JPS63155828A - Optical multiplexer/demultiplexer and optical module therewith - Google Patents

Optical multiplexer/demultiplexer and optical module therewith

Info

Publication number
JPS63155828A
JPS63155828A JP61301258A JP30125886A JPS63155828A JP S63155828 A JPS63155828 A JP S63155828A JP 61301258 A JP61301258 A JP 61301258A JP 30125886 A JP30125886 A JP 30125886A JP S63155828 A JPS63155828 A JP S63155828A
Authority
JP
Japan
Prior art keywords
optical
waveguide
wavelength
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61301258A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Hirohisa Sano
博久 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61301258A priority Critical patent/JPS63155828A/en
Priority to PCT/JP1987/000969 priority patent/WO1988004785A1/en
Priority to US07/204,551 priority patent/US4909584A/en
Priority to DE3789551T priority patent/DE3789551T2/en
Publication of JPS63155828A publication Critical patent/JPS63155828A/en
Priority to EP88900099A priority patent/EP0296247B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To maintain an excellent oscillation and to attain an extremely low cost by forming a directional coupler type optical demultiplexer by using plural optical demultiplexer of the same parameter and constitution. CONSTITUTION:From light signals of wavelengths of lambda1, lambda2 incident to the input side port of a main light path 7-1, the one of lambda1 is demultiplexed by a directional coupler type optical demultiplexer 6-1, and the light transmits through a branch light path output side port 8-2. The light of lambda2 is not demultiplexed, and propagates through an output side port 7-2. A directional coupler type demultiplexer 6-2 demultiplexes the light signal of wavelength lambda1 leaked to the port 7-2-side, and lets it propagate to a branch light path output side port 9-2. Consequently, from the port output terminal 7-2, a light signal of wavelength lambda2 including no unnecessary signals can be taken out. The light signal of lambda1 demultiplexed by the demultiplexer 6-1 transmits through the light path 8-2, and demultiplexed again by a directional coupler type optical demultiplexer 6-3, and passes through an output side port 10-2. Since a mixed light signal of lambda2 propagates to the output terminal 8-2, only the light signal of lambda1 is taken out from the output terminal 10-2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光合分波器に関し、特に光フアイバ通信の光
波長多重伝送に用いられる光合波器、光分波器、および
光合分波器等の光学デバイスと、それらのデバイスに半
導体発光/受光素子等を一体化した光モジュールに関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical multiplexer/demultiplexer, and particularly to an optical multiplexer, an optical demultiplexer, and an optical multiplexer/demultiplexer used for optical wavelength multiplexing transmission in optical fiber communication. The present invention relates to optical devices such as the above, and an optical module in which semiconductor light emitting/light receiving elements and the like are integrated into these devices.

〔従来の技術〕 光フアイバ通信における光波長多重伝送技術は通信シス
テムの経済化をはかる上で重要であり、上記光波長多重
伝送において、光合分波器は必須のデバイスである。
[Prior Art] Optical wavelength division multiplexing transmission technology in optical fiber communications is important for economicalization of communication systems, and optical multiplexers and demultiplexers are essential devices in the above-mentioned optical wavelength division multiplexing transmission.

光合分波器の構成は、従来、干渉膜フィルタ型。Conventionally, the configuration of optical multiplexer/demultiplexer is an interference film filter type.

回折格子型のような個別部品型が主流をしめていた。こ
れに対して低コスト化、1チツプモノリシツク化をめざ
した導波路型構造を研究する動きが生じてきた。その−
例として、方向性結合器形光分波器(佐々木および大黒
二方向性結合器形光分波器、昭和53年度電子通信学会
総合全国大会。
Individual component types, such as the diffraction grating type, were the mainstream. In response, there has been a movement to research waveguide-type structures with the aim of lowering costs and making them monolithic in one chip. That-
As an example, a directional coupler type optical demultiplexer (Sasaki and Daikoku two-way coupler type optical demultiplexer, 1980 IEICE General National Conference) is given.

S6−2)がある。これは第7図に示すように、二つの
光導路を並行に配置させ、二つの光導波路の結合の波長
依存性を利用して、光分波特性を得る方法である。また
第8図は、複数個の方向性結合器4−1〜4−3と複数
の合波器5−1.5−2を用いて構成することにより、
アイソレーション特性の改善をはかるようにしたもので
ある。
S6-2). As shown in FIG. 7, this is a method of arranging two optical waveguides in parallel and utilizing the wavelength dependence of coupling between the two optical waveguides to obtain optical demultiplexing characteristics. Moreover, FIG. 8 shows that by configuring using a plurality of directional couplers 4-1 to 4-3 and a plurality of multiplexers 5-1, 5-2,
This is intended to improve isolation characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第7図の構成の光分波器は第9図の波長特性で示すよう
に、波長1.3 μmと1.55 μmの光分波を考え
た場合、高アイソレーション(透過減衰量25dB以上
)を保持する帯域幅が20nm程度しかない。そのため
、半導体発光素子の温度変動によって上記波長1.3 
μmと1.55 μmの値が変動すると、希望波長を分
波した系に非希望波長の光信号が漏洩してきて干渉を起
こし、信号品質を劣化させるという問題がある。
As shown in the wavelength characteristics of Figure 9, the optical demultiplexer with the configuration shown in Figure 7 has high isolation (transmission attenuation of 25 dB or more) when considering optical demultiplexing at wavelengths of 1.3 μm and 1.55 μm. ) is only about 20 nm wide. Therefore, due to temperature fluctuations of the semiconductor light emitting device, the above wavelength 1.3
If the values of .mu.m and 1.55 .mu.m fluctuate, there is a problem in that an optical signal of an undesired wavelength leaks into the system that demultiplexes the desired wavelength, causing interference and deteriorating signal quality.

第8図の構成の光分波器は高アイソレーションを保持す
ることができるが、構造寸法がそれぞれ異なる3つの方
向性結合器と、2つの合波器を用いなければならないた
めに、全体のサイズが大きくなり、導波路損失によって
損失が増大する。また、構造寸法がそれぞれ異なった方
向性結合器のため、それぞれに対応したマスクを用意し
なければならず、コスト高になる。また複雑な構成のた
め、製作が大変にむずかしい。特にサイズが大きいため
に、パターニング化のための露光用マスクが3枚以上も
必要になりコスト高、製作精度がでない、製作がむずか
しいといった問題点もある。
The optical demultiplexer with the configuration shown in Figure 8 can maintain high isolation, but because it requires the use of three directional couplers and two multiplexers with different structural dimensions, the overall As the size increases, the loss increases due to waveguide loss. Furthermore, since the directional couplers have different structural dimensions, masks must be prepared for each, which increases costs. Also, because of its complicated structure, it is extremely difficult to manufacture. In particular, because of the large size, three or more exposure masks are required for patterning, resulting in problems such as high cost, poor manufacturing accuracy, and difficulty in manufacturing.

さらに第7図および第8図の共通した問題点として、ポ
ート2および3側に半導体光素子(発光素子、または受
光素子、あるいはその両方)を一体的に形成した光モジ
ュールを実現した場合に、上記半導体光素子の1個ある
いは両方が特性劣化。
Furthermore, a common problem in FIGS. 7 and 8 is that when an optical module is realized in which semiconductor optical elements (light emitting elements, light receiving elements, or both) are integrally formed on the port 2 and 3 sides, Characteristics of one or both of the above semiconductor optical devices have deteriorated.

または寿命によりこわれたりした場合には、上記光モジ
ュールごと取り換えなければならず、非常に不経済であ
る。すなわち、光分波器がまだ使えるのにすてなければ
ならないからである。またこわれた場合にはとりかえな
ければならず、その間の通信の中断を余儀なくされると
いう問題点もある。すなわち、光モジユール自身の2重
化対策がほどこされておらず、使用者に不安をおこさせ
たり、通信を中断させることによる社会的な影響をおよ
ぼしたりする。
Or, if the optical module breaks down due to its lifespan, the entire optical module must be replaced, which is very uneconomical. In other words, the optical demultiplexer must be discarded even though it can still be used. There is also the problem that if it breaks, it must be replaced, and communication must be interrupted during that time. In other words, no duplication measures have been taken for the optical module itself, causing anxiety to users and causing social impact by interrupting communications.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、波長λ1とλ2の光信号が伝搬する主導波
路に波長λ1の光信号を分波させる第1の分岐導波路を
並行に配置して結合させ、該主導波路の出力側にさらに
波長λ1の光信号を分波させる第2の分岐導波路を並列
結合させ、該第1の分岐導波路の出力側にも波長λ1の
光信号を分波させる第3の分岐導波路を並列結合させる
ことにより、達成される。また上記各々の導波路の出力
側に半導体光素子を接続したり、主導波路と第1の分岐
導波路の入力側に光スイッチを接続することにより、達
成される。
The above purpose is to connect a main waveguide through which optical signals with wavelengths λ1 and λ2 propagate with a first branching waveguide that demultiplexes an optical signal with wavelength λ1 in parallel, and to further connect the main waveguide with wavelengths on the output side of the main waveguide. A second branching waveguide for branching an optical signal of wavelength λ1 is coupled in parallel, and a third branching waveguide for branching an optical signal of wavelength λ1 is also coupled in parallel on the output side of the first branching waveguide. This is achieved by: Furthermore, this can be achieved by connecting a semiconductor optical device to the output side of each of the waveguides, or by connecting an optical switch to the input side of the main waveguide and the first branch waveguide.

〔作用〕[Effect]

主導波路、および第1.2.3の分岐導波路を用いて同
一の光分波器を3つ構成させ、所望波長を分波させて伝
送させるポートに非希望波長阻止用のフィルタ部が構成
されるようにすることにより、高アイソレーシヨン特性
を実現することができる。また同一の光分波器であるの
で、一つの光分波器マスクを作っておいて、これを転写
露光するだけで上記構成を実現できるので、低コストで
あり、また光分波器を高精度で作ることができる。
Three identical optical demultiplexers are configured using the main waveguide and the 1.2.3 branch waveguide, and a filter section for blocking undesired wavelengths is configured at the port where the desired wavelength is demultiplexed and transmitted. By making it possible to achieve high isolation characteristics. In addition, since the optical demultiplexers are the same, the above configuration can be achieved by simply making one optical demultiplexer mask and transferring and exposing it, resulting in low cost and high performance optical demultiplexers. It can be made with precision.

また上記構成の4つの出力ポート側に発光素子。In addition, there are light emitting elements on the four output port sides of the above configuration.

または受光素子を配置させ、2つの入力ポート側に1×
2型の光スイッチを接続し、上記発光素子または受光素
子の動作状態監視回路を通して上記光スイッチの切換え
を制御することにより、2重化安全対策と自己故障診断
復帰機能をもたせ、通信の中断による使用者への不安や
社会的な影響を予防することができる。さらに、主導波
路の入力ポートへ波長λlの光信号を入力させ、第3の
分岐導波路の出力ポート側へ接続された受光素子で上記
波長λ1の光信号を受信し、増幅・波形整形回路を通し
て第2の分岐導波路の出力ポートに接続された波長λl
の光信号を発光する発光素子を駆動し、第1の分岐導波
路の入力ポートから波長λlの光信号を出力させる。逆
に、第1の分岐導波路の入力ポートへ入射した波長λ2
の光信号を第1の分岐導波路の出力ポートに接続さ九た
受光素子で受信し、増幅・波形整形回路を通して主導波
路の出力ポートに接続された波長λ2の光信号を発光す
る発光素子を駆動し、この波長λ2の光信号を主導波路
の入力ポートから出力させることにより、双方向伝送用
の光中継モジュールを実現させることができる。このよ
うな構成は全く新規なものであり、高アイソレーション
を保ち、かつ抜本的経済化をはかれ、さらに非常に単純
な構成であるので作りやすく、また光素子が出力ポート
へ平行に配列されているので作りやすく、また光の入出
力側も一方側に平行に配列しているので、装置内にコン
パクトにおさめられる。
Or, place a photodetector and place 1x on the two input ports.
By connecting a type 2 optical switch and controlling the switching of the optical switch through the operating status monitoring circuit of the light emitting element or light receiving element, it is possible to provide redundant safety measures and a self-failure diagnosis recovery function, and to prevent communication interruptions. It is possible to prevent anxiety and social influence on users. Furthermore, an optical signal of wavelength λl is inputted to the input port of the main waveguide, and the optical signal of wavelength λ1 is received by the light receiving element connected to the output port side of the third branching waveguide, and then passed through the amplification/waveform shaping circuit. Wavelength λl connected to the output port of the second branch waveguide
A light emitting element that emits an optical signal is driven to output an optical signal of wavelength λl from the input port of the first branch waveguide. Conversely, the wavelength λ2 incident on the input port of the first branch waveguide
a light receiving element connected to the output port of the first branch waveguide, and a light emitting element that emits an optical signal of wavelength λ2 connected to the output port of the main waveguide through an amplification/waveform shaping circuit. By driving the optical signal and outputting the optical signal of wavelength λ2 from the input port of the main waveguide, an optical repeater module for bidirectional transmission can be realized. This type of configuration is completely new, maintains high isolation, is radically economical, is extremely simple and easy to manufacture, and has optical elements arranged parallel to the output port. The light input and output sides are arranged parallel to each other on one side, making it easy to manufacture, and the light input and output sides are arranged in parallel on one side, so it can be stored compactly within the device.

〔実施例〕〔Example〕

第1図に本発明の光分波器の実施例を示す。7−1は主
導波路の入力側ポートであり、このポートには矢印11
のごとく波長λ工、λ2の光信号が入力されている。8
−1は第1の分岐導波路の入力側ポートである。6−1
は上記主導波路と第1の分岐導波路により形成された方
向性結合器型の光分波器であり、その構造パラメータお
よび波長特性の計算結果は第9図に示すごとくものであ
る。
FIG. 1 shows an embodiment of the optical demultiplexer of the present invention. 7-1 is the input side port of the main waveguide, and this port is marked with an arrow 11.
An optical signal of wavelength λ2 is input as shown below. 8
-1 is the input side port of the first branch waveguide. 6-1
is a directional coupler type optical demultiplexer formed by the main waveguide and the first branching waveguide, and the calculation results of its structural parameters and wavelength characteristics are as shown in FIG.

すなわち、7−1の主導波路の入力側ポートに矢印11
のごとく入射した波長λ1 (たとえば。
In other words, the arrow 11 is placed on the input side port of the main waveguide 7-1.
The incident wavelength λ1 (for example.

1.3 μm)t λ2 (たとえば、1.55 μm
)の光信号は、6−1の光分波器において波長λlの光
信号が分波されて第1の分岐導波路の出力側ポート8−
2内を伝搬していく、また波長λ2の光信号は分波され
ずにそのまま主導波路の出力側ポート7−2内を伝搬し
ていく。主導波路の出力側ポート7−2には第2の分岐
導波路とで方向性結合器型の光分波器6−2が構成され
ている。この光分波器6−2は6−1と同じ構造パラメ
ータを有するもので、同一の作用を有する。すなわち、
この光分波器6−2を設けることにより、7−2側に漏
れてきた波長λ1の光信号を分波させ、第2の分岐導波
路の出力側ポート9−2に伝搬させるようにしたもので
ある。したがって、7−2の出力端には波長λ1の光信
号成分がほとんど含まれなくなり、不要信号を含まない
波長λ2の光信号がとりだされる。すなわち、不要な干
渉信号が混入しなくなる。第1の分岐導波路の出力側ポ
ート8−2にも6−1.6−2と同じ構造パラメータ、
同一作用を有する光分波器6−3が設けられている。す
なわち、第1の分岐導波路の出力側ポート8−2に第3
の分岐導波路を並列結合させたもので、6−1で分波さ
れた波長λ1の光信号は8−2内を伝搬し、ふたたび、
光分波器6−3で分波されて第3の分岐導波路の出力側
ポート1〇−2内を伝搬していく。そして、8−2内に
含まれていた不要な波長λ2の光信号は、そのまま8−
2の出力端側に伝搬していく。すなわち、1゜−2の出
力端側には不要な波長λ2の光信号がほとんど含まれず
、波長λ1の光信号のみとなる。
1.3 μm)t λ2 (for example, 1.55 μm
) is demultiplexed by the optical demultiplexer 6-1 with a wavelength λl and sent to the output side port 8- of the first branching waveguide.
The optical signal having the wavelength λ2 propagates through the output port 7-2 of the main waveguide without being demultiplexed. A directional coupler type optical demultiplexer 6-2 is configured at the output side port 7-2 of the main waveguide and a second branch waveguide. This optical demultiplexer 6-2 has the same structural parameters as 6-1 and has the same function. That is,
By providing this optical demultiplexer 6-2, the optical signal of wavelength λ1 leaking to the 7-2 side is demultiplexed and propagated to the output side port 9-2 of the second branch waveguide. It is something. Therefore, the output end of 7-2 contains almost no optical signal component of wavelength λ1, and an optical signal of wavelength λ2 containing no unnecessary signals is extracted. That is, unnecessary interference signals are not mixed in. The same structural parameters as 6-1.6-2 are also applied to the output side port 8-2 of the first branch waveguide.
An optical demultiplexer 6-3 having the same function is provided. That is, the third branch waveguide is connected to the output side port 8-2 of the first branch waveguide.
branch waveguides are coupled in parallel, and the optical signal of wavelength λ1 demultiplexed by 6-1 propagates in 8-2, and again,
The light is demultiplexed by the optical demultiplexer 6-3 and propagates through the output port 10-2 of the third branch waveguide. Then, the unnecessary optical signal of wavelength λ2 contained in 8-2 is transferred to 8-2 as it is.
It propagates to the output end side of 2. That is, the output end side of 1°-2 contains almost no unnecessary optical signal of wavelength λ2, and only the optical signal of wavelength λ1.

この構成では、同一構造パラメータ、同一性能の光分波
器6−1.6−2.6−3を3個用いることにより、干
渉信号のほとんど含まれない高い信号対雑音比をもった
光分波器を実現することができる。そしてこれを作る上
でも、同一光分波器3つの組合せであるので、非常に有
利である。つまり、一つの光分波器をマスク設計してお
いて、転写露光することによりパターンニングができる
ので、マスク費用が安くてすむ、また小さいサイズのマ
スクですむために、マスク寸法精度を向上させることが
できる。
In this configuration, by using three optical demultiplexers 6-1.6-2.6-3 with the same structural parameters and the same performance, an optical demultiplexer with a high signal-to-noise ratio containing almost no interference signal is created. It is possible to realize a wave device. In manufacturing this, it is very advantageous because it is a combination of three identical optical demultiplexers. In other words, patterning can be done by designing a mask for one optical demultiplexer and performing transfer exposure, which reduces mask costs.Also, since a small mask is required, mask dimensional accuracy can be improved. can.

第2図は本発明の光分波器の別の実施例を示したもので
ある。すなわち、主導波路の出力側ポート7−2に波長
λ2の光信号を受信する受光素子11を、また、第3の
分岐導波路の出力側ポート10−2に波長λ1の光信号
を受信する受光素子12を設けた構成である。
FIG. 2 shows another embodiment of the optical demultiplexer of the present invention. That is, the light receiving element 11 that receives the optical signal of wavelength λ2 is placed at the output side port 7-2 of the main waveguide, and the light receiving element 11 that receives the optical signal of wavelength λ1 is placed at the output side port 10-2 of the third branch waveguide. This is a configuration in which an element 12 is provided.

第3図は本発明の双方向伝送用光モジュールの実施例を
示したものである。二九は、主導波路の出力側ポート7
−2に波長λ2の光信号を発光する発光素子13を、第
3の分岐導波路の出力側ポート10−2には波長λ工の
光信号を受信する受光素子12を設け、主導波路の入力
側ポート7−1から矢印11−2方向へ波長λ2の光信
号を送出し、逆に、矢印11−1方向からきた波長λl
の光信号を上記光モジユール内を伝搬させて受光素子1
2で受信するようにした構成である。
FIG. 3 shows an embodiment of the bidirectional transmission optical module of the present invention. 29 is the output side port 7 of the main waveguide
-2 is provided with a light emitting element 13 that emits an optical signal of wavelength λ2, and the output side port 10-2 of the third branching waveguide is provided with a light receiving element 12 that receives an optical signal of wavelength λ2. An optical signal of wavelength λ2 is sent from the side port 7-1 in the direction of arrow 11-2, and conversely, an optical signal of wavelength λl coming from the direction of arrow 11-1 is transmitted.
The optical signal is propagated through the optical module to the light receiving element 1.
The configuration is such that it is received at 2.

第4図は本発明の高信頼度型光モジュールの実施例を示
したものである。これは、発光素子13゜受光素子12
のいずれか、あるいは両方ともが寿命劣化、故障などに
より所望の動作をしなくなった場合に、その代用として
発光素子15.受光素子14を動作させて通信を正常に
行なわせるようにした構成の光モジュールである。すな
りち、光フアイバ伝送路20は光スイッチ18を介して
光モジュールと接続されている。この光スイッチ18は
、通常よく知られている方向性結合器型の2X2型のも
ので、方向性結合器の結合部に形成された電極34に、
同のどと<A、8間に電圧を印加しておき、ある印加電
圧v1のときは光フアイバ20内を伝搬する光信号は導
波路25−1を通して導波路7−1に伝搬し、それより
高い印加電圧Vzのときは光フアイバ2o内を伝搬する
光信号は導波路25−2を介して導波路8−1に伝搬す
る。この印加電圧は最初にvlに設定されている。そし
て発光素子13.受光素子12のいずれか一方、あるい
は両方ともが異常を起こすと、上記印加電圧は制御信号
35により駆動回路17を制御して、vlからvlに変
えられる。ここで駆動回路17は、電圧源v1とvlを
もち、これらの電圧源のどちらを選択して光スイッチに
印加するから制御信号35により電気スイッチを切換え
制御することによって行なう構成である。次に、上記光
素子12.13が異常を起こした場合の制御信号の発生
系と予備の光素子14.15の駆動系への移行方法につ
いて述べる。受光素子12への光入力信号、あるいはこ
の光信号を受光素子12で電気信号に変換した信号のい
ずれかは30の信号モニタ部および比較回路部へ入力さ
れており、上記信号があらかじめ定めた所定値(これは
最小受信感度レベルに近い値、)以下になった場合には
比較回路部の出力に制御信号35が発生する。そしてこ
の制御信号35は駆動回路17を制御するのと同時に、
受光素子14の駆動回路33を作動させ、受光素子14
で、波長λ1の光信号を受光させる。さらに発光素子1
5を駆動させる駆動回路31も作動させ、発光素子15
より、波長λ2の光信号を発光させる0発光素子13よ
り発光する光信号があらかじめ定めた所定値以下になっ
た場合にも、32の信号(光信号、あるいはそれを電気
信号に変換した信号)モニタ部でモニタし、比較回路部
で判定してその出力側に制御信号35を発生させ、この
制御信号35で発光素子15と受光素子14を駆動させ
、さらに駆動回路17も駆動して印加電圧をvlからv
2に移行させる。このようにして、障害による中断なく
して双方向伝送が実現されることになる。このように2
重化機能を備えているので、非常に信頼性を上げること
ができる。また光素子13.12がこわれたからといっ
て光分波器ごとすてなくてもよいので、経済的でもある
。さらに、光モジユール自身の2重化安全対策と故障診
断機能をもっているので、セキュリティ上も極めて有効
である。すなわち、双方向光モジュールに2重化安全対
策および故障診断自己復帰機能をもったまったく新しい
構成の光モジュールの実現である。
FIG. 4 shows an embodiment of the highly reliable optical module of the present invention. This means that the light emitting element 13° and the light receiving element 12
When either or both of the light emitting elements 15.15.11 and 15.21 do not operate as desired due to deterioration of their lifespan, failure, etc., the light emitting element 15. This is an optical module configured to operate the light receiving element 14 to allow normal communication. In other words, the optical fiber transmission line 20 is connected to the optical module via the optical switch 18. This optical switch 18 is of the well-known directional coupler type 2×2 type, and has an electrode 34 formed at the coupling part of the directional coupler.
A voltage is applied between the same throat and <A, 8, and at a certain applied voltage v1, the optical signal propagating within the optical fiber 20 propagates to the waveguide 7-1 through the waveguide 25-1, and then When the applied voltage Vz is high, the optical signal propagating within the optical fiber 2o propagates to the waveguide 8-1 via the waveguide 25-2. This applied voltage is initially set to vl. and light emitting element 13. When one or both of the light receiving elements 12 becomes abnormal, the applied voltage is changed from vl to vl by controlling the drive circuit 17 using the control signal 35. Here, the drive circuit 17 has voltage sources v1 and vl, and selects which of these voltage sources to apply to the optical switch, so that the control signal 35 is used to switch and control the electric switch. Next, a control signal generation system and a method of transferring the spare optical elements 14, 15 to the drive system will be described in the event that an abnormality occurs in the optical elements 12, 13. Either the optical input signal to the light receiving element 12 or the signal obtained by converting this optical signal into an electrical signal by the light receiving element 12 is input to the signal monitoring section 30 and the comparison circuit section 30. (This is a value close to the minimum reception sensitivity level), a control signal 35 is generated at the output of the comparator circuit section. This control signal 35 controls the drive circuit 17 and at the same time,
The drive circuit 33 of the light receiving element 14 is activated, and the light receiving element 14
Then, an optical signal of wavelength λ1 is received. Furthermore, light emitting element 1
The drive circuit 31 that drives the light emitting element 15 is also activated.
Therefore, even if the optical signal emitted from the 0 light emitting element 13 that emits the optical signal of wavelength λ2 becomes less than a predetermined value, the 32 signal (an optical signal or a signal obtained by converting it into an electrical signal) The monitor section monitors it, the comparator circuit section makes a decision, and generates a control signal 35 on the output side. This control signal 35 drives the light emitting element 15 and the light receiving element 14, and also drives the drive circuit 17 to control the applied voltage. from vl to v
Move to 2. In this way, bidirectional transmission will be achieved without interruption due to failures. Like this 2
Since it is equipped with a redundant function, it can greatly improve reliability. It is also economical because the optical demultiplexer does not have to be discarded even if the optical elements 13, 12 are broken. Furthermore, since the optical module itself has redundant safety measures and a fault diagnosis function, it is extremely effective in terms of security. In other words, an optical module with a completely new configuration has been realized in which a bidirectional optical module has redundant safety measures and a self-recovery function for fault diagnosis.

第5図も本発明の光合分波器を応用した双方向光中継器
用光モジュールの実施例を示したものである。これは主
導波路の入力側ポート7−1に入射した波長λ1の光信
号(前の光中継器から送られてきた光信号)が光分波器
6−1で分波され、また光分波器6−3で分波されて受
光素子12に入り、電気信号に変換されて21−2の増
幅・波形整形回路を通して22−1の発光素子部a回路
に入力される。そして発光素子26が駆動されて波長λ
lの光信号を発光し、光分波器6−2.6−1でそれぞ
れ分波されて第1の分岐導波路の入力側ポー1−8−1
側に伝送され、このポート8−1を出て次の光中継器へ
送られる。逆に次の光中継器から送られてきた波長λ2
の光信号は第1の分岐導波路の入力側ポー1−8−1に
入射し、光分波器6−1.6−3を通して受光素子27
に送られる。そしてこの受光素子27で送られてきた情
報信号が電気信号に変換され、増幅・波形整形回路を通
して発光素子駆動部22−2に入力される。
FIG. 5 also shows an embodiment of an optical module for a bidirectional optical repeater to which the optical multiplexer/demultiplexer of the present invention is applied. This means that the optical signal of wavelength λ1 (the optical signal sent from the previous optical repeater) that entered the input side port 7-1 of the main waveguide is demultiplexed by the optical demultiplexer 6-1, and the optical signal is demultiplexed by the optical demultiplexer 6-1. The signal is demultiplexed by the device 6-3, enters the light-receiving element 12, is converted into an electrical signal, and is input to the light-emitting element section a circuit 22-1 through the amplification/waveform shaping circuit 21-2. Then, the light emitting element 26 is driven so that the wavelength λ
1 of optical signals are emitted, and are demultiplexed by optical demultiplexers 6-2 and 6-1, respectively, and sent to the input port 1-8-1 of the first branch waveguide.
It is transmitted to the next optical repeater after exiting this port 8-1. Conversely, the wavelength λ2 sent from the next optical repeater
The optical signal enters the input side port 1-8-1 of the first branch waveguide, passes through the optical demultiplexer 6-1.
sent to. The information signal sent by the light-receiving element 27 is converted into an electrical signal and input to the light-emitting element driving section 22-2 through an amplification/waveform shaping circuit.

この発光素子駆動部22−2は発光素子13を駆動し、
波長λ2の光(2号が発振させられる。波長λ2の光信
号は光分波器6−2.6−1を通って主導波路の入力側
ポート7−1側に伝送され、このポート7−1を出て前
の光中継器へ伝送される。
This light emitting element driving section 22-2 drives the light emitting element 13,
Light of wavelength λ2 (No. 2 is oscillated. The optical signal of wavelength λ2 is transmitted to the input side port 7-1 side of the main waveguide through the optical demultiplexer 6-2.6-1, and this port 7- 1 and is transmitted to the previous optical repeater.

このように3つの同一光分波器を用いることによって、
木方向用光中継器も実現することができる。
By using three identical optical demultiplexers in this way,
An optical repeater for tree direction can also be realized.

本発明は上記実施例に限定されない。まず光分波器は同
一のものを3個用いる以外に、4個以上用いてもよい、
また、第6図に示すように、同一の光分波器6−1.6
−2を2個と異なった光分波器23を1個設けてもよい
が、今までに述べた実施例に対して経済的効果は小さく
なる。発光素子には半導体レーザ、発光ダイオードなど
が使える。また波長は任意の波長を選択することができ
る。
The invention is not limited to the above embodiments. First, instead of using three of the same optical demultiplexer, four or more may be used.
Moreover, as shown in FIG. 6, the same optical demultiplexer 6-1.6
Although it is possible to provide one optical demultiplexer 23 different from the two optical demultiplexers 23, the economic effect will be smaller compared to the embodiments described so far. A semiconductor laser, a light emitting diode, etc. can be used as the light emitting element. Furthermore, any wavelength can be selected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同一構造パラメータの光分波器を複数
個用いて光分波器、光合分波器を構成することにより、
高アイソレーションを保持でき、かつ非常に低コストに
実現できるという効果がある。また、上記光分波器、光
合分波器を応用することにより、2重化安全対策および
故障診断自己復帰機能をもったまったく新しい双方向光
モジュールを実現でき、高信頼で安全性の高い通信の実
現に有効である。さらに、別の応用として、各光中継器
間を双方向光中継伝送させるための双方向光中継用モジ
ュールを簡単かつ経済的に構成することができる。
According to the present invention, by configuring an optical demultiplexer and an optical multiplexer/demultiplexer using a plurality of optical demultiplexers having the same structural parameters,
This has the effect of maintaining high isolation and realizing it at a very low cost. In addition, by applying the optical demultiplexer and optical multiplexer/demultiplexer mentioned above, it is possible to create a completely new bidirectional optical module with redundant safety measures and a self-recovery function for failure diagnosis, resulting in highly reliable and safe communication. It is effective in realizing Furthermore, as another application, it is possible to easily and economically construct a bidirectional optical relay module for bidirectional optical relay transmission between optical repeaters.

【図面の簡単な説明】[Brief explanation of the drawing]

第11!l及び第2図は本発明の光分波器の実施例、第
3図は本発明の双方向伝送用光モジュールの実施例、第
4図は本発明の高信頼度型光モジュールの実施例、第5
図は本発明の双方向光中継器用光モジュールの実施例、
第6図は本発明の双方向伝送用光モジュールの実施例、
第7および8図は従来の光分波器の概略図、第9図は本
発明者が計算した従来の光分波器の波長損失特性である
。 1・・・入力ポート、2,3・・・出力ポート、4−1
〜4−3・・・方向時結合器、5−1〜5−2・・・合
波器、6−1〜6−3.23・・・方向性結合器型光分
波器。 7−1.7−2・・・主導波路、8−1.“8−2・・
・第1の分岐導波路、9−1.9−2・・・第2の分岐
導波路、10−1.10−2・・・第3の分岐導波路。 11.12,14,15.27・・・受光素子、13゜
15.26・・・発光素子、16・・・光素子モニタ部
、17・・・光スイッチ駆動部、18・・・IX2型光
スイッチ、20・・・光フアイバ伝送路、21−1.2
1−2・・・増幅・波形整形回路、22−1.22−2
・・・発光素子駆動部。 ¥J  1  口 γ 2 図 第 5 図 ≦≦:h1帽掃r1勧部 Z K 図 Y 7 図 V:J 9  口 犬 渠 OL帆ジ
11th! 1 and 2 are examples of the optical demultiplexer of the present invention, Figure 3 is an example of the bidirectional transmission optical module of the present invention, and Figure 4 is an example of the highly reliable optical module of the present invention. , 5th
The figure shows an embodiment of the optical module for bidirectional optical repeater of the present invention.
FIG. 6 shows an embodiment of the optical module for bidirectional transmission of the present invention.
7 and 8 are schematic diagrams of a conventional optical demultiplexer, and FIG. 9 is a wavelength loss characteristic of the conventional optical demultiplexer calculated by the present inventor. 1...Input port, 2,3...Output port, 4-1
~4-3... Directional coupler, 5-1~5-2... Multiplexer, 6-1~6-3.23... Directional coupler type optical demultiplexer. 7-1.7-2... Main waveguide, 8-1. “8-2...
- First branch waveguide, 9-1.9-2... second branch waveguide, 10-1.10-2... third branch waveguide. 11.12, 14, 15.27... Light receiving element, 13° 15.26... Light emitting element, 16... Optical element monitor section, 17... Optical switch driving section, 18... IX2 type Optical switch, 20... Optical fiber transmission line, 21-1.2
1-2...Amplification/waveform shaping circuit, 22-1.22-2
...Light emitting element drive unit. ¥J 1 Mouth γ 2 Figure 5 Figure ≦≦: h1 Cap sweeping r1 Kanbe Z K Figure Y 7 Figure V: J 9 Mouth dog culvert OL hoji

Claims (1)

【特許請求の範囲】 1、波長λ_1とλ_2の光信号が伝搬する主導波路に
波長λ_1の光信号を分波させる第1の分岐導波路を並
行に配置して結合させ、該主導波路の出力側にさらに波
長λ_1の光信号を分波させる第2の分岐導波路を並列
結合させ、該第1の分岐導波路の出力側にも波長λ_1
の光信号を分波させる第3の分岐導波路を並列結合させ
た光合分波器。 2、波長λ_1とλ_2の光信号が伝搬する主導波路に
波長λ_1の光信号を分波させる第1の分岐導波路を並
行に配置して結合させ、該主導波路の出力側にさらに波
長λ_1の光信号を分波させる第2の分岐導波路を並列
結合させ、該第1の分岐導波路の出力側にも波長λ_1
の光信号を分波させる第3の分岐導波路を並列結合させ
た光合分波器を備え、前記主導波路と第3の分岐導波路
の出力側に半導体光素子を接続したことを特徴とする光
モジュール。 3、特許請求の範囲第2項において、前記第2と第3の
分岐導波路の出力側に波長λ_1の光信号を発光する半
導体発光素子か受光する受光素子を接続し、主導波路と
第1の分岐導波路の出力側に波長λ_2の光信号を発光
する半導体発光素子か受光する受光素子を接続したこと
を特徴とする光モジュール。 4、特許請求の範囲第2項又は第3項において、前記主
導波路と第1の分岐導波路の入力側を、入力が1ポート
で出力が2ポートの1×2型光スイッチの出力ポートに
接続し、入力ポートに光ファイバを接続したことを特徴
とする光モジュール。 5、特許請求の範囲第4項において、光スイッチの出力
ポートの選択切換えは、それぞれの導波路の出力側に接
続された半導体光素子の動作状態監視用のモニタ信号に
よつて制御されることを特徴とする光モジュール。 6、特許請求の範囲第2項において、第3(第2)の分
岐導波路の出力側に波長λ_1の光信号を受光する受光
素子を接続し、該受光素子の出力信号を増幅、波形整形
回路を通して第2(第3)の分岐導波路の出力側に接続
された波長λ_1の光信号を発光する発光素子に送り込
み、第1の分岐(主)導波路の出力側に波長λ_2の光
信号を受光する受光素子を接続し、該受光素子の出力信
号を増幅、波形整形回路を通して主(第1の分岐)導波
路の出力側に接続された波長λ_2の光信号を発光する
発光素子に送り込むことを特徴とする光モジュール。
[Claims] 1. A first branching waveguide that demultiplexes the optical signal of wavelength λ_1 is arranged in parallel to and coupled to the main waveguide through which the optical signals of wavelengths λ_1 and λ_2 propagate, and the output of the main waveguide is A second branching waveguide for branching an optical signal with a wavelength λ_1 is further coupled in parallel on the side, and the output side of the first branching waveguide also has a wavelength λ_1.
An optical multiplexer/demultiplexer in which a third branching waveguide for demultiplexing optical signals is coupled in parallel. 2. A first branching waveguide that demultiplexes the optical signal of wavelength λ_1 is arranged and coupled in parallel to the main waveguide through which the optical signals of wavelength λ_1 and λ_2 propagate. A second branching waveguide for demultiplexing the optical signal is coupled in parallel, and the wavelength λ_1 is also connected to the output side of the first branching waveguide.
It is characterized by comprising an optical multiplexer/demultiplexer in which a third branching waveguide for splitting an optical signal is coupled in parallel, and a semiconductor optical element is connected to the output side of the main waveguide and the third branching waveguide. optical module. 3. In claim 2, a semiconductor light emitting element that emits an optical signal of wavelength λ_1 or a light receiving element that receives light is connected to the output sides of the second and third branching waveguides, and the main waveguide and the first An optical module characterized in that a semiconductor light emitting element that emits an optical signal of wavelength λ_2 or a light receiving element that receives light is connected to the output side of the branching waveguide. 4. In claim 2 or 3, the input sides of the main waveguide and the first branch waveguide are provided as output ports of a 1×2 type optical switch having one input port and two output ports. An optical module characterized in that an optical fiber is connected to the input port. 5. In claim 4, the selection switching of the output ports of the optical switch is controlled by a monitor signal for monitoring the operating state of the semiconductor optical device connected to the output side of each waveguide. An optical module featuring: 6. In claim 2, a light receiving element that receives an optical signal of wavelength λ_1 is connected to the output side of the third (second) branching waveguide, and the output signal of the light receiving element is amplified and waveform shaped. An optical signal with a wavelength λ_1 connected to the output side of the second (third) branch waveguide is sent through a circuit to a light emitting element that emits light, and an optical signal with a wavelength λ_2 is connected to the output side of the first branch (main) waveguide. Connect a light-receiving element that receives light, amplify the output signal of the light-receiving element, and send an optical signal of wavelength λ_2 connected to the output side of the main (first branch) waveguide to the light-emitting element that emits light through a waveform shaping circuit. An optical module characterized by:
JP61301258A 1986-12-19 1986-12-19 Optical multiplexer/demultiplexer and optical module therewith Pending JPS63155828A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61301258A JPS63155828A (en) 1986-12-19 1986-12-19 Optical multiplexer/demultiplexer and optical module therewith
PCT/JP1987/000969 WO1988004785A1 (en) 1986-12-19 1987-12-11 Optical synthesizing/branching filter and optical module using the same
US07/204,551 US4909584A (en) 1986-12-19 1987-12-11 Optical multi/demultiplexer and optical module using the same
DE3789551T DE3789551T2 (en) 1986-12-19 1987-12-11 OPTICAL MULTIPLEXER / DEMULTIPLEXER AND THE USE THEREOF IN AN OPTICAL MODULE.
EP88900099A EP0296247B1 (en) 1986-12-19 1988-07-05 Optical multiplexer/demultiplexer and use of the same in an optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61301258A JPS63155828A (en) 1986-12-19 1986-12-19 Optical multiplexer/demultiplexer and optical module therewith

Publications (1)

Publication Number Publication Date
JPS63155828A true JPS63155828A (en) 1988-06-29

Family

ID=17894655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61301258A Pending JPS63155828A (en) 1986-12-19 1986-12-19 Optical multiplexer/demultiplexer and optical module therewith

Country Status (1)

Country Link
JP (1) JPS63155828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210846A (en) * 1990-01-16 1991-09-13 Hitachi Cable Ltd Optical communication equipment
JP2013174752A (en) * 2012-02-27 2013-09-05 Oki Electric Ind Co Ltd Wavelength selective path switching element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173803A (en) * 1981-04-20 1982-10-26 Fujitsu Ltd Waveguide for optical integrated circuit
JPS6152604A (en) * 1984-08-23 1986-03-15 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
JPS61278802A (en) * 1985-06-05 1986-12-09 Hitachi Ltd Bidirectional transmission optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173803A (en) * 1981-04-20 1982-10-26 Fujitsu Ltd Waveguide for optical integrated circuit
JPS6152604A (en) * 1984-08-23 1986-03-15 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
JPS61278802A (en) * 1985-06-05 1986-12-09 Hitachi Ltd Bidirectional transmission optical module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210846A (en) * 1990-01-16 1991-09-13 Hitachi Cable Ltd Optical communication equipment
JP2013174752A (en) * 2012-02-27 2013-09-05 Oki Electric Ind Co Ltd Wavelength selective path switching element
US9151901B2 (en) 2012-02-27 2015-10-06 Oki Electric Industry Co., Ltd. Wavelength-selective path-switching element

Similar Documents

Publication Publication Date Title
US4909584A (en) Optical multi/demultiplexer and optical module using the same
JP4739928B2 (en) Wavelength selective optical switch and wavelength selective optical switch module
JP4336377B2 (en) Optical multichannel system
JP4235559B2 (en) Protected bidirectional WDM network
JP4893700B2 (en) Method and system for communicating control signals over a ring optical network
US8131149B2 (en) Optical routing device and optical network using same
JPH09172449A (en) Self healing ring-type transmission light communication
EP1043859B1 (en) Optical add/drop multiplexer node device
EP1098219A1 (en) Matrix optical switch and optical adm
CN219676335U (en) Multichannel active optical cable photon integrated chip and active optical cable
EP0788249B1 (en) A node in an optical signal transmission network, and method of retaining the communication on the occurrence of a failure
US7424223B1 (en) Reconfigurable wavelength blocking apparatus and optical selector device therefore
JP2908290B2 (en) Optical add / drop circuit
US6552834B2 (en) Methods and apparatus for preventing deadbands in an optical communication system
JP2004135331A (en) Optical cross-connect system
JPS63155828A (en) Optical multiplexer/demultiplexer and optical module therewith
WO2003056737A1 (en) A on-line dispersion compensation apparatus of high-speed wavelength division optical transmission system
KR100317133B1 (en) Bi-directional wavelength division multiplex self-developed fiber optic network with bidirectional add / drop multiplexer
JPH09153861A (en) Optical submarine cable branching device for wavelength multiplex communication system, and waveform multiplex optical submarine cable network using the same
JPH07212316A (en) Bi-directional light amplifier
JP3678411B2 (en) Passive optical network
JP2001021929A (en) Optical line change-over system
JPH09270750A (en) Bidirectional optical communication system
JP2000082997A (en) Wdm transmission system
JPH01259317A (en) Optical multiplexer and demultiplexer and optical module