JPS63152115A - Formation of silicon amorphous film - Google Patents

Formation of silicon amorphous film

Info

Publication number
JPS63152115A
JPS63152115A JP61298705A JP29870586A JPS63152115A JP S63152115 A JPS63152115 A JP S63152115A JP 61298705 A JP61298705 A JP 61298705A JP 29870586 A JP29870586 A JP 29870586A JP S63152115 A JPS63152115 A JP S63152115A
Authority
JP
Japan
Prior art keywords
magnetic field
silicon
film
vacuum chamber
amorphous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61298705A
Other languages
Japanese (ja)
Other versions
JPH0666272B2 (en
Inventor
Takeshi Watanabe
渡辺 猛志
Kazufumi Azuma
和文 東
Masahiro Tanaka
政博 田中
Mitsuo Nakatani
中谷 光雄
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61298705A priority Critical patent/JPH0666272B2/en
Publication of JPS63152115A publication Critical patent/JPS63152115A/en
Publication of JPH0666272B2 publication Critical patent/JPH0666272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance the film characteristics of a silicon amorphous film as well as to make it possible to apply the silicon amorphous film to various elements. CONSTITUTION:When a silicon amorphous film is formed, an electron cyclotron resonance plasma deposition device is used, and a film-forming substrate 7 is placed on the sample stand 8 of the vacuum chamber 3 of said device. The microwaves sent from a magnetron 1 by a waveguide 2 are introduced into the vacuum chamber 3, and a magnetic field is formed on a part of the vacuum chamber 3 using a solenoid coil 5. Also, silicon-containing gas is introduced into the vacuum chamber 3 from a gas introducing tube 6, and plasma is generated in an electric discharge tube 4. Also, gas is introduced into the region having the intensity of magnetic field smaller than that of an electronic cyclotron resonant magnetic field, a substrate 7 is placed on the region having the magnetic field intensity smaller than the above-mentioned region, and a film is formed on the substrate 7 which is heated up to 100-400 deg.C. The gas pressure when said plasma is discharged is set at 2X10<-4>-1X10<-1> Torr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基体たとえば導電性基板にシリコン系アモルフ
ァス膜を形成する方法に係り、特に電子サイクロトロン
共鳴プラズマを利用した光導電特性に優れたシリコン系
アモルファス膜の形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a silicon-based amorphous film on a substrate, such as a conductive substrate, and in particular, a silicon-based amorphous film with excellent photoconductive properties using electron cyclotron resonance plasma. The present invention relates to a method for forming an amorphous film.

〔従来の技術〕[Conventional technology]

電子サイクロトロン共鳴プラズマを利用したシリコン系
アモルファス膜の形成に関しては、特開昭59−159
167号記載の公知例がある。上記公知例では0.2〜
0,5 Torrのガス圧力域でH2ガスもしくはH2
−1−12混合ガスを磁場中電子のサイクロトロン運動
とマイクロ波との共鳴によりプラズマ励起・し、これを
シリコン原子含有ガスと接触せしめて300Cに加熱し
た基体上にシリコン系アモルファス膜を形成している。
Regarding the formation of a silicon-based amorphous film using electron cyclotron resonance plasma, Japanese Patent Application Laid-Open No. 59-159
There is a known example described in No. 167. In the above known example, 0.2~
H2 gas or H2 in the gas pressure range of 0.5 Torr
-1-12 A mixed gas is plasma-excited by cyclotron motion of electrons in a magnetic field and resonance with microwaves, and this is brought into contact with a silicon atom-containing gas to form a silicon-based amorphous film on a substrate heated to 300C. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、電子サイクロトロン共鳴プラズマを利
用しているが、1(2−H2混合ガスを利用してもH2
ガスが分解されない様な低エネルギ電子のプラズマを利
用するものである。このため5得られるシリコン系アモ
ルファス膜は暗導電率10−” S/c!n(S:Ω・
il)光導電率10−’ S /cm程度のものであり
、必ずしも良好な物性のシリコン系アモルファス膜が得
られているとはいい難い。
The above conventional technology uses electron cyclotron resonance plasma, but even if a 1(2-H2 mixed gas is used), H2
It uses low-energy electron plasma that does not decompose gas. Therefore, the silicon-based amorphous film obtained in 5 has a dark conductivity of 10-” S/c!n (S: Ω・
il) The photoconductivity was about 10-' S /cm, and it cannot be said that a silicon-based amorphous film with good physical properties was necessarily obtained.

本発明は、上述した公知例によるシリコン系アモルファ
ス膜より光導電率が高く、また光導電率と暗導電率の比
が大きい、光導電特性に優れるシリコン系アモルファス
膜の形成方法を提供することにある。
An object of the present invention is to provide a method for forming a silicon-based amorphous film having excellent photoconductivity, which has a higher photoconductivity than the silicon-based amorphous films according to the above-mentioned known examples, and has a large ratio between photoconductivity and dark conductivity. be.

〔問題点を解決するための手段〕 上記発明は、上記公知例よりも電子エネルギが高いプラ
ズマ条件でシリコン系アモルファス膜を形成する事によ
り達成される。より具体的に)ま上述の公知例よりは低
い0.ITorr以下の成膜圧力で電子サイクロトロン
共鳴プラズマを利用する事により達成される。
[Means for Solving the Problems] The above invention is achieved by forming a silicon-based amorphous film under plasma conditions with higher electron energy than in the above-mentioned known example. More specifically) 0. This is achieved by using electron cyclotron resonance plasma at a film forming pressure of less than ITorr.

プラズマ中の電子のエネルギは成膜圧力の低下とともに
増大し、N2分子などが存在すれば容易に分解される程
のエネルギになる。電子エネルギが過大である事も好ま
しくないが、比較的電子エネルギの高いプラズマの利用
が高特性のシリコン系アモルファス膜の生成に有効であ
る。この知見に基づいて本発明者らは、 0.1 m 
Torr以下の成膜圧力で電子サイクロトロン共鳴によ
り生成するプラズマによって、シリコン原子及び水素原
子またはハロゲン原子を含有するガスを分解せしめてシ
リコン系アモルファス膜を作成することが有効であるこ
とを見い出したものであり、さらに上記公知例における
一次プラズマ流生成用の非成膜ガスとして、シリコン原
子含有ガスの分解の結果生成する水素もしくはハロゲン
ガスを利用する事が膜質向上に有効である事を見い出し
、本発明に至ったものである。
The energy of electrons in the plasma increases as the film-forming pressure decreases, and if N2 molecules are present, the energy becomes such that they are easily decomposed. Excessive electron energy is also undesirable, but the use of plasma with relatively high electron energy is effective in producing a silicon-based amorphous film with high characteristics. Based on this knowledge, the inventors determined that 0.1 m
We have discovered that it is effective to create a silicon-based amorphous film by decomposing a gas containing silicon atoms and hydrogen atoms or halogen atoms using plasma generated by electron cyclotron resonance at a film-forming pressure of less than Torr. Furthermore, it has been discovered that it is effective to improve film quality by using hydrogen or halogen gas produced as a result of decomposition of silicon atom-containing gas as the non-film-forming gas for generating the primary plasma flow in the above-mentioned known examples, and the present invention This is what led to this.

更に詳細に説明すれば、上記目的は真空室内の少な(と
も一部に磁場を形成し、上記真空室内にマイクロ波を導
入し、上記真空室内に導入されたシリコン原子含有ガス
を上記磁場と上記マイクロ波によって生成したプラズマ
によって分解し、上記真空室内に設置された基体上にシ
リコン系アモルファス膜ヲ形成スるシリコン系アモルフ
ァス膜の形成方法において、上記真空室内に形成される
磁場強度が、マイクロ波の導入経路に沿りて電子サイク
ロトロン共鳴磁界より大から減少し共鳴磁界をへて共鳴
磁界より小となり、上記磁場強度が電子サイクロトロン
共鳴磁界より小の領域にシリコン原子および水素または
ハロゲン原子を含有するガスを導入し、上記磁場強度が
より小の領域に設置され、10011:〜400Cに加
熱した基体上に成膜する事により達成される。
More specifically, the above purpose is to form a magnetic field in a small part of the vacuum chamber, introduce microwaves into the vacuum chamber, and cause the silicon atom-containing gas introduced into the vacuum chamber to interact with the magnetic field. In a method for forming a silicon-based amorphous film in which a silicon-based amorphous film is formed on a substrate placed in the vacuum chamber by being decomposed by plasma generated by microwaves, the magnetic field strength formed in the vacuum chamber is Along the introduction route, the magnetic field decreases from greater than the electron cyclotron resonance magnetic field, passes through the resonance magnetic field, and becomes smaller than the resonance magnetic field, and contains silicon atoms and hydrogen or halogen atoms in the region where the magnetic field strength is smaller than the electron cyclotron resonance magnetic field. This is achieved by introducing a gas and forming a film on a substrate heated to 10011 to 400C, which is placed in a region where the magnetic field strength is lower.

本発明の好ましい実施の態様によれば、上記本発明のシ
リコ、ン系アモルファス膜の形成方法において、上記プ
ラズマ放電時の上記真空室内のガス圧が2 x 10”
” −1x 1o−’ Torrであって、上記真空室
内に導入されるシリコン原子および水素またはハロゲン
原子を含有するガスが、磁場強度が減少する方向に成膜
基体に向けて供給される手法とすることにより、膜特性
の良好なシリコン系アモルファス膜が得られる。
According to a preferred embodiment of the present invention, in the method for forming a silicon-based amorphous film of the present invention, the gas pressure in the vacuum chamber during the plasma discharge is 2 x 10".
"-1x 1o-' Torr, and the gas containing silicon atoms and hydrogen or halogen atoms introduced into the vacuum chamber is supplied toward the film-forming substrate in a direction in which the magnetic field strength decreases. As a result, a silicon-based amorphous film with good film properties can be obtained.

〔作用〕[Effect]

本発明において、上記のように、成膜時のガス圧を1 
x 10−’ Torr以下と低くしてプラズマ中の電
子のエネルギを上昇させることによりシリコン系アモル
ファス膜の膜特性を高めることができた。
In the present invention, as mentioned above, the gas pressure during film formation is
The film characteristics of the silicon-based amorphous film were able to be improved by increasing the energy of electrons in the plasma by lowering it to below x 10 -' Torr.

このようにプラズマ中の電子のエネルギの上昇によって
膜特性が良好となる理由は明確ではないが。
Although it is not clear why the film properties improve as the energy of electrons in the plasma increases.

原料ガスたとえばS sH2の分解反応に必要なエネル
ギは生成活性種により次式(1)〜(4)のようにかわ
るので、プラズマ中の電子のエネルギにより成膜機構が
かわるためと考えられる。
Since the energy required for the decomposition reaction of the raw material gas, for example, S sH2, changes depending on the generated active species as shown in the following equations (1) to (4), this is thought to be because the film forming mechanism changes depending on the energy of electrons in the plasma.

5iH4−+8i +2H2I 4.4 eV   −
・・・・−・・自−」1)SiH4+SiH+H2+H
I 5.9eV  −−−−−−−旧、、(2)8iH
4−+SiH2+H2+2.1eV     −・−・
=−(5)SiH4−+SiH,+H+4.1eV  
   −・・−・・−(41一般にアモルファスシリコ
ン膜はSiH2型の結合が少ない膜が光導電特性がよい
が、電子エネルギの上昇は上記式(3)の反応の比率を
下げるので良好な結果が得られるものと考えられる。
5iH4−+8i +2H2I 4.4 eV −
・・・・・・・・Self-”1) SiH4+SiH+H2+H
I 5.9eV ------- Old, (2) 8iH
4-+SiH2+H2+2.1eV -・-・
=-(5)SiH4-+SiH, +H+4.1eV
−・・−・・−(41 Generally speaking, an amorphous silicon film with fewer SiH2 type bonds has better photoconductive properties, but an increase in electron energy lowers the reaction rate in equation (3) above, resulting in better results. This is considered to be what can be obtained.

電子サイクロトロン共鳴を利用するシリコン系アモルフ
ァス膜の作成として1本発明者は先に。
The present inventor first created a silicon-based amorphous film using electron cyclotron resonance.

水素またはHeまたはNeまたはArまたはKrまたは
Xeを、真空室内の磁場強度が電子サイクロトロン共鳴
磁界よりも大きな領域に導入し、上記領域に導入される
マイクロ波によって一次プラズマ流を形成し、真空室内
の磁場強度が電子サイクロトロン共鳴磁界より小の領域
に導入されたシリコン原子含有ガスを分解させる手法に
より、成膜圧力5X10”−’〜1 x 10−’ T
orrで成膜を行うと良好なシリコン系アモルファス膜
が得られる事を見い出しているが、鋭意検討した結果、
上記前励起する非成膜性ガスを用いな(とも、真空室内
K、マイクロ波の導入経路に沿って電子サイクロトロン
共鳴磁界より大から減少し共鳴磁界をへて共鳴磁界より
小となる磁界分布を形成し、磁場強度が共鳴磁界より小
の領域に水素またはハロゲン原子を含有するシリコン原
子含有ガスを、圧力2 X IC1”〜1x 10−’
Torrで、磁場強度が減少する方向に成膜基体に向け
て供給する手法によると良好な結果が得られる事を見い
出した。これはこの圧力域ではシリコン原子含有ガスの
分解の結果生成する水素またはハロゲンガスが選択的に
磁場強度が共鳴磁界より犬の領域に拡散しこの領域でプ
ラズマ励起され一次プラズマ流を形成し、この−次プラ
ズマ流が後に供給されるシリコン原子含有ガスを分解す
るためであり、シリコン原子含有ガスを磁場強度が犬の
領域に供給した場合は良好な結果が得られず、また全体
の磁場強度を低下させ真空室内の最大の磁場強度が電子
サイクoトoン共鳴磁界とした場合も良好な結果が得ら
れない。
Hydrogen, He, Ne, Ar, Kr, or Xe is introduced into a region in the vacuum chamber where the magnetic field strength is greater than the electron cyclotron resonance magnetic field, and a primary plasma flow is formed by the microwaves introduced into the region, and the By a method of decomposing a silicon atom-containing gas introduced into a region where the magnetic field strength is smaller than the electron cyclotron resonance magnetic field, the film formation pressure is 5 x 10"-' to 1 x 10-' T.
We have found that a good silicon-based amorphous film can be obtained by forming a film using orr, but as a result of intensive study,
Without using the pre-excited non-film-forming gas mentioned above (with K in the vacuum chamber, the magnetic field distribution decreases from larger than the electron cyclotron resonance magnetic field along the microwave introduction path, and becomes smaller than the resonance magnetic field after passing through the resonance magnetic field). A silicon atom-containing gas containing hydrogen or halogen atoms is formed at a pressure of 2 x IC1'' to 1 x 10-' in a region where the magnetic field strength is smaller than the resonant magnetic field.
It has been found that good results can be obtained by a method in which the magnetic field is supplied toward the film-forming substrate in the direction of decreasing magnetic field strength at Torr. This is because in this pressure region, hydrogen or halogen gas produced as a result of decomposition of silicon atom-containing gas selectively diffuses into the region where the magnetic field strength is higher than that of the resonant magnetic field, and is excited as plasma in this region to form a primary plasma flow. - This is because the next plasma flow decomposes the silicon atom-containing gas that is supplied later, and if the silicon atom-containing gas is supplied to an area where the magnetic field strength is low, good results will not be obtained, and the overall magnetic field strength will be Good results cannot be obtained even when the maximum magnetic field strength in the vacuum chamber is set to the electron resonance magnetic field.

良好なシリコン系アモルファス膜を得るためには基体を
100′c以上に加熱する事が必要であるが、。
In order to obtain a good silicon-based amorphous film, it is necessary to heat the substrate to 100'C or more.

通常の平行平板型R下グロー放電プラズマや前記公知例
の場合に比し50〜100υ低い温度で同等の膜質のシ
リコン系アモルファス膜が得られ、特に200℃以上に
基体を加熱した場合は、従来の手法では得られ難い良好
な特性のシリコン系アモルファス膜が得られる。
A silicon-based amorphous film with the same film quality can be obtained at a temperature 50 to 100 υ lower than that of the ordinary parallel plate type R under glow discharge plasma or the above-mentioned known example. A silicon-based amorphous film with good characteristics that is difficult to obtain using the above method can be obtained.

〔実施例〕〔Example〕

以下本発明を実画例によって説明する。 The present invention will be explained below using actual examples.

第1図は本発明のシリコン系アモルファス膜の形成方法
の実施例に使用した電子サイクロトロンプラズマ成膜装
置の構成説明図である。図において、1はマグネトロン
であり、通常α1〜10GHzのマイクロ波を発生させ
る。発生したマイクロ波は円形導波管2を通じて真空室
3内に導かれる。
FIG. 1 is an explanatory diagram of the configuration of an electron cyclotron plasma film forming apparatus used in an embodiment of the method for forming a silicon-based amorphous film of the present invention. In the figure, 1 is a magnetron, which normally generates microwaves of α1 to 10 GHz. The generated microwaves are guided into the vacuum chamber 3 through the circular waveguide 2.

4は放電管でありマイクロ波を通すために絶縁物(例え
ば石英ガラス、アルミナ等)で形成されている。5は真
空室内に磁場を形成させるためのソレノイドコイルであ
る。ガス導入口6は真空室3内の低磁場域にガスを供給
する様に配置されている。7は被成膜゛基体でありガス
導入口6から供給されるガスが表面に入射する様設置さ
れる。8は一加熱機構を備えた試料台である。9は排気
ボートでありターボ分子ポンプや油拡散ポンプの様な排
気速度の大きな減圧ポンプ(図示せず)が接続される。
4 is a discharge tube made of an insulating material (for example, quartz glass, alumina, etc.) to transmit microwaves. 5 is a solenoid coil for forming a magnetic field within the vacuum chamber. The gas inlet 6 is arranged to supply gas to the low magnetic field region within the vacuum chamber 3. Reference numeral 7 denotes a substrate on which a film is to be formed, and is installed so that the gas supplied from the gas inlet 6 enters the surface thereof. 8 is a sample stage equipped with a heating mechanism. Reference numeral 9 denotes an exhaust boat to which a vacuum pump (not shown) having a high exhaust speed, such as a turbo molecular pump or an oil diffusion pump, is connected.

真空室内に放電ガスを所定の圧力に導入してマイクロ波
電力を供給すると、マイクロ波電界と磁場の相互作用に
よりマイクロ波放電が発生するが、上記磁場の設定条件
と上述したカス導入口の配置について説明する。磁場中
の電子は磁力線のまわりをサイクロトロン運動するが、
を子サイクロトロン周波数fceは磁場強度によって 但し B:磁束密度 [T] m、電子質量 〔K2〕 e:電子電荷 [Coulcmb ] と決定される。fceが入射マイクa波周波数と一致す
る磁場強度の位置では電子サイクロトロン共鳴励起が起
こる。第1図において真空室3の放電管4の領域は上記
電子サイクロトロン共鳴が起こる磁場強度より犬とし、
磁場強度が電子サイクロトロン共鳴磁界より小さな領域
にガス導入口6から被成膜基体7に向はガスを供給する
。成膜最初期においてはこの領域でグラズマ放電が開始
するが、水素またはハロゲン原子を含有するシリコン原
子含有ガスを用℃・た場合、シリコン原子等の成膜成分
が成膜のため消滅するのに対し、副次的に生成する水素
またはハロゲンガスは放電管4の領域に拡散し、この領
域で高密度のプラズマが生成し、生成プラズマの反磁性
的性質により磁力ik沿って低磁場側へ輸送され一次プ
ラズマ流を形成する。経時的に遅れてガス導入口6から
供給されるシリコン原子を含有する成膜ガスは一次プラ
ズマ流中の!離電子により分解され、基体70表面にシ
リコン系アモルファス膜が形成される。シリコン系アモ
ルファス膜中にB 、 P 、 C、Ge等の異種原子
を含有させる場合には、異種原子を含有するガスをガス
導入口6から同時に供給してよい。
When a discharge gas is introduced into a vacuum chamber at a predetermined pressure and microwave power is supplied, a microwave discharge is generated due to the interaction between the microwave electric field and the magnetic field. I will explain about it. Electrons in a magnetic field move in a cyclotron around magnetic field lines,
The child cyclotron frequency fce is determined by the magnetic field strength, where B: magnetic flux density [T] m, electron mass [K2] e: electron charge [Coulcmb]. Electron cyclotron resonance excitation occurs at the position of the magnetic field strength where fce matches the incident microphone A-wave frequency. In FIG. 1, the region of the discharge tube 4 in the vacuum chamber 3 is set to be lower than the magnetic field strength where the electron cyclotron resonance occurs, and
Gas is supplied from the gas inlet 6 to the substrate 7 where the magnetic field is smaller than the electron cyclotron resonance magnetic field. Glazma discharge starts in this region at the initial stage of film formation, but if a silicon atom-containing gas containing hydrogen or halogen atoms is used, the film forming components such as silicon atoms disappear during film formation. On the other hand, the hydrogen or halogen gas generated as a by-product diffuses into the region of the discharge tube 4, and a high-density plasma is generated in this region, and due to the diamagnetic nature of the generated plasma, it is transported along the magnetic force ik to the lower magnetic field side. and form a primary plasma flow. The film-forming gas containing silicon atoms, which is supplied from the gas inlet 6 with a delay over time, is in the primary plasma flow! It is decomposed by electron separation, and a silicon-based amorphous film is formed on the surface of the base 70. When the silicon-based amorphous film contains different atoms such as B 2 , P 2 , C, and Ge, a gas containing the different atoms may be supplied from the gas inlet 6 at the same time.

次に上述したプラズマ成膜装置を用い1本発明のシリコ
ン系アモルファス膜を形成する方法を代表的実見例によ
って説明する。
Next, a method for forming a silicon-based amorphous film according to the present invention using the above-mentioned plasma film forming apparatus will be explained using a typical example.

シリコン原子含有ガスとしてはSiH4を用い、これを
ガス導入口6から15secm供給した。マイクロ波周
波数:=2.45、CH2、−q イクロ波入力= 2
00W、放電ガス圧= 1x iO−’ Torr 、
基体温度: 200℃とした。磁場分布は放電管40部
分で最大1750G、放電管4の排気側端部で875 
G (電子サイクaトaン共鳴磁場強度)になる種設定
した。排気系には排気速度50017秒のターボ分子ポ
ンプを用いた。この条件で作成したアモルファスシリコ
ン膜は光導電率10−’ S /an 、光導電−率と
暗導電率との比が106という高特性の膜であった。
SiH4 was used as the silicon atom-containing gas, and was supplied from the gas inlet 6 at a rate of 15 seconds. Microwave frequency: = 2.45, CH2, -q Microwave input = 2
00W, discharge gas pressure = 1x iO-' Torr,
Substrate temperature: 200°C. The maximum magnetic field distribution is 1750G at the discharge tube 40 part, and 875G at the exhaust side end of the discharge tube 4.
G (electron cycle a resonance magnetic field strength) was set. A turbo molecular pump with an exhaust speed of 50,017 seconds was used for the exhaust system. The amorphous silicon film produced under these conditions had high properties such as a photoconductivity of 10-' S /an and a ratio of photoconductivity to dark conductivity of 106.

なお1本実画例ではシリコン原子含有ガスとして8iH
4を用いたが、他に用い得るシリコン原子含有ガスとし
ては1例えば8jzHa 、 SiF、等が挙げられる
In this example, 8iH is used as the silicon atom-containing gas.
4 was used, but other silicon atom-containing gases that can be used include 1, for example, 8jzHa, SiF, and the like.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、従来よりも光導電
特性に優れたアモルファスシリコンカ形成で゛き、ある
いは比較的良好なアモルファスシリコン膜を低温で形成
する事が可能となり光導電性特性を利用する各種素子へ
の応用が可能となる。
As described above, according to the present invention, it is possible to form an amorphous silicon film with better photoconductive properties than before, or it is possible to form an amorphous silicon film with relatively good photoconductive properties at a low temperature. It becomes possible to apply it to various devices that utilize .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明のシリコン系アモルファス膜形成に使
用する電子サイクロトロン共鳴プラズマデポジション装
置の構成説明図である。 1・・・マグネトロン、    2・・・導波管、3・
・・真空室、       4・・・放電管。 5・・・ソレノイドコイル、  6・・・ガス導入口、
7・・・基体、        8・・・試料台。 9・・・排気ボート。 代理人弁理士 小 川 勝 男 。 躬 1 口 排へ 4・・・故、tv         ?・・ F4Fへ
↑ζ−ト\−5=、 ”/L、)イドエイ。
FIG. 1 is an explanatory diagram of the configuration of an electron cyclotron resonance plasma deposition apparatus used for forming a silicon-based amorphous film according to the present invention. 1... Magnetron, 2... Waveguide, 3...
...Vacuum chamber, 4...Discharge tube. 5... Solenoid coil, 6... Gas inlet,
7... Base, 8... Sample stage. 9...Exhaust boat. Representative patent attorney Katsuo Ogawa. 1. To the mouth 4... late, tv? ... To F4F↑ζ-to\-5=, ”/L,) Idoei.

Claims (1)

【特許請求の範囲】 1、真空室内の少くとも一部に磁場を形成し、上記真空
室内にマイクロ波を導入し、上記真空室内に導入された
シリコン原子含有ガスを上記磁場と上記マイクロ波によ
って生成したプラズマによつて分解し、上記真空室内に
設置された基体上にシリコン系アモルファス膜を形成す
るシリコン系アモルファス膜の形成方法において、上記
真空室内に形成される磁場強度が、マイクロ波の導入経
路に沿って電子サイクロトロン共鳴磁界より大から減少
し共鳴磁界をへて共鳴磁界より小となり、上記磁場強度
が電子サイクロトロン共鳴磁界より小の領域にシリコン
原子および水素またはハロゲン原子を含有するガスを導
入し、上記磁場強度がより小の領域に設置され、100
℃〜400℃に加熱した基体上に成膜する事を特徴とす
るシリコン系アモルファス膜の形成方法。 2、上記プラズマ放電時の上記真空室内のガス圧が2×
10^−^4〜1×10^−^1Torrであつて、上
記真空室内に導入されるシリコン原子および水素または
ハロゲン原子を含有するガスが、磁場強度が減少する方
向に成膜基体に向けて供給される事を特徴とするシリコ
ン系アモルファス膜の形成方法。
[Claims] 1. A magnetic field is formed in at least a part of the vacuum chamber, microwaves are introduced into the vacuum chamber, and the silicon atom-containing gas introduced into the vacuum chamber is heated by the magnetic field and the microwaves. In a method for forming a silicon-based amorphous film in which a silicon-based amorphous film is decomposed by generated plasma and formed on a substrate placed in the vacuum chamber, the magnetic field strength formed in the vacuum chamber is controlled by the introduction of microwaves. A gas containing silicon atoms and hydrogen or halogen atoms is introduced into a region where the magnetic field strength is smaller than the electron cyclotron resonance magnetic field, and the magnetic field decreases from larger than the electron cyclotron resonance magnetic field along the path, passes through the resonance magnetic field, and becomes smaller than the resonance magnetic field. and is installed in an area where the magnetic field strength is smaller than 100.
A method for forming a silicon-based amorphous film, characterized in that the film is formed on a substrate heated to 400°C to 400°C. 2. The gas pressure in the vacuum chamber during the plasma discharge is 2×
The temperature is 10^-^4 to 1 x 10^-^1 Torr, and the gas containing silicon atoms and hydrogen or halogen atoms introduced into the vacuum chamber is directed toward the film-forming substrate in the direction of decreasing magnetic field strength. A method for forming a silicon-based amorphous film, characterized in that the silicon-based amorphous film is supplied.
JP61298705A 1986-12-17 1986-12-17 Method for forming silicon-based amorphous film Expired - Lifetime JPH0666272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61298705A JPH0666272B2 (en) 1986-12-17 1986-12-17 Method for forming silicon-based amorphous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298705A JPH0666272B2 (en) 1986-12-17 1986-12-17 Method for forming silicon-based amorphous film

Publications (2)

Publication Number Publication Date
JPS63152115A true JPS63152115A (en) 1988-06-24
JPH0666272B2 JPH0666272B2 (en) 1994-08-24

Family

ID=17863216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298705A Expired - Lifetime JPH0666272B2 (en) 1986-12-17 1986-12-17 Method for forming silicon-based amorphous film

Country Status (1)

Country Link
JP (1) JPH0666272B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film
JPS61281519A (en) * 1985-06-07 1986-12-11 Matsushita Electric Ind Co Ltd Formation of amorphous silicon film
JPS61283112A (en) * 1985-06-10 1986-12-13 Matsushita Electric Ind Co Ltd Forming method for amorphous semiconductor film
JPS62143418A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Thin film forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film
JPS61281519A (en) * 1985-06-07 1986-12-11 Matsushita Electric Ind Co Ltd Formation of amorphous silicon film
JPS61283112A (en) * 1985-06-10 1986-12-13 Matsushita Electric Ind Co Ltd Forming method for amorphous semiconductor film
JPS62143418A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Thin film forming device

Also Published As

Publication number Publication date
JPH0666272B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
Turban et al. A study of the silane glow discharge deposition by isotopic labelling
AU594107B2 (en) Method for preparation of multi-layer structure film
US20080173402A1 (en) Microwave plasma processing apparatus
JPS6347141B2 (en)
JPH098032A (en) Formation of insulation film
JPS63152115A (en) Formation of silicon amorphous film
JPH0521983B2 (en)
JPH0774110A (en) Method of plasma cvd
JPS62295411A (en) Forming method for silicon amorphous film
JPH07221026A (en) Method for forming quality semiconductor thin film
JP3258441B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JPH03139824A (en) Depositing method for semiconductor device
JP3084395B2 (en) Semiconductor thin film deposition method
Ohshita et al. Reaction of Si2H2 molecule on a silicon surface
JPS6273622A (en) Formation of amorphous semiconductor film
JPS63152116A (en) Formation of silicon amorphous alloy film
JPS6028225A (en) Optical vapor growth method
KR100230356B1 (en) Ecr cvd and method for forming thin film using the same
JPS58151031A (en) Plasma chemical vapor deposition apparatus
Sano et al. Deposition of High Quality SiO 2 Films Using Teos by ECR Plasma
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPH02263429A (en) Formation of thin film
JPS62209831A (en) Manufacture of silicon oxide film
JP3410573B2 (en) Single crystal thin film forming method
JPH0649636A (en) Production of amorphous semiconductor