JPS63156997A - Tube leakage sensing device in sea water cooling type heat exchanger - Google Patents

Tube leakage sensing device in sea water cooling type heat exchanger

Info

Publication number
JPS63156997A
JPS63156997A JP30566186A JP30566186A JPS63156997A JP S63156997 A JPS63156997 A JP S63156997A JP 30566186 A JP30566186 A JP 30566186A JP 30566186 A JP30566186 A JP 30566186A JP S63156997 A JPS63156997 A JP S63156997A
Authority
JP
Japan
Prior art keywords
seat
heat exchanger
sampling
fresh water
freshwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30566186A
Other languages
Japanese (ja)
Inventor
Masaru Hirata
勝 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30566186A priority Critical patent/JPS63156997A/en
Publication of JPS63156997A publication Critical patent/JPS63156997A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an early inspection of a presence or absence of a leakage of a tube by a method wherein both sample seats at a fresh water outlet port and inlet port, a circulation pipe connecting both seats, a three-way changing- over valve changed over through a timer and the like and a chlorine condensation analyzer are provided. CONSTITUTION:The fresh water outlet port and the inlet port of a heat exchanger 1 are provided with a fresh water outlet sampling seat (hereinafter called as S-seat) and a fresh water inlet port S-seat 13. A heat exchanger 1 is provided with a barrel upper S-seat 14 and a barrel lower S-seat 15. The S-seat 12 and S-seat 13 are connected by a circulation pipe 16, a part of the fresh water flowing out of the heat exchanger 1 is taken out of the outlet S-seat 12, passed through the circulation pipe 16, returned to the inlet S-seat 13 and at the same time a flow path, to a three-way changing-over valve 18 is changed over by a pump 17 at a set time interval, a chlorine concentration in the sampling is inspected by an analyzer 23, thereby an occurrence of a leakage in tube can be detected rapidly and various disadvantages caused by the leakage can be prevented and a highly reliable operation can be assured.

Description

【発明の詳細な説明】 し発明の目的] (産業上の利用分野) 本発明は例えば原子力発電所における冷却水系熱交換器
等に適用される海水冷却型熱交換器のチューブ14洩検
出装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a tube 14 leak detection device for a seawater-cooled heat exchanger, which is applied to a cooling water system heat exchanger in a nuclear power plant, for example. .

(従来の技術) 一般に原子力発電所における冷却水系熱交換器は、被冷
却流体として海水を使用しているため熱交換器にチュー
ブ漏洩が発生した場合、冷却水中に満水が流入する可能
性がある。そして、冷却水中に海水が流入すると、冷却
水は通常防良剤入りの淡水を使用していることから海水
中の塩素が淡水中に混入し、防食効果が低下するなどの
不具合が発生する。
(Prior technology) Cooling water heat exchangers in nuclear power plants generally use seawater as the fluid to be cooled, so if a tube leak occurs in the heat exchanger, there is a possibility that full water will flow into the cooling water. . If seawater flows into the cooling water, the chlorine in the seawater will mix into the freshwater, causing problems such as a reduction in the anti-corrosion effect, since the cooling water is usually freshwater containing an anti-corrosion agent.

このような不具合を未然に防止するために原子力発電所
では、熱交換器の冷却水出口から流出する淡水中の塩素
濃度を定期的に測定してチューブ漏洩の監視を行ってい
るが、測定傾度の面からも発見までに時間がかかり、発
見時点ではチューブ漏洩の規模が大きくなるという問題
があった。
To prevent such problems, nuclear power plants regularly measure the chlorine concentration in the fresh water flowing out from the cooling water outlet of the heat exchanger to monitor tube leakage, but the measurement slope There was also the problem that it took a long time to discover the leakage, and by the time it was discovered, the scale of the tube leakage had become large.

また、チューブ漏洩の初期はピンホール状の腐食である
ことから淡水中あるいは海水中の不純物(例、えばゴミ
、錆等)によってピンホール箇所が塞がれ、チューブ漏
洩を見落とす可能性もあり、さらにチューブ漏洩を判断
するためにはある程度熱交換器内の塩素分上昇傾向を確
認する必要があり、熱交換器内に海水のみをインサービ
スし、海水を強制的に淡水中へ流入させる方法を採用し
ている。しかしながら、熱交換器の淡水出入口弁を全開
として海水系のみを流通させていることからチューブ漏
洩の箇所(例えば熱交換器の胴上部)によっては海水を
含む試料を取出すのに相当な時間を費やすなどの問題も
あった。
In addition, since the initial stage of tube leakage is corrosion in the form of pinholes, the pinholes may be blocked by impurities in freshwater or seawater (e.g., dirt, rust, etc.) and tube leakage may be overlooked. Furthermore, in order to determine tube leakage, it is necessary to confirm the tendency of the chlorine content in the heat exchanger to increase to some extent, so we recommend a method in which only seawater is in-service in the heat exchanger and the seawater is forced to flow into fresh water. We are hiring. However, since the freshwater inlet/outlet valve of the heat exchanger is fully opened and only seawater is allowed to flow, it takes a considerable amount of time to extract samples containing seawater depending on the location of the tube leak (for example, the upper part of the heat exchanger). There were also other problems.

(発明が解決しようとする問題点) 以上のように従来においては熱交換器の淡水出口から流
出する淡水中の塩素濃度を定期的に測定してチューブ漏
洩の監視を行っているため、チューブ漏洩の発見に時間
がかかり、チューブ漏洩の規模が大きくなるなどの問題
があった。
(Problems to be Solved by the Invention) As mentioned above, in the past, tube leakage was monitored by periodically measuring the chlorine concentration in the fresh water flowing out from the fresh water outlet of the heat exchanger. There were problems such as it took time to discover tube leaks and the scale of tube leaks increased.

本発明はこのような問題点に着目してなされたもので、
その目的とするところは、熱交換器のチューブ漏洩を早
期に検出することができる海水冷却型熱交換器のチュー
ブ漏洩検出5A置を提供することにある。
The present invention was made by focusing on these problems.
The purpose is to provide a tube leakage detection device 5A for a seawater cooled heat exchanger that can detect tube leakage in a heat exchanger at an early stage.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために本発明は、チューブ側を海
水が胴側を淡水が流れる海水冷却型熱交換器の淡水出入
口に設けられた淡水出ロ側すンプリング座および淡水入
口側サンプリング座と、これらのサンプリング座に接続
し前記熱交換器より流出する淡水の一部を循環させるサ
ンプリング取出し用循環配管と、このサンプリング取出
し用循環配管に設けられタイマー等により一定時間毎に
流路が切替わる三方切換弁と、この三方切換弁より取出
されたサンプリング中の塩素濃度を検出する塩素濃度分
析計とを具備したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention is provided at the fresh water inlet/outlet of a seawater-cooled heat exchanger where seawater flows through the tube side and freshwater flows through the body side. a sampling seat on the freshwater outlet side and a sampling seat on the freshwater inlet side, a circulation pipe for sampling extraction connected to these sampling seats and circulating a part of the fresh water flowing out from the heat exchanger, and a circulation pipe for taking out the sampling. It is characterized by comprising a three-way switching valve that is installed in the pipe and switches the flow path at regular intervals using a timer or the like, and a chlorine concentration analyzer that detects the chlorine concentration in the sample taken out from the three-way switching valve. It is.

(作 用) 本発明においては海水冷却型熱交換器より流出°する淡
水の一部を熱交換器の淡水出口に設けられた淡水出ロ側
すンプリング座より取出し、サンブリ・ング取出し用循
環配管を経由して熱交換器の淡水入口に設けられた淡水
入口側サンプリング座へ戻すとともに、上記サンプリン
グ取出し用循環配管に設けられた三方切換弁の流路を一
定時間毎に切替え、この三方切換弁より取出されたサン
プリング中の塩素濃度を塩素濃度分析計で検出すること
により、チューブ漏洩の発生を早期に検出することがで
きる。
(Function) In the present invention, a part of the fresh water flowing out from the seawater cooling type heat exchanger is taken out from the fresh water outlet side spring seat provided at the fresh water outlet of the heat exchanger, and the circulation pipe for taking out the sample is removed. is returned to the freshwater inlet side sampling seat provided at the freshwater inlet of the heat exchanger, and the flow path of the three-way switching valve provided in the circulation piping for sampling is switched at regular intervals, and this three-way switching valve By detecting the chlorine concentration in the sample taken out using a chlorine concentration analyzer, the occurrence of tube leakage can be detected at an early stage.

(実 施 例) 以下、図面を参照して本発明の実施例について説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示すチューブ漏洩検出装置
の構成図で、図中1は海水冷却型熱交換器である。この
熱交換器1は第2図に示すようにチューブ3側を海水が
胴側を淡水が流れる構造となっており、海水入口ライン
2より流入した海水はチューブ3内を通って海水出口ラ
イン4へ流出し、淡水入口ライン5より流入した淡水は
仕切板6の間を通って淡水出口ライン7へ流出するよう
になっている。そして、熱交換器1内の淡水側圧力は海
水側圧力よりも高い設計となっており、チューブ漏洩が
発生した場合でも淡水が海水側へ流入しないlI3!I
となっている。また、上記海水入口ライン2.海水出口
ライン4.淡水入口ライン5および淡水出口ライン7に
はそれぞれ海水人口弁8、海水出口弁9.淡水人口弁1
0.淡水出口弁11が設けられ、熱交換器1を系統から
隔離できるようになっている。
FIG. 1 is a block diagram of a tube leakage detection device showing an embodiment of the present invention, and numeral 1 in the figure is a seawater-cooled heat exchanger. As shown in Fig. 2, this heat exchanger 1 has a structure in which seawater flows through the tube 3 side and freshwater flows through the body side, and the seawater flowing in from the seawater inlet line 2 passes through the tube 3 and flows through the seawater outlet line 4. The fresh water that flows into the fresh water inlet line 5 passes between the partition plates 6 and flows out to the fresh water outlet line 7. The pressure on the freshwater side of the heat exchanger 1 is designed to be higher than the pressure on the seawater side, so that even if a tube leak occurs, freshwater will not flow into the seawater side lI3! I
It becomes. In addition, the above seawater inlet line 2. Seawater outlet line 4. The freshwater inlet line 5 and the freshwater outlet line 7 are provided with a seawater population valve 8 and a seawater outlet valve 9, respectively. Freshwater artificial dialect 1
0. A fresh water outlet valve 11 is provided to allow isolation of the heat exchanger 1 from the system.

上記熱交換器1の淡水出入口には淡水出ロ側すンプリン
グ座12および淡水入口側サンプリング座13が設けら
れ、また熱交換器1の胴上部及び胴下部には胴上部側サ
ンプリング座14および胴下部側サンプリング座15が
設けられている。上記淡水出ロ側すンプリング座12お
よび淡水入口側サンプリング座13にはサンプリング取
出し用循環配管16が接続されており、熱交換器1より
流出する淡水の一部をサンプリングポンプ17により三
方切換弁18を介して熱交換器1の淡水入口側へ戻す構
成となっている。
A fresh water outlet side sampling seat 12 and a fresh water inlet side sampling seat 13 are provided at the fresh water inlet and outlet of the heat exchanger 1, and a body upper side sampling seat 14 and a body upper body side sampling seat 14 are provided at the upper and lower body parts of the heat exchanger 1. A lower sampling seat 15 is provided. A circulation pipe 16 for sampling is connected to the freshwater outlet side sampling seat 12 and the freshwater inlet side sampling seat 13, and a part of the freshwater flowing out from the heat exchanger 1 is transferred to a three-way switching valve 18 by a sampling pump 17. The fresh water is returned to the fresh water inlet side of the heat exchanger 1 via the .

上記三方切換弁18は図示しないタイマー等により一定
時間毎に流路が切替わり、サンプリング取出し用循環配
管16を流れる淡水の一部を配管19を介してサンプル
タンク20へ流すようになっている。このサンプルタン
ク20の底部には塩素濃度分析計23と接続したサンプ
ル導入配管22が接続されており、サンプルタンク出口
弁21が開となることによりサンプルタンク20内のサ
ンプル溶液がサンプル導入配管21を介して塩素濃度分
析計23へ導入する構成となっている。
The flow path of the three-way switching valve 18 is switched at regular intervals by a timer or the like (not shown), so that a portion of the fresh water flowing through the sampling extraction circulation pipe 16 is allowed to flow through the pipe 19 to the sample tank 20. A sample introduction pipe 22 connected to a chlorine concentration analyzer 23 is connected to the bottom of the sample tank 20. When the sample tank outlet valve 21 is opened, the sample solution in the sample tank 20 flows through the sample introduction pipe 21. It is configured to be introduced into the chlorine concentration analyzer 23 via the chlorine concentration analyzer 23.

上記塩素濃度分析計23には硝酸溶液タンク24および
硝酸銀溶液タンク25がそれぞれ硝酸供給弁26および
硝酸銀供給弁27を介して接続されている。また、塩素
i1度分析計23にはサンプル溶液攪拌用の超音波加振
器28が設けられ、さらに塩素濃度検出値を記録するた
めの記録装置29が接続されている。なお、図中30は
圧力計、31は熱交換器淡水側ベント弁、32及び33
は塩素濃度分析計23に設けられたベント弁とドレン弁
、34はサンプルタンクオーバーフローラインである。
A nitric acid solution tank 24 and a silver nitrate solution tank 25 are connected to the chlorine concentration analyzer 23 via a nitric acid supply valve 26 and a silver nitrate supply valve 27, respectively. Further, the chlorine i1 degree analyzer 23 is provided with an ultrasonic vibrator 28 for stirring the sample solution, and is further connected to a recording device 29 for recording the detected chlorine concentration value. In addition, in the figure, 30 is a pressure gauge, 31 is a heat exchanger freshwater side vent valve, 32 and 33
are a vent valve and a drain valve provided in the chlorine concentration analyzer 23, and 34 is a sample tank overflow line.

次にこのように構成された本装置の作用について説明す
る。熱交換器1より流出する淡水の一部は淡水出口側サ
ンプリング座12よりサンプル取出し用循環配管16に
流入し、サンプリングポンプ17により三方切換弁18
→淡水入口側サンプリング!!13→熱交換器1→淡水
出口側サンプリング座12→サンプル取出し用循環配管
16→サンプリングポンプ17→三方切換弁18を循環
する。このとき、三方切換弁18は一定時間毎にタイマ
ー作動し、循環中のサンプルを配管1つを介してサンプ
ルタンク20へ導入する。サンプルタンク20に導入さ
れたサンプルはサンプルタンク出口弁21が開となるこ
とによりサンプル導入配管22を介して塩素濃度分析計
23に導入され、次の手順でサンプル中の塩素濃度が測
定される。
Next, the operation of the apparatus configured as described above will be explained. A part of the fresh water flowing out from the heat exchanger 1 flows into the sample extraction circulation pipe 16 from the sampling seat 12 on the fresh water outlet side, and is transferred to the three-way switching valve 18 by the sampling pump 17.
→Freshwater inlet side sampling! ! 13→heat exchanger 1→freshwater outlet side sampling seat 12→sample extraction circulation piping 16→sampling pump 17→three-way switching valve 18. At this time, the three-way switching valve 18 operates on a timer at regular intervals, and the sample being circulated is introduced into the sample tank 20 through one pipe. The sample introduced into the sample tank 20 is introduced into the chlorine concentration analyzer 23 via the sample introduction pipe 22 by opening the sample tank outlet valve 21, and the chlorine concentration in the sample is measured in the following procedure.

まず、塩素濃度分析計23内のサンプルに硝酸溶液タン
ク24の硝酸溶液を硝酸供給弁26を介して数秒間滴下
し、さらにl111酸銀溶液タンク25の硝酸銀溶液を
硝酸銀供給弁27を介して数秒間滴下する。その後、塩
素ma分析計23内のサンプルを超音波加振器28で攪
拌し、塩化銀とじて生成したサンプルの沈澱層を比色す
ることにより透過度を求め、この透過度を塩素濃度に換
算して記録装W129へ出力する。そして、測定終了後
はベント弁32およびドレン弁33を開とし、塩素ar
t分析計23内のサンプルを排出する。
First, the nitric acid solution in the nitric acid solution tank 24 is dripped onto the sample in the chlorine concentration analyzer 23 for several seconds via the nitric acid supply valve 26, and then the silver nitrate solution in the l111 silver solution tank 25 is added dropwise via the silver nitrate supply valve 27. Drip for seconds. After that, the sample in the chlorine MA analyzer 23 is stirred with the ultrasonic vibrator 28, and the precipitated layer of the sample formed with silver chloride is color-compared to determine the transmittance, and this transmittance is converted into the chlorine concentration. and outputs it to the recording device W129. After the measurement is completed, the vent valve 32 and drain valve 33 are opened, and the chlorine ar
t Eject the sample in the analyzer 23.

上記の濃度測定を一定時間毎に行うことにより熱交換器
1の淡水出口より流出する淡水中の塩素濃度を測定でき
るので、熱交換器1内にチューブ漏洩が発生したか否か
をVfI認できる。そして、チューブ漏洩が確認された
場合は熱交換器1に設けられた胴上部側サンプリング座
14および胴下部側サンプリング座15を利用して次の
方法によりチューブ漏洩の発生箇所を1認できる。
By performing the above concentration measurement at regular intervals, it is possible to measure the chlorine concentration in the fresh water flowing out from the fresh water outlet of the heat exchanger 1, so it is possible to determine whether or not tube leakage has occurred in the heat exchanger 1. . If tube leakage is confirmed, the location where the tube leakage occurs can be immediately identified by the following method using the upper body sampling seat 14 and the lower body sampling seat 15 provided on the heat exchanger 1.

まず、淡水入口ライン5および淡水出口ライン7に設け
られた淡水人口弁10および淡水出口弁11を閉じ、熱
交換器1の淡水側を隔離すると共に熱交換器1の淡水側
ベント弁31を開にして淡水側を大気圧とする。なお、
大気圧とした後はベント弁31を閉じる。また、このと
き熱交換器1の海水側は流通させておく。次にサンプリ
ング取出し用循環配管16のサンプル取出し口を胴上部
側サンプリング座14に接続し、サンプリング取出し用
循環配管16のサンプル戻し口を淡水出口側サンプリン
グ座12に接続する。そして、この状態で熱交換器1内
の淡水をサンプリングポンプ17により胴上部側サンプ
リング座14→サンプリング取出し用循環配管16→三
方切換弁18→淡水出ロ側サンプリング座12を循環さ
せ、三方切換弁18の流路を一定時間毎に切替えること
によりチューブ漏洩が胴上部側に発生しているが否かを
確認できる。
First, the freshwater intake valve 10 and freshwater outlet valve 11 provided in the freshwater inlet line 5 and freshwater outlet line 7 are closed, the freshwater side of the heat exchanger 1 is isolated, and the freshwater side vent valve 31 of the heat exchanger 1 is opened. and the freshwater side to atmospheric pressure. In addition,
After reaching atmospheric pressure, the vent valve 31 is closed. Moreover, at this time, the seawater side of the heat exchanger 1 is allowed to flow. Next, the sample take-out port of the circulation pipe 16 for sampling take-out is connected to the sampling seat 14 on the upper body side, and the sample return port of the circulation pipe 16 for sampling take-out is connected to the sampling seat 12 on the freshwater outlet side. In this state, the fresh water in the heat exchanger 1 is circulated by the sampling pump 17 through the sampling seat 14 on the upper part of the body → the circulation piping 16 for sampling extraction → the three-way switching valve 18 → the sampling seat 12 on the freshwater outlet side, and the three-way switching valve By switching the flow paths 18 at regular intervals, it is possible to check whether tube leakage is occurring on the upper part of the body.

また、熱交換器1の胴下部側を監視する場合はサンプリ
ング取出し用循環配管16のサンプル取出し口を胴下部
側サンプリング座15に接続し、サンプリング取出し用
循環配管16のサンプル戻し口を淡水入口側サンプリン
グ座13に接続することにより上記と同様の方法でチュ
ーブ漏洩が胴上8I1mに発生しているか否かを確認で
きる。さらに、本実施例では熱交換器1の淡水側及び海
水側を隔離し、サンプリングポンプ1,7で淡水側に運
転圧をかけ、淡水側の圧力を圧力計30で監視すること
によりチューブ3の健全性を確認できる。
In addition, when monitoring the lower body side of the heat exchanger 1, connect the sample take-out port of the circulation piping 16 for sampling take-out to the sampling seat 15 on the lower body side, and connect the sample return port of the circulation pipe 16 for sampling take-out to the fresh water inlet side. By connecting to the sampling seat 13, it can be confirmed whether or not tube leakage has occurred on the upper part of the trunk 8I1m in the same manner as described above. Furthermore, in this embodiment, the freshwater side and the seawater side of the heat exchanger 1 are isolated, the sampling pumps 1 and 7 apply operating pressure to the freshwater side, and the pressure on the freshwater side is monitored with a pressure gauge 30. You can check the health.

上述したように本実施例では、海水冷却型熱交換器1よ
り流出する淡水の一部を熱交換器1の淡水出口に設けら
れた淡水出口側サンプリング座12より取出し、サンプ
リング取出し用循環配管16を経由して熱交換器1の淡
水入口に設けられた淡水入口側サンプリング座13へ戻
すとともに、上記サンプリング取出し用循環配管16に
設けられた三方切換弁18の流路を一定時間毎に切替え
、この三方切換弁18より取出されたサンプリング中の
塩素濃度を塩素濃度分析計23で検出することにより、
チューブ漏洩の発生の有無を早期に検出することができ
る。
As described above, in this embodiment, a part of the fresh water flowing out from the seawater cooling type heat exchanger 1 is taken out from the fresh water outlet side sampling seat 12 provided at the fresh water outlet of the heat exchanger 1, and a part of the fresh water flowing out from the seawater cooling type heat exchanger 1 is taken out from the fresh water outlet side sampling seat 12, is returned to the freshwater inlet side sampling seat 13 provided at the freshwater inlet of the heat exchanger 1 via the above, and the flow path of the three-way switching valve 18 provided in the sampling extraction circulation pipe 16 is switched at regular intervals, By detecting the chlorine concentration in the sample taken out from the three-way switching valve 18 with the chlorine concentration analyzer 23,
The presence or absence of tube leakage can be detected at an early stage.

[発明の効果] 以上説明したように本発明によれば、チューブ漏洩の発
生の有無を早期に検出できるのでチューブ漏洩による種
々の弊害を防止でき、熱交換器の信頼性を大幅に向上さ
せることができる。
[Effects of the Invention] As explained above, according to the present invention, the presence or absence of tube leakage can be detected at an early stage, so various adverse effects caused by tube leakage can be prevented, and the reliability of the heat exchanger can be greatly improved. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示し、第1図
はチューブ漏洩検出装置の構成図、第2図は海水冷却型
熱交換器の内部構造を示す断面図である。 1・・・海水冷却型熱交換器、2・・・海水入口ライン
、3・・・チューブ、4・・・海水出口ライン、5・・
・淡水入口ライン、7・・・淡水出口ライン、12・・
・淡水出口側サンプリング座、13・・・淡水入口側サ
ンプリング座、14・・・胴上部側サンプリング座、1
5・・・胴下部側サンプリング座、16・・・サンプリ
ング取出し用循環配管、17・・・サンプリングポンプ
、18・・・三方切換弁、20・・・サンプリングタン
ク、23・・・塩素濃度分析計、24・・・硝酸溶液タ
ンク、25・・・硝酸銀溶液タンク。
FIGS. 1 and 2 show an embodiment of the present invention, with FIG. 1 being a configuration diagram of a tube leak detection device, and FIG. 2 being a sectional view showing the internal structure of a seawater-cooled heat exchanger. 1...Seawater cooling type heat exchanger, 2...Seawater inlet line, 3...Tube, 4...Seawater outlet line, 5...
・Freshwater inlet line, 7...Freshwater outlet line, 12...
・Freshwater outlet side sampling seat, 13... Freshwater inlet side sampling seat, 14... Torso upper side sampling seat, 1
5... Sampling seat on the lower body side, 16... Circulation piping for sampling extraction, 17... Sampling pump, 18... Three-way switching valve, 20... Sampling tank, 23... Chlorine concentration analyzer , 24... Nitric acid solution tank, 25... Silver nitrate solution tank.

Claims (1)

【特許請求の範囲】[Claims] チューブ側を海水が胴側を淡水が流れる海水冷却型熱交
換器の淡水出入口に設けられた淡水出口側サンプリング
座および淡水入口側サンプリング座と、これらのサンプ
リング座に接続し前記熱交換器より流出する淡水の一部
を循環させるサンプリング取出し用循環配管と、このサ
ンプリング取出し用循環配管に設けられタイマー等によ
り一定時間毎に流路が切替わる三方切換弁と、この三方
切換弁より取出されたサンプリング中の塩素濃度を検出
する塩素濃度分析計とを具備したことを特徴とする海水
冷却型熱交換器のチューブ漏洩検出装置。
A sampling seat on the freshwater outlet side and a sampling seat on the freshwater inlet side are provided at the freshwater inlet/outlet of a seawater-cooled heat exchanger where seawater flows on the tube side and freshwater flows on the body side, and a sampling seat is connected to these sampling seats and flows out from the heat exchanger. A sampling take-out circulation pipe that circulates a portion of the fresh water to be taken out, a three-way switching valve installed in this sampling take-out circulation pipe whose flow path is switched at regular intervals by a timer, etc., and a sampling taken out from the three-way switching valve. A tube leak detection device for a seawater-cooled heat exchanger, characterized in that it is equipped with a chlorine concentration analyzer for detecting the chlorine concentration inside.
JP30566186A 1986-12-22 1986-12-22 Tube leakage sensing device in sea water cooling type heat exchanger Pending JPS63156997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30566186A JPS63156997A (en) 1986-12-22 1986-12-22 Tube leakage sensing device in sea water cooling type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30566186A JPS63156997A (en) 1986-12-22 1986-12-22 Tube leakage sensing device in sea water cooling type heat exchanger

Publications (1)

Publication Number Publication Date
JPS63156997A true JPS63156997A (en) 1988-06-30

Family

ID=17947823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30566186A Pending JPS63156997A (en) 1986-12-22 1986-12-22 Tube leakage sensing device in sea water cooling type heat exchanger

Country Status (1)

Country Link
JP (1) JPS63156997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016900A1 (en) * 1993-12-14 1995-06-22 Somerset Technical Laboratories Limited Leakage detection
JP2012202641A (en) * 2011-03-28 2012-10-22 Jfe Engineering Corp Gas heating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016900A1 (en) * 1993-12-14 1995-06-22 Somerset Technical Laboratories Limited Leakage detection
GB2291192A (en) * 1993-12-14 1996-01-17 Somerset Technical Lab Ltd Leakage detection
GB2291192B (en) * 1993-12-14 1996-06-12 Somerset Technical Lab Ltd Leakage detection
US6044692A (en) * 1993-12-14 2000-04-04 Somerset Technical Laboratories Limited Ultrasonic method of testing a plate heat exchanger for leakage
US6062068A (en) * 1993-12-14 2000-05-16 Somerset Technical Laboratories Ltd. Leakage testing method for a plate heat exchanger
EP1003024A1 (en) * 1993-12-14 2000-05-24 Somerset Technical Laboratories Limited Leakage detection
JP2012202641A (en) * 2011-03-28 2012-10-22 Jfe Engineering Corp Gas heating system

Similar Documents

Publication Publication Date Title
US6009745A (en) Method of leak testing an assembled plate type heat exchanger
US20230131905A1 (en) Cip control surveillance system and application of the system
JP6972041B2 (en) Monitoring system for liquid leaks from spent fuel pools
CN208308473U (en) The rapid-digestion cooling device of total nitrogen, total phosphorus in a kind of seawater
US6035700A (en) Method of leak testing an assembled plate type heat exchanger
CN210834884U (en) PH sampling test device
CN108896629B (en) Three-point flow type calibration device and method for sodium ion concentration meter
JPH048749B2 (en)
EP3586098A1 (en) Combustion chamber leak detection kit in vehicle engines
JPS63156997A (en) Tube leakage sensing device in sea water cooling type heat exchanger
CN112924156A (en) Loop filter element running performance test system
FI20185437A1 (en) Detecting leakage in a soda recovery boiler
CN110057767A (en) A kind of EO-1 hyperion water body attenuation by absorption measuring device and method based on buoy
CN206497069U (en) A kind of self-cleaning pH on-line monitoring systems
JP2001318057A (en) Residual chlorine measuring method and its device
US10684213B1 (en) Measurement of ion transport across a coating membrane
JP4417546B2 (en) Salt inspection equipment
CN206930614U (en) Full-automatic online PH detectors and its system
CN109725027A (en) The analysis part of steam analysis system
CN214893986U (en) Loop filter element running performance test system
CN220473485U (en) Cooling liquid detection device and cooling system
SU1395990A1 (en) Installation for determining concentration of gas dissolved in liquid
JPH04175639A (en) Device for monitoring gas dissolved in oil and method thereof
CN109580507A (en) A kind of parallel Quality Control water analysis outfit and method
US3492094A (en) Method and apparatus for detecting traces of soluble carbohydrates in a return flow of water in an industrial process