, a branch part and a folding part for folding back one of the branched waveguides are provided so that all the waveguide ends face one side edge of the substrate, and the branch part 1. A light splitting/combining circuit characterized in that a groove is provided to divide a waveguide, a partially transmitting/reflecting filter is interposed in the groove, and a light reflector is disposed in the folded portion.
(2)前記折り返し部の導波路角部を基板の側縁よりも
内側に位置させ、該角部を通る溝を基板に形成して、該
溝中に光反射体を嵌装した特許請求の範囲第1項記載の
光分割合流回路。
(2) The waveguide corner of the folded portion is located inside the side edge of the substrate, a groove passing through the corner is formed in the substrate, and a light reflector is fitted in the groove. A light splitting/combining circuit according to scope 1.
(3)前記折り返し部の導波路角部を基板の側縁に露出
させ、この露出面に接して光反射体を設けた特許請求の
範囲第1項記載の光分割合流回路。
(3) The light splitting/combining circuit according to claim 1, wherein the waveguide corner of the folded portion is exposed at the side edge of the substrate, and a light reflector is provided in contact with this exposed surface.
JP30581386A 1986-12-22 1986-12-22 Optical dividing and combining circuit Pending JPS63157108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30581386A JPS63157108A (en) 1986-12-22 1986-12-22 Optical dividing and combining circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30581386A JPS63157108A (en) 1986-12-22 1986-12-22 Optical dividing and combining circuit

Publications (1)

Publication Number Publication Date
JPS63157108A true JPS63157108A (en) 1988-06-30

Family

ID=17949676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30581386A Pending JPS63157108A (en) 1986-12-22 1986-12-22 Optical dividing and combining circuit

Country Status (1)

Country Link
JP (1) JPS63157108A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520924A (en) * 2003-03-22 2006-09-14 キネテイツク・リミテツド Optical wavelength division multiplexing / demultiplexing equipment
US7110170B2 (en) 2003-08-20 2006-09-19 Samsung Electronics Co., Ltd. Semiconductor optical amplifier having photo detector and method of fabricating the same
JP2008241825A (en) * 2007-03-26 2008-10-09 Kyocera Corp Optical multiplexer/demultiplexer
JP2008268893A (en) * 2007-03-26 2008-11-06 Kyocera Corp Optical multiplexer/demultiplexer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520924A (en) * 2003-03-22 2006-09-14 キネテイツク・リミテツド Optical wavelength division multiplexing / demultiplexing equipment
US7110170B2 (en) 2003-08-20 2006-09-19 Samsung Electronics Co., Ltd. Semiconductor optical amplifier having photo detector and method of fabricating the same
JP2008241825A (en) * 2007-03-26 2008-10-09 Kyocera Corp Optical multiplexer/demultiplexer
JP2008268893A (en) * 2007-03-26 2008-11-06 Kyocera Corp Optical multiplexer/demultiplexer

Similar Documents

Publication Publication Date Title
GB2189621A (en) Optical demultiplexer and/or multiplexer
JP2531634B2 (en) Optical multiplexer / demultiplexer
GB2046941A (en) Optical waveguide branching device
CA2175886C (en) Optical wavelength division multiplexer device
JPH09159851A (en) Waveguide type optical multiplexing/demultiplexing module
WO2007020778A1 (en) Optical reflector and optical system
JPS63157108A (en) Optical dividing and combining circuit
JPS62183405A (en) Optical waveguide circuit with taper and its production
EP0463779A1 (en) Fibre optic waveguide beam splitter
JPS62141506A (en) Optical demultiplexer and multiplexer
JPH05203830A (en) Optical multiplexer demultiplexer
JPS5868713A (en) Optical demultiplexing circuit
JPS61284706A (en) Optical device
JPS61284707A (en) Optical multiplexer and demultiplexer
JPS61223711A (en) Demultiplexer for optical communication
JPS61249004A (en) Optical multiplexer and demultiplexer
JP2783362B2 (en) Waveguide type optical star coupler
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
JP2946434B2 (en) Multi-branch or multi-branch structure of optical fiber and optical waveguide
JP2752848B2 (en) Manufacturing method of optical waveguide with interference filter
JPS6298305A (en) Waveguide type optical multiplexing and demultiplexing circuit
JPH03291603A (en) Optical multiplexer/demultiplexer
JPH0749430A (en) Optical circuit part
JPS6333708A (en) Optical multiplexer/demultiplexer
JPH11190809A (en) Multiplexer demultiplexer