JPS63151837A - Vibration type transducer - Google Patents

Vibration type transducer

Info

Publication number
JPS63151837A
JPS63151837A JP30027186A JP30027186A JPS63151837A JP S63151837 A JPS63151837 A JP S63151837A JP 30027186 A JP30027186 A JP 30027186A JP 30027186 A JP30027186 A JP 30027186A JP S63151837 A JPS63151837 A JP S63151837A
Authority
JP
Japan
Prior art keywords
silicon
silicon substrate
cavity
thin film
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30027186A
Other languages
Japanese (ja)
Inventor
Michihiko Tsuruoka
鶴岡 亨彦
Wataru Nakagawa
亘 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30027186A priority Critical patent/JPS63151837A/en
Publication of JPS63151837A publication Critical patent/JPS63151837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To miniaturize a vibrator, by forming a cavity by a silicon substrate and a silicon substrate having a silicon membrane and an acoustic pipe and allowing a fluid to flow in said cavity to constitute a mechanical-acoustic vibration system measuring density. CONSTITUTION:A silicon membrane 2 consisting of a silicon oxide film and a silicon nitride film is provided on a silicon substrate 1, and a first electrode 3, a piezoelectric membrane 4, a second electrode and a third electrode 5 are successively laminated to said membrane 2 and protected by a protective film 7. The central part of the back surface of the silicon substrate 1 is etched to form a cavity 12 and a silicon substrate 10 having an acoustic pipe 11 is fixed to the under surface of the substrate 1. A measuring fluid is introduced into the cavity 12 form the acoustic pipe 11 of the silicon substrate 10 and an acoustic vibration system is constituted of the acoustic capacity in the cavity 12 and the inertance of the fluid in the acoustic pipe 11 to measure the density and pressure of the fluid. At this time, the thickness of the silicon membrane 2 forming the cavity 12 is prescribed to make it possible to miniaturize a vibrator. Since the vibrator is constituted based on the silicon membrane 2, this transducer can be miniaturized and inexpensively manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、機械的振動体の少なくλも一面側に、その面
に対向して設けた空洞とこの空洞に流体を導く導管を兼
ねた音響管とを設け、前記振動体を含む機械−音響振動
系の共振周波数から前記流体の密度または圧力を測定す
る振動式トランスジューサに関する。
The present invention provides a mechanical vibrating body with a cavity provided opposite to the surface on one side of the mechanical vibrating body, and an acoustic tube that also serves as a conduit for guiding fluid to the cavity, and a mechanical acoustic tube including the vibrating body. The present invention relates to a vibration transducer that measures the density or pressure of the fluid from the resonance frequency of a vibration system.

【従来の技術】[Conventional technology]

この種の振動式トランスジューサについて、本件出願人
は、既に、Ni−Fe合合材材料ら成る金属製振動板の
少なくとも一面側に、この面に対向する空洞とこの空洞
に測定流体を導く導管を兼ねた音響管とを設け、この金
属製振動板に接着した圧電振動子によって金属製振動板
に撓み振動をさせるようにした振動式トランスジューサ
を提案している(例えば特願昭60−239228号参
照)。 このトランスジューサは空洞および導管の大きさと金属
製振動板の弾性とを適宜設定することにより、低密度流
体に対しても精度の良い測定が行えるという利点がある
Regarding this type of vibrating transducer, the applicant has already provided a cavity on at least one side of a metal diaphragm made of a Ni-Fe composite material, which faces this side, and a conduit for guiding a measuring fluid into this cavity. They have proposed a vibrating transducer in which a piezoelectric vibrator is bonded to the metal diaphragm, and the metal diaphragm is made to bend and vibrate. ). This transducer has the advantage of being able to accurately measure even low-density fluids by appropriately setting the dimensions of the cavity and conduit and the elasticity of the metal diaphragm.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところが、小口径パイプ等の流体計測用として小型化の
要求が強いが、しかし小型化するには特性上振動板の共
振周波数を出来るだけ下げる必要があり、そのためには
振動板の厚さを数μm以下と非常に薄く形成しなければ
ならず、金属板で振動板を製作する方法では、品質や寸
法等に限界がある。さらに、振動板に付加する空洞、音
響管等の音響振動系の構成要素も振動体と同様に小さく
する必要があり、機械的な加工方法では製作費に関して
問題がある。 そこで、本発明は、このような従来技術の問題点を解消
して、小型でかつ安価な振動式トランスジューサを提供
することを目的とする。
However, there is a strong demand for miniaturization for fluid measurement of small-diameter pipes, etc. However, to achieve miniaturization, it is necessary to lower the resonant frequency of the diaphragm as much as possible due to its characteristics, and to do this, the thickness of the diaphragm must be reduced by several steps. The diaphragm must be formed very thin, less than μm, and there are limits to quality, dimensions, etc. in the method of manufacturing a diaphragm using a metal plate. Furthermore, the components of the acoustic vibration system, such as cavities and acoustic tubes added to the diaphragm, need to be made as small as the vibrating body, and mechanical processing methods pose problems in terms of manufacturing costs. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the prior art and provide a small and inexpensive vibration transducer.

【問題点を解決するための手段】[Means to solve the problem]

このような目的を達成するために、本発明は、振動体を
、たとえばCVD (化学的気相成長法)により形成さ
れたシリコン酸化膜もしくはシリコン窒化膜から成るシ
リコン薄膜と、たとえばスパッタリング等によりこのシ
リコン薄膜上に設けられた電極と、同様にたとえばスパ
ッタリング等によりこの電極上に設けられた圧電性薄膜
と、この圧電性薄膜の同一面上に設けられた2つの電極
と、これらの電極を覆うように設けられた保護膜とから
成る振動体によって構成することを特徴とする。 本発明の実施態様によれば、シリコン薄膜は、音響管を
形成する貫通孔とこの貫通孔に連通ずる空洞とを有する
シリコン基板上に設けられる。 その場合に、シリコン基板は空洞を有する第1のシリコ
ン基板と貫通孔を有してこの第1のシリコン基板に接合
される第2のシリコン基板とから成り、この第2のシリ
コン基板上にシリコン薄膜が設けられるようにすること
ができる。
In order to achieve such an object, the present invention provides a vibrator with a silicon thin film made of a silicon oxide film or a silicon nitride film formed by, for example, CVD (chemical vapor deposition), and a silicon thin film formed by, for example, sputtering or the like. An electrode provided on a silicon thin film, a piezoelectric thin film similarly provided on this electrode by, for example, sputtering, two electrodes provided on the same surface of this piezoelectric thin film, and covering these electrodes. It is characterized by being constituted by a vibrating body comprising a protective film provided as shown in FIG. According to an embodiment of the invention, a silicon thin film is provided on a silicon substrate having a through hole forming an acoustic tube and a cavity communicating with the through hole. In that case, the silicon substrate is made up of a first silicon substrate having a cavity and a second silicon substrate having a through hole and bonded to the first silicon substrate. A thin film can be provided.

【実施例】【Example】

次に本発明の実施例を図面に基づいて詳細に説明する。 第1図は本発明の一実施例を示す構成図、第2図はその
拡大断面図である。この第1図および第2図において、
■は厚さhのシリコン基板、2はこのシリコン基板1上
にCVD (化学的気相成長法)により形成したシリコ
ン酸化膜もしくはシリコン窒化膜から成るシリコン薄膜
である。3はこのシリコン薄膜2の上にスパッタリング
等により形成した第1電極であり、数百人程度の厚さを
存する。4はこの第1電極3の上に積層形成された直径
dの円板状圧電性薄膜であり、たとえばZnOのC軸配
向膜をスパッタリング等により形成される。5,6はこ
の圧電性薄膜4の同一面上に設けられた第2電極およず
第3電極であり、前記第1電極3と同程度の厚さに形成
される。7はシリコン薄膜2と同じ材料にて形成した出
来るだけ薄い0.5μm前後の保護膜であり、電極3,
5゜6相互間の絶縁と圧電性薄膜4の環境条件下での劣
化を防止する役目を有している。 このようにして、シリコン基板1上に順次積層した後、
このシリコン基板1の裏面にシリコン薄膜2と同一材料
のマスクを設け、シリコンとマスクとのエツチング速度
が異なることを利用した選択性エツチングを施すことに
より、シリコン基板1上のシリコン薄膜2を残して、直
径りのダイアフラム8が形成される。この直径りは圧電
性薄膜4の直径dよりも大きくしである。 9はこのようにして製作された振動体である。 10はダイアフラム8のほぼ中心に対応する位置に選択
性エツチングにより貫通孔11を形成した別のシリコン
基板であり、シリコン基板1に接着固定されている。し
かして、ダイアフラム8とシリコン基板10との間には
ほぼ円板状の空洞12が形成され、そして、シリコン基
板10の貫通孔11がこの空洞12に測定流体を導く導
管を兼ねた音響管となる。このようにして、空洞12内
の流体の音響容量Caと貫通孔11内の測定流体のイナ
ータンスMaとで音響振動系が構成される。 また、電極3.5.6はそれぞれリード3a。 5a、6aを介してポンディングパッド3b。 5b、6bに接続されている。ポンディングパッド3b
はアース接続され、ポンディングパッド5bは増幅器1
4に接続され、ポンディングパッド6bは帰還回路15
に接続されている。増幅器14および帰還回路15によ
って後述する自動発振回路13が構成される。 ところで、このようなトランスジューサにおける振動体
の小型化の限界はダイアフラム8を形成するシリコン薄
膜2の厚さによって規定される。 −例によれば、シリコン薄膜2をシリコン窒化膜によっ
て形成し、かつ圧電性薄膜4をZnOによって形成し、
そして、次のように、 ダイアフラム8:厚さ4pm、直径p=l、5 mm圧
電製薄膜4 :厚さ1μm、直径d−1,5mm保護膜
7   :厚さ 約0.5μm シリコン基板1:厚さ 0.1 mm 貫通孔11  ;直径Q、5mmφ、長さ約Q、5mm
と選定することにより、好ましいトランスジューサが得
られた。 このような構成において測定流体の密度を測定する方法
について簡単に説明する。 第3図(A)は振動体9と貫通孔11および空洞12内
の測定流体とから成る機械−音響複合振動系を機械系か
ら見た等価電気回路である。この第3図(A)において
、Mm、Cmはそれぞれ振動体9の質量および機械コン
プライアンス、Ma。 Caはそれぞれ貫通孔ll内の測定流体のイナータンス
および空洞12内の測定流体の音響容量を表し、Aは振
動体9の面積と貫通孔11の面積との比で定まる、音響
系を機械系へ変換するための変換係数である。 しかして、空洞12内の測定流体の音響容量Caを小さ
くし、音響系の共振周波数fa(Mm。 Cmにて決定される)を振動体9の共振周波数fm (
Ma、Caにて決定される)よりも高くすると、かかる
等価電気回路は同図(B)の如く示すことができる。こ
の図(B)から明らかなように、この振動系の共振周波
数fnはMm、Cm、Maここで、貫通孔11内の流体
のイナータンスMaは、開口面積をS、長さをし、流体
密度をρとすると、次式にて表される。 Ma=(L/S)  ρ よって、上記2つの式に基づいて、共振周波数fnから
密度ρを求めることができる。 この共振周波数fnの測定は次のようにして行われる。 すなわち、増幅器14により電極3.5を介して圧電性
薄膜4に交流電圧を印加すると、振動体9がその面に垂
直方向に撓み振動する。この振動変位によって電極3,
6間には交流電圧が生起するので、この電圧を帰還回路
15により増幅器14を介して電極3.5間に正帰還す
る。その結果、この振動系は共振周波数fnにて発振し
、密度が測定可能となる。 なお、第1図および第2図の実施例においては、空洞1
2を有するシリコン基板1と貫通孔12を、有するシリ
コン基板10とは別個の基板により製作する例について
述べたが゛、両基板は音響管を形成する貫通孔とこの貫
通孔に連通ずる空洞とを有する1つのシリコン基板によ
って置換することができる。この場合には、第2図にお
いて、シリコン薄膜2からシリコン基板1が除去されて
、かかる1つのシリコン基板がシリコン薄膜2に接合さ
れる。 なおまた、第1図および第2図の実施例においては、空
洞12および音響管(貫通孔)11はシリコン薄膜2の
一方側に形成された例について述べたが、シリコン薄膜
2の両側に形成してもよい。 この場合には、音響管を形成する貫通孔とこの貫通孔に
連通ずる空洞とを有する1つのシリコン基板が保護膜7
にかかる空洞を保護膜側にして接合されるようにすると
よい。
Next, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is an enlarged sectional view thereof. In this figure 1 and figure 2,
2 is a silicon substrate having a thickness h, and 2 is a silicon thin film made of a silicon oxide film or a silicon nitride film formed on this silicon substrate 1 by CVD (chemical vapor deposition). 3 is a first electrode formed on this silicon thin film 2 by sputtering or the like, and has a thickness of about several hundred layers. Reference numeral 4 denotes a disk-shaped piezoelectric thin film having a diameter d laminated on the first electrode 3, and is formed by sputtering a C-axis oriented film of ZnO, for example. 5 and 6 are a second electrode and a third electrode provided on the same surface of the piezoelectric thin film 4, and are formed to have the same thickness as the first electrode 3. 7 is a protective film of about 0.5 μm as thin as possible formed of the same material as the silicon thin film 2;
It has the role of insulating the 5° and 6 layers and preventing deterioration of the piezoelectric thin film 4 under environmental conditions. After sequentially stacking layers on the silicon substrate 1 in this way,
A mask made of the same material as the silicon thin film 2 is provided on the back surface of the silicon substrate 1, and selective etching is performed using the difference in etching speed between silicon and the mask, leaving the silicon thin film 2 on the silicon substrate 1. , a diaphragm 8 having a diameter is formed. This diameter is larger than the diameter d of the piezoelectric thin film 4. 9 is a vibrating body manufactured in this manner. 10 is another silicon substrate having a through hole 11 formed by selective etching at a position corresponding to approximately the center of the diaphragm 8, and is fixed to the silicon substrate 1 by adhesive. Thus, a substantially disk-shaped cavity 12 is formed between the diaphragm 8 and the silicon substrate 10, and the through hole 11 of the silicon substrate 10 serves as an acoustic tube that also serves as a conduit for guiding the measurement fluid into the cavity 12. Become. In this way, an acoustic vibration system is constituted by the acoustic capacitance Ca of the fluid in the cavity 12 and the inertance Ma of the measured fluid in the through hole 11. Moreover, the electrodes 3, 5, and 6 are leads 3a, respectively. 5a, 6a to the bonding pad 3b. 5b and 6b. Ponding pad 3b
is connected to ground, and the bonding pad 5b is connected to the amplifier 1.
4, and the bonding pad 6b is connected to the feedback circuit 15.
It is connected to the. The amplifier 14 and the feedback circuit 15 constitute an automatic oscillation circuit 13, which will be described later. Incidentally, the limit of miniaturization of the vibrating body in such a transducer is defined by the thickness of the silicon thin film 2 forming the diaphragm 8. - according to the example, the silicon thin film 2 is formed of a silicon nitride film and the piezoelectric thin film 4 is formed of ZnO;
And, as follows, diaphragm 8: thickness 4 pm, diameter p=l, 5 mm piezoelectric thin film 4: thickness 1 μm, diameter d-1.5 mm protective film 7: thickness about 0.5 μm silicon substrate 1: Thickness: 0.1 mm Through hole 11; diameter Q, 5 mmφ, length approximately Q, 5 mm
A preferred transducer was obtained by selecting . A method for measuring the density of a measurement fluid in such a configuration will be briefly described. FIG. 3(A) is an equivalent electric circuit of a mechanical-acoustic complex vibration system consisting of the vibrating body 9, the through hole 11, and the measuring fluid in the cavity 12, as viewed from the mechanical system. In FIG. 3(A), Mm and Cm are the mass and mechanical compliance of the vibrating body 9, respectively, and Ma. Ca represents the inertance of the fluid to be measured in the through hole ll and the acoustic capacity of the fluid to be measured in the cavity 12, respectively, and A is determined by the ratio of the area of the vibrating body 9 to the area of the through hole 11. This is a conversion coefficient for conversion. Therefore, the acoustic capacitance Ca of the measurement fluid in the cavity 12 is reduced, and the resonance frequency fa (Mm, determined by Cm) of the acoustic system is changed to the resonance frequency fm (
(determined by Ma and Ca), such an equivalent electric circuit can be shown as shown in FIG. As is clear from this figure (B), the resonance frequency fn of this vibration system is Mm, Cm, Ma.Here, the inertance Ma of the fluid in the through hole 11 is determined by the opening area S, the length, and the fluid density. Letting ρ be, it is expressed by the following formula. Ma=(L/S) ρ Therefore, the density ρ can be determined from the resonance frequency fn based on the above two equations. The measurement of this resonance frequency fn is performed as follows. That is, when an AC voltage is applied to the piezoelectric thin film 4 by the amplifier 14 via the electrode 3.5, the vibrating body 9 is deflected and vibrates in a direction perpendicular to its surface. Due to this vibrational displacement, the electrode 3,
Since an alternating current voltage is generated between the electrodes 3 and 6, this voltage is positively fed back between the electrodes 3 and 5 by the feedback circuit 15 via the amplifier 14. As a result, this vibration system oscillates at the resonant frequency fn, making it possible to measure the density. In the embodiments shown in FIGS. 1 and 2, the cavity 1
An example has been described in which the silicon substrate 1 having the acoustic tube 1 and the through hole 12 are manufactured using a separate substrate from the silicon substrate 10 having the through hole. It can be replaced by one silicon substrate having . In this case, in FIG. 2, the silicon substrate 1 is removed from the silicon thin film 2, and this one silicon substrate is bonded to the silicon thin film 2. Furthermore, in the embodiments shown in FIGS. 1 and 2, an example was described in which the cavity 12 and the acoustic tube (through hole) 11 were formed on one side of the silicon thin film 2, but they may be formed on both sides of the silicon thin film 2. You may. In this case, one silicon substrate having a through hole forming an acoustic tube and a cavity communicating with the through hole is used as the protective film 7.
It is preferable that the cavities located on the protective film side be bonded.

【発明の効果】【Effect of the invention】

以上に説明したように二本発明による振動式トランスジ
ューサによれば、振動体を、シリコン膜と、このシリコ
ン膜上に設けられた電極と、この電極上に設けられた圧
電性薄膜と、この圧電性薄膜の同一面上に設けられた2
つの電極と、これらの電極を覆うように設けられた保護
膜とから成る振動体によって構成したので、通常の半導
体製造プロセスを利用して製作可能となり、従って振動
体の寸法精度を向上させて小型化することができ、かつ
安価に製作することができる。 また、シリコン薄膜をベースとして振動体を構成したの
で、従来の金属製基板に比較して耐蝕性が向上する効果
も得られる。 さらに、本発明の実施態様によれば、シリコン薄膜は、
音響管を形成する貫通孔とこの貫通孔に連通ずる空洞と
を有するシリコン基板上に設けられる。 その場合に、シリコン基板は空洞を有する第1−のシリ
コン基板と貫通孔を有してこの第1のシリコン基板に接
合される第2のシリコン基板とから成り、この第2のシ
リコン基板上にシリコン薄膜が設けられるようにするこ
とができる。 このような構成によれば、音響系の構成要素をも通常の
半導体製造プロセスを利用して製作可能となり、従うて
安価に製作可能となる利点が奏される。
As explained above, according to the two vibrating transducers of the present invention, the vibrating body is composed of a silicon film, an electrode provided on this silicon film, a piezoelectric thin film provided on this electrode, and a piezoelectric thin film provided on this electrode. 2 provided on the same surface of the sexual thin film
Since the vibrating body consists of two electrodes and a protective film provided to cover these electrodes, it can be manufactured using a normal semiconductor manufacturing process, which improves the dimensional accuracy of the vibrating body and makes it compact. and can be manufactured at low cost. Furthermore, since the vibrating body is constructed using a silicon thin film as a base, corrosion resistance can be improved compared to conventional metal substrates. Further, according to embodiments of the present invention, the silicon thin film is
It is provided on a silicon substrate having a through hole forming an acoustic tube and a cavity communicating with the through hole. In that case, the silicon substrate consists of a first silicon substrate having a cavity and a second silicon substrate having a through hole and bonded to the first silicon substrate. A thin silicon film may be provided. According to such a configuration, the components of the acoustic system can also be manufactured using a normal semiconductor manufacturing process, and therefore, there is an advantage that they can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図はその
拡大断面図、第3図はその等価電気回路図である。 1〜・−シリコン基板、2−・−・ シリコン膜、3−
 電極、     4−・・ 圧電性薄膜、5−・ 電
極、     6−・−電極、7 ・−・・ 保護膜、
    8 ・−・ ダイアフラム、9 ・・−振動体
、   10 −・−シリコン基板、工1−  貫通孔
、   12  ・−空洞。 ■1
FIG. 1 is a configuration diagram showing one embodiment of the present invention, FIG. 2 is an enlarged sectional view thereof, and FIG. 3 is an equivalent electric circuit diagram thereof. 1--Silicon substrate, 2---Silicon film, 3-
electrode, 4-... piezoelectric thin film, 5-- electrode, 6-- electrode, 7... protective film,
8... diaphragm, 9...- vibrating body, 10...- silicon substrate, work 1- through hole, 12...- cavity. ■1

Claims (1)

【特許請求の範囲】 1)機械的振動体の少なくとも一面側に、その面に対向
して設けた空洞とこの空洞に流体を導く導管を兼ねた音
響管とを設け、前記振動体を含む機械−音響振動系の共
振周波数から前記流体の密度または圧力を測定する振動
式トランスジューサにおいて、 前記振動体を、 シリコン薄膜と、このシリコン薄膜上に設けられた電極
と、この電極上に設けられた圧電性薄膜と、この圧電性
薄膜の同一面上に設けられた2つの電極と、これらの電
極を覆うように設けられた保護膜とから成る振動体によ
って構成した、 ことを特徴とする振動式トランスジューサ。 2)特許請求の範囲第1項記載のトランスジューサにお
いて、前記シリコン薄膜は、前記音響管を形成する貫通
孔とこの貫通孔に連通する空洞とを有するシリコン基板
上に設けられることを特徴とする振動式トランスジュー
サ。 3)特許請求の範囲第2項記載のトランスジューサにお
いて、前記シリコン基板は空洞を有する第1のシリコン
基板と貫通孔を有してこの第1のシリコン基板に接合さ
れる第2のシリコン基板とから成り、この第2のシリコ
ン基板上に前記シリコン薄膜が設けられることを特徴と
する振動式トランスジューサ。
[Scope of Claims] 1) A mechanical vibrating body is provided with a cavity provided on at least one surface facing the surface and an acoustic tube that also serves as a conduit for guiding fluid into the cavity, and a machine including the vibrating body. - In a vibrating transducer that measures the density or pressure of the fluid from the resonance frequency of an acoustic vibration system, the vibrating body comprises a silicon thin film, an electrode provided on the silicon thin film, and a piezoelectric material provided on the electrode. A vibrating transducer comprising a vibrating body consisting of a piezoelectric thin film, two electrodes provided on the same surface of the piezoelectric thin film, and a protective film provided to cover these electrodes. . 2) The transducer according to claim 1, wherein the silicon thin film is provided on a silicon substrate having a through hole forming the acoustic tube and a cavity communicating with the through hole. expression transducer. 3) In the transducer according to claim 2, the silicon substrate includes a first silicon substrate having a cavity and a second silicon substrate having a through hole and bonded to the first silicon substrate. A vibrating transducer characterized in that the silicon thin film is provided on the second silicon substrate.
JP30027186A 1986-12-17 1986-12-17 Vibration type transducer Pending JPS63151837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30027186A JPS63151837A (en) 1986-12-17 1986-12-17 Vibration type transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30027186A JPS63151837A (en) 1986-12-17 1986-12-17 Vibration type transducer

Publications (1)

Publication Number Publication Date
JPS63151837A true JPS63151837A (en) 1988-06-24

Family

ID=17882780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30027186A Pending JPS63151837A (en) 1986-12-17 1986-12-17 Vibration type transducer

Country Status (1)

Country Link
JP (1) JPS63151837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938470B2 (en) * 2001-05-15 2005-09-06 Baker Hughes Incorporated Method and apparatus for downhole fluid characterization using flexural mechanical resonators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192937A (en) * 1983-04-16 1984-11-01 Nippon Soken Inc Measuring device for characteristics of fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192937A (en) * 1983-04-16 1984-11-01 Nippon Soken Inc Measuring device for characteristics of fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938470B2 (en) * 2001-05-15 2005-09-06 Baker Hughes Incorporated Method and apparatus for downhole fluid characterization using flexural mechanical resonators

Similar Documents

Publication Publication Date Title
Haller et al. A surface micromachined electrostatic ultrasonic air transducer
JP4757026B2 (en) Acceleration sensor characteristic adjustment method
US4961345A (en) Vibration type transducer
JP3352462B2 (en) Mechanical signal processor with loss compensation means
US5668303A (en) Sensor having a membrane as part of an electromechanical resonance circuit forming receiver and transmitter converter with interdigital structures spaced apart from one another
US7716986B2 (en) Acoustic wave sensing device integrated with micro-channels and method for the same
Prasad et al. Design and fabrication of Si-diaphragm, ZnO piezoelectric film-based MEMS acoustic sensor using SOI wafers
EP3624464A1 (en) Piezoelectric microphone chip and piezoelectric microphone
JPH11514579A (en) Mechanical signal processor with loss compensation means
WO2004019426A1 (en) Method for manufacturing resonant device
JP3428803B2 (en) Acceleration sensor and method of manufacturing the same
US20200171544A1 (en) High Frequency Ultrasonic Transducer and Method of Fabrication
JPS63151837A (en) Vibration type transducer
US20220184660A1 (en) Lithium-based piezoelectric micromachined ultrasonic transducer
JPS63307326A (en) Pressure sensor and production thereof
JP2005039720A (en) Piezoelectric ultrasonic sensor element
JP2007500478A (en) Multilayer resonator and time base incorporating the resonator
JP3259322B2 (en) Sound wave transducer
JP2017207283A (en) Manufacturing method for vibration element
Mescher et al. Novel MEMS microshell transducer arrays for high-resolution underwater acoustic imaging applications
JP2011108680A (en) Method of manufacturing multilayer substrate, method of manufacturing diaphragm, and method of manufacturing pressure sensor
JP2003057035A (en) Manufacturing method of vibration gyro and vibration gyro component
WO2022219717A1 (en) Ultrasound transducer, distance measurement device, and ultrasound transducer manufacturing method
WO2022220142A1 (en) Ultrasonic transducer, distance measurement device, and method for manufacturing ultrasonic transducer
WO2023131986A1 (en) Method for manufacturing ultrasonic transducer, ultrasonic transducer and rangefinder