JPS63153442A - Measuring instrument for optical characteristic of beam splitter - Google Patents

Measuring instrument for optical characteristic of beam splitter

Info

Publication number
JPS63153442A
JPS63153442A JP30101486A JP30101486A JPS63153442A JP S63153442 A JPS63153442 A JP S63153442A JP 30101486 A JP30101486 A JP 30101486A JP 30101486 A JP30101486 A JP 30101486A JP S63153442 A JPS63153442 A JP S63153442A
Authority
JP
Japan
Prior art keywords
light
beam splitter
detector
measured
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30101486A
Other languages
Japanese (ja)
Inventor
Keiji Takegawa
武川 啓二
Shiyouhei Kobayashi
章兵 小林
Yasuhiro Imai
康弘 今井
Osamu Nakano
治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30101486A priority Critical patent/JPS63153442A/en
Publication of JPS63153442A publication Critical patent/JPS63153442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To simultaneously measure an angle of torsion, transmittivity, and a reflection factor by a measuring light of an arbitrary wavelength safely and in a short time by one device, by photodetecting transmission light and reflected light by a beam splitter to be measured, by position detecting detectors, respectively. CONSTITUTION:A divergent light from a light source 11 of a semiconductor laser, etc. is made incident as a parallel luminous flux onto a beam splitter to be measured 13 by a collimator lens 12. Its transmission light is photodetected by a position detecting detector 15a through a condensing lens 14a, and also, its reflected is photodetected by a position detecting detector 15b through a condensing lens 14b in the same way. The position detecting detector 15a is constituted of a photodetector having 4-split photodetecting areas 16a-16d, and the sum of outputs of the photodetecting areas 16a, 16b arranged in the (y) direction, and the sum of outputs of the photodetecting areas 16a, 16d are derived by adders 17a, 17b respectively. By subtracting the outputs of these adders 17a, 17b by a subtracter 18a, position information in the (x) direction of a spot 19 condensed onto the detector 15a is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はビームスプリンタの光学特性測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical characteristic measuring device for a beam splinter.

〔従来の技術〕[Conventional technology]

ビームスプリンタの光学特性としては、透過光、反射光
の振れ角および透過率、反射率があるが、従来は振れ角
の測定と、透過率および反射率の測定とを別々の装置で
行っている。すなわち、振れ角の測定においては、第6
図に示すように、光源lからの光束をコリメータレンズ
2で平行光束として被測定ビームスプリッタ3に入射さ
せ、その透過光および反射光をそれぞれオートコリメー
タ4a、 4bに入射させてそれぞれの振れ角を測定す
るようにいる。ここで、透過光の振れ角α1はビームス
プリッタ3の入射面3aと出射面3bとが平行でないと
生じるものであり、また反射光の振れ角α2はビームス
プリッタ3の反射面3cが入射面3aに対して45°か
らずれていたり、出射面3dが入射面3aに対して直角
でない場合に生じる。
The optical characteristics of a beam splinter include the deflection angle of transmitted light and reflected light, as well as transmittance and reflectance, but conventionally, the measurement of deflection angle and the measurement of transmittance and reflectance are performed using separate devices. . In other words, in measuring the deflection angle, the sixth
As shown in the figure, the light beam from the light source 1 is made parallel to the beam splitter 3 by the collimator lens 2, and the transmitted light and reflected light are respectively made to enter the autocollimators 4a and 4b to calculate the respective deflection angles. It's like measuring. Here, the deflection angle α1 of the transmitted light occurs when the incident surface 3a and the output surface 3b of the beam splitter 3 are not parallel, and the deflection angle α2 of the reflected light occurs when the reflective surface 3c of the beam splitter 3 is parallel to the incident surface 3a. This occurs when the output surface 3d is deviated from 45 degrees with respect to the incident surface 3a, or when the exit surface 3d is not perpendicular to the entrance surface 3a.

また、透過率および反射率の測定においては、第7図に
示すように、光源5からの光束をコリメータレンズ6で
平行光束として被測定ビームスプリンタ3に入射させ、
その透過光および反射光をそれぞれ受光器7a、 7b
で受光し、それらの出力と、ビームスプリッタ3を取除
いたときの受光器7aの出力とに基づいて透過率および
反射率を測定するようにしている。
In addition, in measuring the transmittance and reflectance, as shown in FIG. 7, the light beam from the light source 5 is made into a parallel light beam by the collimator lens 6 and is incident on the beam splinter 3 to be measured.
The transmitted light and reflected light are received by receivers 7a and 7b, respectively.
The transmittance and reflectance are measured based on their outputs and the output of the light receiver 7a when the beam splitter 3 is removed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のビームスプリッタの光学特性の測
定においては、上述したように振れ角の測定と、透過率
および反射率の測定とを別々の装置で行うようにしてい
るため手間がかかるという問題がある。また、振れ角を
オートコリメータで測定するようにしているため、測定
光が可視光に限定されると共に、光量が少ないと精度の
高い測定が困難となり、このような問題を解決するため
に光源1として可視光を発するレーザ光源を使用しよう
とすると、観測者の目を傷つける危険をともなうという
問題がある。更に、オートコリメータをのぞいての測定
は手間がかかると共に、その手間を省くために光束を撮
像管で受光してCRT表示しようとすると高価になると
いう問題がある。
However, in the measurement of the optical characteristics of conventional beam splitters, as mentioned above, the measurement of deflection angle and the measurement of transmittance and reflectance are performed using separate devices, which is time-consuming. . In addition, since the deflection angle is measured with an autocollimator, the measurement light is limited to visible light, and low light intensity makes it difficult to measure with high precision.To solve this problem, the light source 1 If an attempt is made to use a laser light source that emits visible light, there is a problem in that there is a risk of damaging the observer's eyes. Furthermore, there is a problem in that measurement using an autocollimator is time-consuming and expensive if the light beam is received by an image pickup tube and displayed on a CRT in order to save the time and effort.

この発明は、このような従来の問題点に着目してなされ
たもので、ビームスプリッタの振れ角および透過率、反
射率を、安価な構成で、安全かつ迅速に、しかも任意の
波長の測定光で高感度に同時に測定できるようにしたビ
ームスプリッタの光学特性測定装置を提供しようとする
ものである。
This invention was made by focusing on such conventional problems, and it is possible to safely and quickly measure the deflection angle, transmittance, and reflectance of a beam splitter using light of any wavelength with an inexpensive configuration. The present invention aims to provide a beam splitter optical characteristic measuring device that can simultaneously measure the optical characteristics of a beam splitter with high sensitivity.

〔問題点を解決するための手段および作用〕上記目的を
達成するため、この発明では被測定ビームスプリッタに
光源からの光を入射させ、その透過光および反射光をぞ
れぞれ位置検出ディテクタで受光してそれらの出力に基
づいて振れ角および透過率、反射率を測定する。
[Means and effects for solving the problem] In order to achieve the above object, in this invention, light from a light source is made incident on the beam splitter to be measured, and the transmitted light and reflected light are each detected by a position detection detector. It receives light and measures the deflection angle, transmittance, and reflectance based on the output.

〔実施例〕〔Example〕

第1図はこの発明の第1実施例を示すものである。この
実施例では、半導体レーザ等の光源11からの発散光を
コリメータレンズ12で平行光束として被測定ビームス
プリッタ13に入射させ、その透過光を集光レンズ14
aを経て位置検出ディテクタ15aで受光すると共に、
反射光を同様に集光レンズ14bを経て位置検出ディテ
クタ15bで受光する。
FIG. 1 shows a first embodiment of the invention. In this embodiment, diverging light from a light source 11 such as a semiconductor laser is made to enter a beam splitter 13 to be measured as a parallel light beam by a collimator lens 12, and the transmitted light is passed through a condenser lens 14.
a, and is received by the position detection detector 15a,
Similarly, the reflected light passes through the condenser lens 14b and is received by the position detection detector 15b.

位置検出ディテクタ15aは、第2図に示すように4分
割した受光領域16a〜16dを有する受光素子をもっ
て構成し、X方向に並ぶ受光領域16a、16bの出力
の和と、受光領域16c、 16dの出力の和とをそれ
ぞれ加算器17a、 17bで求め、これら加算器17
a、 17bの出力を減算器18aで減算することによ
りディテクタ15a上に集光されたスポット19のX方
向の位置情報を得るようにする。同様に、X方向に並ぶ
受光領域16a、 16dの出力の和と、受光領域16
b、 16cの出力の和とをそれぞれ加算器17c、 
17dで求め、これら加算器17c、 17dの出力を
減算器18bで減算することによりディテクタ15a上
でのスポット19のY方向の位置情報を得るようにする
。また、加算器17c、 17dの出力を加算器17e
で加算することにより、受光領域16a〜16dのトー
タル出力を得るようにする。
The position detection detector 15a is configured with a light receiving element having light receiving areas 16a to 16d divided into four as shown in FIG. The sum of the outputs is calculated by adders 17a and 17b, respectively, and these adders 17
By subtracting the outputs of a and 17b using a subtracter 18a, position information in the X direction of the spot 19 focused on the detector 15a is obtained. Similarly, the sum of the outputs of the light receiving areas 16a and 16d arranged in the X direction and the light receiving area 16
b, the sum of the outputs of 16c, and adder 17c, respectively.
17d, and by subtracting the outputs of these adders 17c and 17d with a subtracter 18b, the positional information of the spot 19 on the detector 15a in the Y direction is obtained. Further, the outputs of adders 17c and 17d are connected to adder 17e.
By adding them, the total output of the light receiving areas 16a to 16d is obtained.

位置検出ディテクタ15bも、第2図に示した位置検出
ディテクタ15aと同様に4分割した受光領域を有する
受光素子をもって構成し、それらの出力を同様に処理し
て受光面上での直交する2次元方向の位置情報をそれぞ
れ得るようにすると共に、1・−タル出力を得るように
する。
The position detecting detector 15b is also configured with a light receiving element having a light receiving area divided into four parts, similarly to the position detecting detector 15a shown in FIG. Position information in each direction is obtained, and a 1-tal output is obtained.

上記構成において、透過光の振れ角をα1、ディテクタ
15a上での集光点(スポット19)の移動量をΔd1
集光レンズ14aの焦点距離をfとすると、α1・Δd
/fの関係が成立する。ここで、fは既知の値であり、
またΔdは減算器18a、 18bからのX方向および
Y方向のそれぞれの位置情報から求めることができるの
で、これらXおよびY方向の位置情報と焦点距離fとか
ら透過光の振れ角α1を求めることができる。また、反
射光の振れ角α2も、ディテクタ15bの出力に基づく
2次元方向の位置情報および集光レンズ14bの焦点距
離情報から同様に求めることができる。なお、振れ角α
1.α2の測定においては、ビームスプリッタ13を置
く前のディテクタ15a、 15bの各受光領域の出力
を、ディテクタ15a、 15bの位置調整や電気的な
オフセット調整により例えば0■とすると共に、10′
の振れ角で1■の出力が得られるようにアンプのゲイル
を設定すれば、角度の読取りを簡単にできると共に、こ
れをディジタル表示するようにすれば読取りを一層簡単
にできる。
In the above configuration, the deflection angle of the transmitted light is α1, and the amount of movement of the focal point (spot 19) on the detector 15a is Δd1.
When the focal length of the condensing lens 14a is f, α1・Δd
The relationship /f holds true. Here, f is a known value,
Furthermore, since Δd can be determined from the position information in the X and Y directions from the subtractors 18a and 18b, the deflection angle α1 of the transmitted light can be determined from the position information in the X and Y directions and the focal length f. I can do it. Further, the deflection angle α2 of the reflected light can be similarly determined from the two-dimensional position information based on the output of the detector 15b and the focal length information of the condenser lens 14b. In addition, the deflection angle α
1. In the measurement of α2, the output of each light receiving area of the detectors 15a and 15b before placing the beam splitter 13 is set to, for example, 0■ by position adjustment and electrical offset adjustment of the detectors 15a and 15b, and
If the amplifier's gale is set so that an output of 1 is obtained at a deflection angle of 1, the angle can be easily read, and if this is displayed digitally, the reading can be made even easier.

また、ビームスプリッタ13を置く前に、光源11から
の光をコリメータレンズ12および集光レンズ14aを
経てディテクタ15aに入射させたときの該ディテクタ
15aのトータル出力を予め測定しておき、その値でビ
ームスプリッタ13を置いたときのディテクタ15a、
 15bのそれぞれのトータル出力を割算することによ
り、透過率および反射率を振れ角と同時に測定すること
ができる。この場合、ビームスプリッタ13を置く前の
ディテクタ15aのトータル出力が例えば1■となるよ
うに、光源11の光量を調整しておけば、透過率、反射
率の計算、読取りを簡単にできると共に、各トータル出
力をデジタル表示するようにしておけば測定をより一層
簡単にできる。
In addition, before placing the beam splitter 13, the total output of the detector 15a when the light from the light source 11 is made incident on the detector 15a via the collimator lens 12 and the condensing lens 14a is measured in advance, and the value is Detector 15a when the beam splitter 13 is placed,
By dividing the respective total outputs of 15b, the transmittance and reflectance can be measured simultaneously with the deflection angle. In this case, by adjusting the light intensity of the light source 11 so that the total output of the detector 15a before placing the beam splitter 13 is, for example, 1, it is possible to easily calculate and read the transmittance and reflectance. Measurement can be made even easier if each total output is displayed digitally.

第3図番才この発明の第2実施例を示すものである。こ
の実施例は、光源11からの発散光束を被測定ビームス
プリンタ13に直接入射させ、その透過光および反射光
をそれぞれ集光レンズ14a、 14bを経て位置検出
ディテクタ15a、 15bで受光し、これらディテク
タ15a、 15bの出力に基づいて第1実施例と同様
にして振れ角および透過率、反射率を測定するようにし
たものである。この実施例は、被測定ビームスプリッタ
13が発散光の途中に配置されて使用される場合に特に
有効である。
Figure 3 shows a second embodiment of the invention. In this embodiment, a diverging beam from a light source 11 is directly incident on a beam splinter 13 to be measured, and its transmitted light and reflected light are received by position detection detectors 15a and 15b through condensing lenses 14a and 14b, respectively. Based on the outputs of 15a and 15b, the deflection angle, transmittance, and reflectance are measured in the same manner as in the first embodiment. This embodiment is particularly effective when the beam splitter 13 to be measured is placed in the middle of the diverging beam.

第4図はこの発明の第3実施例を示すものである。この
実施例は、第1実施例において集光レンズ14a、 1
4bを省き、位置検出ディテクタ15a、 15bを遠
方に配置したものである。第1図に示した構成で集光レ
ンズ14a、 14bを省くと、これらがある場合に比
べ振れ角による光束のディテクタ15a。
FIG. 4 shows a third embodiment of the invention. This embodiment differs from the first embodiment in that the condenser lenses 14a, 1
4b is omitted, and position detection detectors 15a and 15b are placed far away. If the condensing lenses 14a and 14b are omitted in the configuration shown in FIG. 1, the detector 15a of the light flux depending on the deflection angle will be smaller than in the case where these lenses are included.

15b上での移動量が光束の径に比べ小さくなって振れ
角の検出感度が低くなる。このため、この実施例ではデ
ィテクタ15a、 15bを′遠方に配置することによ
って、振れ角の検出感度を高めている。すなわち、第1
図に示した集光レンズ14a、 14bは、この実施例
でディテクタ15a、 15bを無限遠に配置したこと
に相当する。
The amount of movement on the beam 15b becomes smaller than the diameter of the light beam, and the detection sensitivity of the deflection angle becomes low. Therefore, in this embodiment, the detectors 15a and 15b are placed at a distance to increase the detection sensitivity of the deflection angle. That is, the first
The converging lenses 14a and 14b shown in the figure correspond to the detectors 15a and 15b arranged at infinity in this embodiment.

第5図はこの発明の第4実施例を示すものである。この
実施例では、コリメータレンズエ2により平行光束とさ
れた光源11からの光束を絞り20により絞って被測定
ビームスプリッタ13に入射させ、その透過光および反
射光を第3実施例と同様に位置検出ディテクター5a、
 15bで直接受光するようにしたものである。このよ
うに、コリメータレンズ12からの平行光束を絞り20
で絞れば、振れ角検出感度を高めることができるので、
ディテクター5a。
FIG. 5 shows a fourth embodiment of the invention. In this embodiment, the light beam from the light source 11 is made into a parallel light beam by the collimator lens element 2, and is focused by the diaphragm 20, and is incident on the beam splitter 13 to be measured, and the transmitted light and reflected light are positioned in the same manner as in the third embodiment. detection detector 5a,
15b directly receives light. In this way, the parallel light beam from the collimator lens 12 is
By narrowing down the range, the deflection angle detection sensitivity can be increased.
Detector 5a.

15bを第3実施例におけるよりもビームスプリンタ1
3の近傍に配置することができ、したがって全体を小形
にできる。
15b in the beam splinter 1 than in the third embodiment.
3, so the overall size can be made smaller.

なお、この発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形または変更が可能である。例えば
位置検出ディテクタは4分割した受光領域を有する受光
素子に限らす、2次元の半導体装置検出センサをもって
構成することもできる。また、透過光、反射光の振れ角
および透過率、反射率は、位置検出ディテクタ等の出力
に基づいて自動的に演算して測定するよう構成すること
もできる。更に、光源として出射光の波長が可変のもの
を用いることにより、各波長の測定光における振れ角、
分光特性を同時に測定することもできる。
Note that this invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, the position detection detector may be configured with a two-dimensional semiconductor device detection sensor limited to a light receiving element having a light receiving area divided into four parts. Further, the deflection angle, transmittance, and reflectance of transmitted light and reflected light can be automatically calculated and measured based on the output of a position detection detector or the like. Furthermore, by using a light source with a variable wavelength of emitted light, the deflection angle of the measurement light of each wavelength,
Spectral properties can also be measured simultaneously.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば被測定ビームスプ
リッタでの透過光および反射光をそれぞれ位置検出ディ
テクタで受光するようにしたので、1つの装置で安全か
つ短時間で、しかも任意の波長の測定光で振れ角および
透過率、反射率を同時に高感度で測定することができる
と共に、装置全体も安価にできる。
As described above, according to the present invention, since the transmitted light and the reflected light from the beam splitter to be measured are each received by the position detection detector, one device can safely and quickly detect any wavelength. The deflection angle, transmittance, and reflectance can be simultaneously measured with high sensitivity using measurement light, and the entire device can be made inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す図、第2図は第1
図に示す位置検出ディテクタおよびその信号処理回路の
構成を示す図、 第3図はこの発明の第2実施例を示す図、第4図は同じ
く第3実施例を示す図、 第5図は同じく第4実施例を示す図、 第6図および第7図は従来の技術を示す図である。 11・・・光源12・・・コリメータレンズ13・・・
被測定ビームスプリッタ 14a、 14b・・・集光レンズ 15a、 15b・・・位置検出ディテクタ16a〜i
6d・・・受光領域  17a〜17e・・・加算器1
8a、18b・・・減算器    19・・・スポット
20・・・絞り 特許出願人   オリンパス光学工業株式会社第3図 第4図 第6図 第7図 ■亡1
FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing a first embodiment of the present invention.
3 is a diagram showing the second embodiment of the present invention, FIG. 4 is a diagram showing the third embodiment, and FIG. 5 is the same. The diagram showing the fourth embodiment, and FIGS. 6 and 7 are diagrams showing the conventional technology. 11... Light source 12... Collimator lens 13...
Beam splitters to be measured 14a, 14b...Condenser lenses 15a, 15b...Position detection detectors 16a-i
6d... Light receiving area 17a-17e... Adder 1
8a, 18b...Subtractor 19...Spot 20...Aperture Patent applicant Olympus Optical Industry Co., Ltd. Figure 3 Figure 4 Figure 6 Figure 7 ■Death 1

Claims (1)

【特許請求の範囲】[Claims] 1、被測定ビームスプリッタに測定光を投射する光源と
、前記測定光の前記被測定ビームスプリッタでの透過光
および反射光をそれぞれ受光する位置検出ディテクタと
を具え、これら位置検出ディテクタの出力に基づいて前
記被測定ビームスプリッタにおける前記透過光および反
射光のそれぞれの振れ角、および透過率、反射率を測定
し得るよう構成したことを特徴とするビームスプリッタ
の光学特性測定装置。
1. A light source that projects measurement light onto the beam splitter to be measured, and a position detection detector that receives the transmitted light and reflected light of the measurement light on the beam splitter to be measured, and based on the outputs of these position detection detectors. 1. An optical characteristic measuring device for a beam splitter, characterized in that the apparatus is configured to be able to measure deflection angles, transmittance, and reflectance of each of the transmitted light and reflected light in the beam splitter to be measured.
JP30101486A 1986-12-17 1986-12-17 Measuring instrument for optical characteristic of beam splitter Pending JPS63153442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30101486A JPS63153442A (en) 1986-12-17 1986-12-17 Measuring instrument for optical characteristic of beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30101486A JPS63153442A (en) 1986-12-17 1986-12-17 Measuring instrument for optical characteristic of beam splitter

Publications (1)

Publication Number Publication Date
JPS63153442A true JPS63153442A (en) 1988-06-25

Family

ID=17891799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30101486A Pending JPS63153442A (en) 1986-12-17 1986-12-17 Measuring instrument for optical characteristic of beam splitter

Country Status (1)

Country Link
JP (1) JPS63153442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044540A (en) * 1990-04-20 1992-01-09 Nec Corp Crt mask pitch inspecting device
KR100485562B1 (en) * 2001-09-19 2005-04-28 세이코 엡슨 가부시키가이샤 Inspection apparatus and method for an optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044540A (en) * 1990-04-20 1992-01-09 Nec Corp Crt mask pitch inspecting device
KR100485562B1 (en) * 2001-09-19 2005-04-28 세이코 엡슨 가부시키가이샤 Inspection apparatus and method for an optical element

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
US20040136008A1 (en) Optical characteristic measurement device and optical type displacement meter
JP2000241128A (en) Plane-to-plane space measuring apparatus
RU2399063C1 (en) Optical source angular position sensor
CN106969717B (en) Calibration method and measurement method of symmetrical optical bridge type self-stabilizing laser diameter measuring system
JPS63153442A (en) Measuring instrument for optical characteristic of beam splitter
JPH11201718A (en) Sensor device and distance measuring equipment
JP3200927B2 (en) Method and apparatus for measuring coating state
JPH06213623A (en) Optical displacement sensor
JPS61112905A (en) Optical measuring apparatus
JPH07294231A (en) Optical surface roughness sensor
JP2002005617A (en) Optical measurement device
JPS6266111A (en) Optical distance detecting device
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
RU2224980C2 (en) Method for measurement of bending of artillery barrel
JPS6370110A (en) Distance measuring apparatus
JPH07182666A (en) Light pickup system
JPH08128806A (en) Optical displacement sensor
JPS6262208A (en) Range-finding apparatuws and method
JPH10122813A (en) Optical displacement sensor
JPS63263412A (en) Noncontact displacement meter
JPS6236502A (en) Microcsope for measuring minute displacement
JP2022112872A (en) Distance measuring device and method
JPH0558483B2 (en)