JPS63151482A - Printing recording medium - Google Patents

Printing recording medium

Info

Publication number
JPS63151482A
JPS63151482A JP61297553A JP29755386A JPS63151482A JP S63151482 A JPS63151482 A JP S63151482A JP 61297553 A JP61297553 A JP 61297553A JP 29755386 A JP29755386 A JP 29755386A JP S63151482 A JPS63151482 A JP S63151482A
Authority
JP
Japan
Prior art keywords
layer
heat
printing
recording medium
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61297553A
Other languages
Japanese (ja)
Inventor
Hidekazu Akutsu
英一 圷
Hiroo Soga
曽我 洋雄
Koichi Saito
孝一 斉藤
Kiyoshi Horie
潔 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61297553A priority Critical patent/JPS63151482A/en
Publication of JPS63151482A publication Critical patent/JPS63151482A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To perform high speed printing, by a method wherein a heat generator layer generating heat by the input of the electric signal corresponding to an image signal, a conductive layer, an ink release layer and a heat-meltable layer are laminated and fine discrete patterns composed of conductive ceramic are arranged to the surface of the heat generator layer. CONSTITUTION:A printing needle electrode 6 is brought into contact with a printing recording medium, which consists of a heat generator layer 2 having fine discrete patterns 1 composed of conductive ceramic provided to the surface thereof, a return path electrode layer 3, an ink release layer 4 and a heat-meltable ink layer 5, under pressure and slid thereon. A current flows to the heat generator layer 2 from the fine discrete patterns corresponding to the electric signal from the printing needle electrode 6 to generate heat, and the heat-meltable ink layer on the heat generating part is melted to be transferred to the transfer paper 7 on an elastic pressure contact member 8 as a transfer ink layer 9. In this case, the damage and mechanical slide injury due to the heat generated at the contact part of the printing needle electrode and a printing recording medium at the time of printing are avoided because of the high heat resistance and high hardness of ceramic. Therefore, even when this recording medium is used many times at a high speed, characteristic change is markedly reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気信号を熱エネルギーに変換し、転写材に
インク像を転写させるために用いられる印字記録媒体に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a print recording medium used for converting an electrical signal into thermal energy and transferring an ink image to a transfer material.

従来の技術 従来、熱転写を利用して、印字記録を行う方式(1)サ
ーマルヘッドを印字ヘッドとし、低融点インクを塗布し
たインクフィルム上のインク層の反対側よりヘッドを印
圧し、熱伝導させてインクを溶融転写する方式、(特開
昭53−84735号公報) (2)針電極より画像に対応する電気信号を印加し、印
字記録媒体の支持体を通してインク層中に通電し、その
時の発生する熱により、インク層を熱溶融させ転写する
方式で、印字記録媒体にあけるインク支持体として、金
属粉を分散し、樹脂でリボン化したもの、あるいは高抵
抗の導電フィルムで構成したものを用いる方式、(直観
7δ子学会誌1982.Vo1.11  Nα1、画像
電子学会第12回全国大会予稿集17〉 (3)中抵抗のインク支持体に発熱層と帰路電極を設け
て印字記録媒体を構成し、その中にインク支持体側より
針電極によって印加電流路を設は発熱させ、インク層を
熱溶融させ転写させる方式、(特開昭56−93585
号公報〉 (4)針電極と同じ側に帰路電極を設け、針電極より画
像に対応する電気信号を印加して、印字記録媒体の発熱
層中に帰路電極への電流路を形成して発1熱層での発熱
によりインク層を溶融させ、転写する方式、 などが提案されている。
Conventional technology Conventionally, a method of printing and recording using thermal transfer (1) A thermal head is used as the print head, and printing pressure is applied to the head from the opposite side of the ink layer on the ink film coated with low melting point ink to conduct heat. A method of melting and transferring ink (Japanese Patent Application Laid-Open No. 53-84735) (2) Applying an electric signal corresponding to the image from a needle electrode and passing electricity through the support of the printing recording medium into the ink layer to detect the generation of electricity at that time. This is a method in which the ink layer is thermally melted and transferred using heat, and the ink support that is placed on the print recording medium uses a ribbon made of resin with metal powder dispersed therein, or one made of a high-resistance conductive film. Method, (Journal of the Intuition 7δ Child Society 1982. Vo1.11 Nα1, Proceedings of the 12th National Conference of the Institute of Image Electronics Engineers, 17) (3) A print recording medium is constructed by providing a heat generating layer and a return electrode on an ink support of medium resistance. A current path is set in the ink support using a needle electrode to generate heat, and the ink layer is thermally melted and transferred.
(4) A return electrode is provided on the same side as the needle electrode, and an electric signal corresponding to the image is applied from the needle electrode to form a current path to the return electrode in the heat generating layer of the print recording medium. A method has been proposed in which the ink layer is melted by heat generation in one thermal layer and then transferred.

発明が解決しようとする問題点 しかしながら、これらの方式はいずれも欠点を有し、満
足すべきものではない。
Problems to be Solved by the Invention However, all of these systems have drawbacks and are not satisfactory.

即ち、上記(1)の方式では、■長い距離を熱伝導にた
よるため、印字速度が遅い(1mS/ドツト以上)、■
伝達できるエネルギーが小さいため、インク材料の制限
が大きく、転移制御が悪い(ドツト変調不可及びワック
ス系材料が主体)、という欠点があり、 (2)の方式では、■カラー化が難しい(導電性付与が
色調制御を難しくする。)、■支持体の導電ロスが大で
機械強度もよくない、■印字のドツト精度が低い、■電
気異方性が不十分であるため、インク支持体内で1ノー
クが生じ、エネルギーロスが大きい、という欠点があり
、 (3)の方式では、■インク支持体の導電異方性がない
のでドツトの広がりがある、■発熱に寄与しないリーク
電流が大ぎく、エネルギー効率が悪い、■インク支持体
に抵抗性が必るので、&1電極とインク支持体間の接触
抵抗が大ぎい、という欠点がおり、 さらに(4)の方式では、印加電流が、帰路電1戸への
電流路の関係で二度発熱層を通るので、二倍のエネルギ
ーロスを生じ、また、摺動接触を針電極と帰路電極によ
り二度行うため、接触抵抗による熱ロスも二倍生じる。
That is, in the method (1) above, (1) the printing speed is slow (1 mS/dot or more) because it relies on thermal conduction over a long distance, (1)
Since the energy that can be transmitted is small, there are large restrictions on ink materials and poor transfer control (dot modulation is not possible and wax-based materials are the main components). ), ■ The electrical conductivity loss of the support is large and the mechanical strength is poor, ■ The dot accuracy of printing is low, and ■ The electrical anisotropy is insufficient, so that 1. The method (3) has the drawbacks of nok generation and large energy loss; and method (3): ■ There is no conductive anisotropy in the ink support, so the dots spread; ■ There is a large amount of leakage current that does not contribute to heat generation; There are disadvantages such as poor energy efficiency, ■The ink support must have resistance, so the contact resistance between the &1 electrode and the ink support is large.Furthermore, in method (4), the applied current is Due to the current path to one house, it passes through the heat generating layer twice, resulting in twice the energy loss.Also, since the sliding contact is made twice with the needle electrode and the return electrode, the heat loss due to contact resistance is also doubled. arise.

ざらに、帰路電極に優先的に電流を流すには、印字記録
媒体中の導電路に必る程度の抵抗が必要となり、印字記
録媒体中の導電路での発熱ロスも大きく生じる、という
欠点がおる。
Generally speaking, in order to preferentially flow current to the return electrode, a certain degree of resistance is required in the conductive path in the print recording medium, and there is a drawback that a large amount of heat loss occurs in the conductive path in the print recording medium. is.

本発明は、上記従来の印字記録媒体について、それを通
電転写方式に用いた場合における欠点を改善する目的で
なされたものて必る。
The present invention has been made for the purpose of improving the drawbacks of the above-mentioned conventional print recording medium when it is used in an electric transfer method.

したがって、本発明の目的は、 (1)高速印字が可能な印字記録媒体を提供すること、 (2)印字エネルギー効率が高い印字記録媒体を提供す
ること、 (3)寿命の長い印字記録媒体を提供すること、(4〉
高品位のカラー画像の再現ができ、高度な階調性の堅牢
な画質の記録が行える印字記録媒体を提供すること、 に必る。
Therefore, the objects of the present invention are: (1) to provide a print recording medium capable of high-speed printing; (2) to provide a print recording medium with high printing energy efficiency; and (3) to provide a print recording medium with a long life. to provide (4)
It is necessary to provide a print recording medium that can reproduce high-quality color images and record robust image quality with high gradation.

問題点を解決するための手段 本発明は、画像信号に対応する電気信号の入力により発
熱する発熱体層、導電層、インク剥離層、熱溶融性イン
ク層を積層してなる印字記録媒体において、発熱体層の
表面に導電性セラミックからなる微小孤立パターンを配
設してなることを特徴とする。
Means for Solving the Problems The present invention provides a print recording medium comprising a heating layer that generates heat upon input of an electric signal corresponding to an image signal, a conductive layer, an ink peeling layer, and a heat-melting ink layer. It is characterized in that minute isolated patterns made of conductive ceramic are arranged on the surface of the heating element layer.

作用 本発明の作用を第2図によって説明する。第2図は、本
発明の印字記録媒体を用いて通電記録方式により印字記
録を行う場合の説明図である。
Function The function of the present invention will be explained with reference to FIG. FIG. 2 is an explanatory diagram when print recording is performed using the print recording medium of the present invention by the current recording method.

印字用針状電極6を、表面に導電性セラミックからなる
微小孤立パターン1を設けた発熱体層2、帰路電極層3
、インク剥離層4及び熱溶融性インク層5よりなる印字
記録媒体に圧接し、1g動させる。印字用針状電極6か
らの電気信号に応じて、微小孤立導体パターンから発熱
体層に電流が流れ、発熱して、その部分の熱溶融性イン
ク層が溶融し、弾性圧接部材8上の転写紙7に転移イン
ク層9として転写される。
A heating element layer 2 and a return electrode layer 3 each have a needle-like electrode 6 for printing, a heating element layer 2 having a fine isolated pattern 1 made of conductive ceramic on its surface.
, is brought into pressure contact with a print recording medium consisting of an ink release layer 4 and a heat-melting ink layer 5, and is moved at 1 g. In response to the electric signal from the printing needle-like electrode 6, a current flows from the minute isolated conductor pattern to the heating element layer, generates heat, melts the heat-melting ink layer in that area, and transfers it onto the elastic pressure contact member 8. It is transferred to the paper 7 as a transfer ink layer 9.

この場合の通電経路及び熱伝導経路は次の通りである。The current flow path and heat conduction path in this case are as follows.

1、通電経路 信号駆動回路→印字用針状電極→導電性セラミック微小
孤立パターン→発熱体層→帰路電極図→(駆動回路)→
接地。
1. Current path signal drive circuit → printing needle-like electrode → conductive ceramic minute isolated pattern → heating element layer → return path electrode diagram → (drive circuit) →
ground.

2、熱伝導経路 発熱体層→帰路電極層→インク剥離層→熱溶融インク層
2. Heat conduction path: heating element layer → return electrode layer → ink release layer → heat-melting ink layer.

本発明においては、上記のような経路によってエネルギ
ーの伝達が行われ、印字記録が行われるが、この場合、
熱溶融性インク層の上に導電性セラミックからなる微小
孤立パターンが設けられているから、印字時に印字用針
状電極と印字記録媒体の接点部で生じる発熱によるダメ
ージ及び機械的摺動キズが、セラミックの高耐熱性及び
硬質性のために回避できる。したがって、高速で多数回
使用に対して特性の変化が若しく少ない。又、セラミッ
ク材の導電性により、印字用針状電極と印字記録媒体と
の接触抵抗が下がり、印字発熱回路中の発熱エネルギー
ロスを減少させるため、印字ドツト当りのエネルギー効
率が上昇する。そして、又、印字記録媒体の表面のダメ
ージも減少するので寄合も延長する。
In the present invention, energy is transmitted and recorded by the above-mentioned path, but in this case,
Since minute isolated patterns made of conductive ceramic are provided on the heat-melting ink layer, damage caused by heat generated at the contact point between the printing needle electrode and the print recording medium during printing and mechanical sliding scratches are avoided. This can be avoided due to the high heat resistance and hardness of ceramics. Therefore, changes in characteristics are small even when used many times at high speed. Further, due to the conductivity of the ceramic material, the contact resistance between the printing needle electrode and the printing recording medium is reduced, and the heat generation energy loss in the printing heating circuit is reduced, so that the energy efficiency per printing dot is increased. Furthermore, since damage to the surface of the print recording medium is also reduced, the amount of overlap is also extended.

実施例 以下、図面を参酌して実施例により本発明を説明する。Example Hereinafter, the present invention will be described by way of examples with reference to the drawings.

第1図(a>は、本発明の印字記録媒体の概略断面図で
あり、第1図(b)は、その平面図である。発熱体層2
の表面には、導電性セラミックからなる微小孤立パター
ン1が設けられている。この微小孤立パターンは、発熱
体層9の体積固有抵抗の100分の1以下であればよく
、又、微小孤立パターンの面積は、信号印加電極の1つ
の画素電極の面積の5分の4以下、好ましくは、4分の
1以下の大きざである。信号印加電極の断面積が、微小
孤立パターンの面積よりはるかに小さいときは、画像ド
ツトの転移位置の精度が落ちるばかりでなく、発熱体層
中の電流束が粗で広がり、エネルギー効率が下がり、し
かもドツトの切れが悪くなり、画質の低下が著しくなる
FIG. 1(a) is a schematic cross-sectional view of the print recording medium of the present invention, and FIG. 1(b) is a plan view thereof.Heating body layer 2
A fine isolated pattern 1 made of conductive ceramic is provided on the surface. This minute isolated pattern may be one-hundredth or less of the volume resistivity of the heating element layer 9, and the area of the minute isolated pattern is four-fifths or less of the area of one pixel electrode of the signal application electrode. , preferably one-quarter or less. When the cross-sectional area of the signal applying electrode is much smaller than the area of the minute isolated pattern, not only the accuracy of the image dot transfer position decreases, but also the current flux in the heating element layer becomes coarse and spread, reducing energy efficiency. Moreover, the dots become less sharp and the image quality deteriorates significantly.

導電性セラミックからなる微小孤立パターンは、耐熱性
導電セラミックより構成されるもので、融点1500’
C以上、体積抵抗率102Ω” cm以下、好ましくは
、10−3Ω・cm以下の酸化物、窒化物、ホウ化物、
ケイ化物、炭化物等の1種又はそれ以上のものより構成
されるものが好ましい。具体的には、U O2、RuO
2、TaN、Ta2N、ZrN5NbN、VN、TiB
2、ZrB2、HfB2 、TaB2 、MOB21.
CrB2、N b B 2、MoblNbB、UB2、
M O2B、84C,TlC−zrc、HfC,VC,
NbC1WC,W2 C,T a C,M OS I 
2.7 a 3 + 2、WS ! 2等があげられる
The minute isolated pattern made of conductive ceramic is made of heat-resistant conductive ceramic, and has a melting point of 1500'.
Oxides, nitrides, borides with a volume resistivity of C or more and a volume resistivity of 102 Ω" cm or less, preferably 10-3 Ω cm or less,
Preferably, the material is composed of one or more of silicides, carbides, etc. Specifically, UO2, RuO
2, TaN, Ta2N, ZrN5NbN, VN, TiB
2, ZrB2, HfB2, TaB2, MOB21.
CrB2, NbB2, MoblNbB, UB2,
M O2B, 84C, TlC-zrc, HfC, VC,
NbC1WC, W2 C, T a C, M OS I
2.7 a 3 + 2, WS! 2nd prize will be given.

微小孤立パターンは、厚さ40μm以下であるのが好ま
しく、より好ましくは1μm以下である。
The thickness of the minute isolated pattern is preferably 40 μm or less, more preferably 1 μm or less.

又、微小孤立パターンの形状は特に限定されるものでは
ない。第3図に、微小孤立パターンの形状の例を示す。
Further, the shape of the minute isolated pattern is not particularly limited. FIG. 3 shows an example of the shape of a minute isolated pattern.

′ 微小孤立パターンは、例えばフォトレジスト法、ド
ライエツチング法、マスク法等によって作製できる。
' The minute isolated pattern can be produced by, for example, a photoresist method, a dry etching method, a mask method, or the like.

本発明において、発熱体層2は、1本偵高有抵抗10−
3Ω・cm乃至103Ω・cmの材料から構成される。
In the present invention, the heating element layer 2 has one rectangular resistor 10-
It is composed of a material with a resistance of 3 Ω·cm to 10 3 Ω·cm.

好ましくは、10 Ω・cm乃至102Ω・cmであり
、それにより良好な印字品質のものが得られる。又、耐
熱性は200 ’Cであることが必要である。
Preferably, it is 10 Ω·cm to 10 2 Ω·cm, whereby good print quality can be obtained. Further, the heat resistance must be 200'C.

具体的な材料としては、ポリイミド樹脂、ポリエステル
樹脂、シリコーン樹脂、エポキシ調脂、ポリジフェニル
エーテル樹脂、ポリアミドイミド樹脂、ポリエステルイ
ミド樹脂等に、炭素粉末、金属粉末又は導電性セラミッ
ク粉末を分散させ、抵抗値を制御したもの、複合金属及
び複合セラミック等の物理着膜によって形成したもの等
をあげることができる。
Specific materials include carbon powder, metal powder, or conductive ceramic powder dispersed in polyimide resin, polyester resin, silicone resin, epoxy resin, polydiphenyl ether resin, polyamideimide resin, polyesterimide resin, etc., and the resistance value Examples include those formed by physical deposition of composite metals, composite ceramics, and the like.

発熱体層の厚さは、1000人乃至100μmの範囲に
選定され、特に、1μrrtPJ至50μmの範囲のも
のが、印字記録媒体の搬送速度、発熱効率等の点からみ
て好ましい。
The thickness of the heat generating layer is selected in the range of 1,000 to 100 μm, and in particular, a thickness in the range of 1 μrrtPJ to 50 μm is preferable from the viewpoint of the conveying speed of the print recording medium, heat generation efficiency, etc.

本発明の印字記録媒体における導電署、即ち、帰路電極
層3は、導電性材料によって形成されるのが好ましい。
The conductive station, that is, the return path electrode layer 3 in the print recording medium of the present invention is preferably formed of a conductive material.

例えば、金属(AI、CU、Cr、N ! 、Au、A
Q、Pt、Fe等の金属及びそれらの合金)、炭素、導
電性セラミック、導電性有機物質等があげられる。帰路
電極層の厚さは、500人乃至10μmが好ましく、よ
り好ましくは、2000人乃至1μmの範囲である。
For example, metals (AI, CU, Cr, N!, Au, A
Examples include metals such as Q, Pt, and Fe, and alloys thereof), carbon, conductive ceramics, and conductive organic substances. The thickness of the return electrode layer is preferably in the range of 500 to 10 μm, more preferably in the range of 2000 to 1 μm.

発熱体層の下に設けられるインク剥離層4は、転写材(
紙、フィルム等)の表面の臨界表面張力(γC)より低
い値を有する表面を有するもので、Ta値としては38
ダイン/ cm以下のものが良好に使用される。なお、
この層は、帰路電極層の保護にも役立つ。
The ink peeling layer 4 provided under the heating element layer is a transfer material (
It has a surface with a value lower than the critical surface tension (γC) of the surface of paper, film, etc.), and the Ta value is 38
Dynes/cm or less are well used. In addition,
This layer also helps protect the return electrode layer.

インク剥離層の厚さは、10μm以下、特に1μm以下
のものが好ましい。
The thickness of the ink release layer is preferably 10 μm or less, particularly 1 μm or less.

熱溶融性インク層5は、公知の熱可塑性物質から構成さ
れ、例えば、融点が200 ’C以下でガラス転移点が
120℃以下の高分子物質を主成分とし、色材を混合分
散してなるもの又は溶解染着してなるものが有利に使用
される。
The heat-melting ink layer 5 is composed of a known thermoplastic substance, for example, the main component is a polymer substance with a melting point of 200'C or less and a glass transition point of 120C or less, and a coloring material is mixed and dispersed therein. Advantageously, those obtained by dyeing or by solution dyeing are used.

上記の印字記録媒体に圧接する信号印加電極への画像信
号入力は、信号周波数に同期して、帰路電極に印加した
方が駆動効率は良くなるが、帰路電極に直接DCバイア
ス電圧を印加したり接地することも信号回路上、コスト
面等で簡便な駆動方法として有用である。
When inputting an image signal to the signal applying electrode that is in pressure contact with the print recording medium mentioned above, drive efficiency is better if the image signal is applied to the return electrode in synchronization with the signal frequency, but it is better to apply a DC bias voltage directly to the return electrode. Grounding is also useful as a simple driving method in terms of signal circuits and costs.

次に、本発明を更に具体化した実施例を示す。Next, examples that further embody the present invention will be shown.

実施例1 カーボン粒子を分散して導電性を付与したポリイミド樹
脂フィルム(厚さ30μm1体積固有抵抗2×10Ω・
cm>の片面にRFスパッタリング@膜法で3000人
のTa 2 N層を設けtご。次にこのセラミック薄膜
の上にホトレジスト液(東京応化工業製 0FPR30
cp)をスピナーを用い1500rpmの回転で塗布し
、80’Cで10分乾燥した。得られたホトレジスト膜
の全面に、10μユφ20μmピッチの水玉模様の微小
孤立導体パターンを高圧水銀灯を用い20秒焼き付けし
た後、0FPR用現像液を用いて3分現像した。十分に
水洗後、100℃で′IO分の乾燥を行った。次に弗酸
:硝談:酢駿=i:4:3の混合液(いずれも試薬一級
品)を4倍量の水で稀釈して得られたエツチング液に7
0’Cで30秒浸漬させ、水玉模様以外のT a 2 
N層をエツチングし、十分に水洗し、微小孤立パターン
を形成させたつ次に上記フィルムの反対側に真空蒸着法
でAIを蒸着して厚さ1500人の蒸着膜を形成した。
Example 1 Polyimide resin film with conductivity imparted by dispersing carbon particles (thickness 30 μm 1 volume resistivity 2×10 Ω・
A Ta 2 N layer of 3,000 layers was formed on one side of the substrate by RF sputtering@film method. Next, apply a photoresist solution (0FPR30 manufactured by Tokyo Ohka Kogyo Co., Ltd.) on top of this ceramic thin film.
cp) was applied using a spinner at 1500 rpm and dried at 80'C for 10 minutes. On the entire surface of the obtained photoresist film, a minute isolated conductor pattern in the form of polka dots with a pitch of 10 μm and a diameter of 20 μm was baked for 20 seconds using a high-pressure mercury lamp, and then developed for 3 minutes using a 0FPR developer. After thorough washing with water, it was dried at 100°C for 10 minutes. Next, add the etching solution obtained by diluting a mixed solution of hydrofluoric acid: nitan: vinegar = i: 4:3 (both are first-class reagents) with 4 times the amount of water.
Immerse at 0'C for 30 seconds, and remove the T a 2 except for the polka dot pattern.
After etching the N layer and thoroughly washing it with water to form a minute isolated pattern, AI was deposited on the opposite side of the film using a vacuum deposition method to form a deposited film with a thickness of 1,500 layers.

そして、その面上に熱硬化型シリコーン樹脂を0.7μ
m厚に浸漬塗布法で着膜し、臨界表面張力30dyne
/cmのインク剥@層を形成した。
Then, apply 0.7μ of thermosetting silicone resin on that surface.
The film was deposited to a thickness of m by dip coating, and the critical surface tension was 30 dyne.
An ink removal layer of /cm was formed.

得られたフィルムのインク剥離層の下に、融点95°C
で3重量%のアゾ顔料を分散した熱可塑性樹脂を7μm
の厚さに設け、熱溶融i生インク石とした。
Under the ink release layer of the resulting film, a melting point of 95°C
7 μm thick thermoplastic resin with 3% by weight of azo pigment dispersed in it.
It was made into a heat-fused raw ink stone.

60μm角の金属部分を有する8本/m!r&の画素密
度のスタイラスラインヘッドを用い、パルス巾300μ
5112Vの信号電圧をスタイラスラインヘッドの金属
部分に入りし、上記の印字記録媒体の孤立パターン側よ
り圧接接触させて信号印加を行った。又、熱溶融性イン
ク層の下には上質紙を圧接圧力300g/aiで圧接さ
せた。それにより、110μm口のやや丸味をもった良
好なインクの転移ドツトが上質紙の上に記録された。
8 pieces/m with 60μm square metal parts! Using a stylus line head with a pixel density of r&, the pulse width was 300μ.
A signal voltage of 5112 V was applied to the metal part of the stylus line head, and the signal was applied by contacting it with pressure from the isolated pattern side of the print recording medium. Further, a piece of high-quality paper was pressed under the heat-melting ink layer at a pressure of 300 g/ai. As a result, good ink transfer dots with a diameter of 110 μm and a slightly round shape were recorded on the high-quality paper.

次に、上記印字装置に信号パルス巾900μs、12v
でドツト信号を印加したところ、上質紙上に190μm
φのドツト転移像が記録できた。
Next, a signal pulse width of 900 μs and 12V is applied to the printing device.
When a dot signal was applied with
A dot transition image of φ was recorded.

上記二つの印字テストの後、微小孤立パターン表面を顕
微鏡で観察したところ何等のダメージも観察されなかっ
た。
After the above two printing tests, the surface of the minute isolated pattern was observed under a microscope and no damage was observed.

又、インクの転移踏部にインク材を再供給し、印字する
サイクルを100回繰り返したところ、初期と同じエネ
ルギーで同様な径の転移画像が得られた。
Furthermore, when the ink material was resupplied to the ink transfer step and the printing cycle was repeated 100 times, a transferred image with the same diameter as the initial one was obtained with the same energy.

比較例1 実施例1の印字記録媒体で表面の微小孤立パターンのな
いものについて実施例1と同様の方法で印字評価を行っ
た。
Comparative Example 1 Printing was evaluated using the same method as in Example 1 for the print recording medium of Example 1, which did not have minute isolated patterns on the surface.

■パルス巾3004S、’12Vの信号印加では、イン
ク画像の転移はなかった。
(2) When a signal with a pulse width of 3004S and a voltage of 12V was applied, there was no transfer of the ink image.

■パルス巾900μs、12Vの信号印加では、100
μmφの丸いドツト画像が記録できた。
■With a pulse width of 900μs and a 12V signal applied, 100
A round dot image of μmφ could be recorded.

又、印字記録媒体のスタイラス電極の接している部分は
、1回印字した後において、熱的に陥没して生己だダメ
ージ跡が観察された。
Further, the portion of the printing recording medium in contact with the stylus electrode was thermally depressed after one printing, and traces of damage were observed.

実施例2 体積固有抵抗10Ω・cmで厚さ45μmのカーボン分
散導電性ポリイミドフィルムの一方の側に、厚さ500
0人のZrB2の膜をRFスパッタリング法により形成
させた。次に形成されたZrB2よりなるセラミック股
上にホトレジスト液(東京応化工業製 0FPR30C
D>をスピナーを用い2000rpmの回転で塗布し、
80’Cで10分乾燥した。次いで、15μm口、25
μmピッチの短形微小孤立導体パターンを全面に高圧水
銀灯で20秒焼き付けし、0FPR用現像液で5分間現
像した後充分に水洗し、105°Cで15分乾燥硬化さ
せた。得られた微小孤立導体パターンのホトレジ硬化膜
のついたフィルムを、3 X ”i 0−3T o r
 rのアルゴン中に置き、RFによるグロー放電を行い
、Q、5kwの電力で20分ドライエツチングを行った
Example 2 A carbon-dispersed conductive polyimide film having a volume resistivity of 10 Ω cm and a thickness of 45 μm was coated with a carbon-dispersed conductive polyimide film having a thickness of 500 μm on one side.
A ZrB2 film was formed by RF sputtering. Next, a photoresist solution (0FPR30C manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the ceramic rise made of ZrB2.
D> using a spinner at a rotation speed of 2000 rpm,
It was dried at 80'C for 10 minutes. Then, 15 μm opening, 25
A rectangular minute isolated conductor pattern with a μm pitch was baked on the entire surface with a high-pressure mercury lamp for 20 seconds, developed with an 0FPR developer for 5 minutes, thoroughly washed with water, and dried and hardened at 105°C for 15 minutes. The obtained film with the photoresist cured film of the minute isolated conductor pattern was heated to 3
The sample was placed in argon at 100 m, and glow discharge was performed by RF, and dry etching was performed at 5 kw for 20 minutes.

それにより微小孤立パターン(Zi”B2>を有するフ
ィルムが作成できた。
As a result, a film having a minute isolated pattern (Zi''B2>) was created.

次にフィルムの反対側に厚さ2000人のA1層を蒸着
し、ざらに、その上に臨界表面張f′J(γG>33d
’yne/CInのシリコーン系熱硬化樹脂を0.5μ
mの厚さに塗布し、その後実施例1と同様の融点95°
Cの熱可塑性樹脂に顔料2重量%を分散したインク材を
4μmの厚さに塗布して、印字記録媒体を作成した。
Next, on the opposite side of the film, an A1 layer with a thickness of 2000 people is deposited, and the critical surface tension f′J (γG>33d
'yne/CIn silicone thermosetting resin 0.5μ
m thickness and then melting point 95° as in Example 1.
An ink material prepared by dispersing 2% by weight of pigment in thermoplastic resin C was applied to a thickness of 4 μm to prepare a print recording medium.

この印字記録媒体を用い、実施例1と同様の装置を用い
て印字実股を行ったところ、200μsのパルス巾、印
加電圧i5Vの下で105μmの円形の良好なドツト像
が紙の上に記録できた。又、繰り返し50回印字を行っ
ても、印字記録媒体の微小孤立パターン上には、何等の
ダメージもみられなかった。
When this print recording medium was used for actual printing using the same apparatus as in Example 1, a good circular dot image of 105 μm was recorded on the paper under a pulse width of 200 μs and an applied voltage of i5V. did it. Further, even when printing was repeated 50 times, no damage was observed on the minute isolated patterns on the print recording medium.

発明の効果 本発明の印字記録媒体は、上記の基或を有するから次の
ような効果を生じる。
Effects of the Invention Since the print recording medium of the present invention has the above-mentioned base, it produces the following effects.

1)高速印字が可能である。1) High-speed printing is possible.

導電性セラミックからなる微小孤立パターンは、耐熱性
を有するから、印字時の印字用針状電性と印字記録媒体
との接点分での発熱ダメージが回避でき、又、ヒートシ
ョックによる表面層の空気との化合を回避できるので、
多数回の印字発熱によっても印字記録媒体を基或する材
料の変質が生じない。したがって、高速で多数1使用し
ても特性の劣化が著しく少なくなる。したがってまた、
1ドツト当りのパルスエネルギーが大きく、しかも短パ
ルス幅化が可能であり、高速印字が可能になる。
The minute isolated pattern made of conductive ceramic has heat resistance, so it can avoid heat damage at the point of contact between the printing needle conductor and the print recording medium during printing, and also prevent air in the surface layer from heat shock. Since it is possible to avoid combination with
The material on which the print recording medium is based does not change in quality even when heat is generated during printing many times. Therefore, even if a large number of devices are used at high speed, the deterioration of characteristics is significantly reduced. Therefore, also
The pulse energy per dot is large and the pulse width can be shortened, making high-speed printing possible.

2)印字エネルギー効率が高い。2) High printing energy efficiency.

印字用針状電極と印字記録媒体との接触抵抗が下がるた
め、印字発熱回路中の発熱エネルギーロスを減少させ、
発熱体層以外での発熱を抑止する。
Since the contact resistance between the printing acicular electrode and the printing recording medium is reduced, the heat generation energy loss in the printing heating circuit is reduced.
Prevents heat generation in areas other than the heating element layer.

このため、印字のドツト当りのエネルギー効率が上がる
。即ち、従来の印字記録媒体のように発熱体層が直接印
加用針状電極に接するものでは、接した部分の抵抗値が
大きいと、接触抵抗が非常に大きくなり、圧接した接触
点での発熱量が大ぎくなり、またそこでの発熱は印字用
針電極への熱リークも大きいため、熱溶融性インクの溶
融に実際に使われるエネルギー効率が低下するばかりで
なく、最大発熱部から熱溶融性インク層までの距離も発
熱体層が最大発熱部であるものに比べて大きく相違する
ため、熱伝導的見地からも効率が悪い。
Therefore, the energy efficiency per printing dot increases. In other words, in conventional print recording media where the heat generating layer is in direct contact with the needle electrode for applying voltage, if the resistance value of the contact area is large, the contact resistance becomes extremely large and heat generation occurs at the pressure contact point. The amount of heat generated there becomes large, and the heat leaked to the printing needle electrode is large, so not only does the efficiency of the energy actually used to melt the heat-melt ink decrease, but also the heat-melt Since the distance to the ink layer is also significantly different from that in which the heating element layer is the largest heat generating portion, efficiency is also poor from a thermal conduction standpoint.

ところが、本発明の印字記録媒体における導電性セラミ
ックからなる微小孤立パターンは、このような現象を生
じることがないから、エネルギー効率は、従来のものの
数十倍となる。
However, since the minute isolated pattern made of conductive ceramic in the print recording medium of the present invention does not cause such a phenomenon, the energy efficiency is several tens of times higher than that of the conventional one.

3)印字記録媒体の寿命が延長する。3) The lifespan of print recording media is extended.

導電性セラミックからなる微小孤立パターンを設けたこ
とにより、印字用針状電極との接触抵抗が減少し、印字
記録媒体表面のダメージが無くなるので、常に一定の状
態を保持することができる。
By providing a minute isolated pattern made of conductive ceramic, the contact resistance with the printing needle electrode is reduced and damage to the surface of the printing recording medium is eliminated, so that a constant state can be maintained at all times.

又、導電性セラミックは、金属のように放電や接触抵抗
による発熱などで酸化物の化合物を形成することがない
から、抵抗むら等、物理的性質の変化がない。したがっ
て、寿命が著しく延びる。
Furthermore, unlike metals, conductive ceramics do not form oxide compounds due to discharge or heat generation due to contact resistance, so there are no changes in physical properties such as resistance unevenness. Therefore, the lifespan is significantly extended.

4)高画質化を行うことができる。4) High image quality can be achieved.

本発明の印字記録媒体は、発熱体層と帰路電極層を設け
ているから、材料の点で制約を受け□るのは、熱可塑性
部材だけでおる。したがって、色彩的にも良好なものを
自由に選択でき、しかも、電気的特性での制約条件は何
等ない。又、熱溶融性インク層は、発熱体層の発熱゛の
みに左右されるので、熱溶融性インク層の転移応答性は
非常に潰れている。したがって、高品位なカラー像を再
現でき、そして高度な階調性の堅牢な画質の記録を行う
ことができる。
Since the print recording medium of the present invention is provided with a heat generating layer and a return electrode layer, only the thermoplastic member is subject to restrictions in terms of materials. Therefore, one can freely select one that is good in terms of color, and there are no restrictions on electrical characteristics. Further, since the heat-melting ink layer is affected only by the heat generation of the heating element layer, the transfer responsiveness of the heat-melting ink layer is extremely poor. Therefore, a high-quality color image can be reproduced, and a robust image quality with high gradation can be recorded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は、それぞれ本発明の印字記録
媒体の概略断面図及び平面図、第2図は、本発明の印字
記録媒体を用いた通電記録方式を説明する説明図、第3
図は、微小孤立パターンの形状を示す説明図である。 1・・・微小孤立パターン、2・・・発熱体層、3・・
・帰路電極層、4・・・インク剥離層、5・・・熱溶融
性インク層、6・・・印字用針状電極、7・・・転写紙
、8・・・弾性圧接部材、9・・・転移インク層。 特許出願人  富士ゼロックス株式会社代理人    
弁理士  製部 剛 図面の浄書(内容に変更ない 1・・・微小孤立パターン 2・・・発熱体層 3・・・帰路電極 4・・・インク剥離層 5・・・熱F8融インク層 篇1図 手続補正書(方式) %式% 名 称  (549)富士ゼロックス株式会社代表者 
 小林陽太部
1(a) and (b) are respectively a schematic cross-sectional view and a plan view of the print recording medium of the present invention, and FIG. 2 is an explanatory diagram illustrating the current recording method using the print recording medium of the present invention. Third
The figure is an explanatory diagram showing the shape of a minute isolated pattern. 1... Micro isolated pattern, 2... Heating layer, 3...
- Return path electrode layer, 4... Ink peeling layer, 5... Heat-melting ink layer, 6... Acicular electrode for printing, 7... Transfer paper, 8... Elastic pressure contact member, 9. ...Transfer ink layer. Patent applicant Fuji Xerox Co., Ltd. Agent
Patent attorney, manufacturing department, engraving of Tsuyoshi's drawings (no changes to the contents 1... minute isolated pattern 2... heating element layer 3... return electrode 4... ink peeling layer 5... thermal F8 melting ink layer) Figure 1 Procedural Amendment (Method) % Formula % Name (549) Fuji Xerox Co., Ltd. Representative
Yota Kobayashi

Claims (1)

【特許請求の範囲】[Claims] 画像信号に対応する電気信号の入力により発熱する発熱
体層、導電層、インク剥離層、熱溶融性インク層を積層
してなる印字記録媒体において、発熱体層の表面に導電
性セラミックからなる微小孤立パターンを配設してなる
ことを特徴とする印字記録媒体。
In a print recording medium formed by laminating a heating element layer, a conductive layer, an ink peeling layer, and a heat-melting ink layer that generate heat upon input of an electric signal corresponding to an image signal, microscopic particles made of conductive ceramic are coated on the surface of the heating element layer. A print recording medium characterized by having an isolated pattern arranged thereon.
JP61297553A 1986-12-16 1986-12-16 Printing recording medium Pending JPS63151482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297553A JPS63151482A (en) 1986-12-16 1986-12-16 Printing recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297553A JPS63151482A (en) 1986-12-16 1986-12-16 Printing recording medium

Publications (1)

Publication Number Publication Date
JPS63151482A true JPS63151482A (en) 1988-06-24

Family

ID=17848036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297553A Pending JPS63151482A (en) 1986-12-16 1986-12-16 Printing recording medium

Country Status (1)

Country Link
JP (1) JPS63151482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272994A (en) * 1988-09-08 1990-03-13 Fuji Xerox Co Ltd Printing method
JPH02243396A (en) * 1989-03-17 1990-09-27 Fuji Xerox Co Ltd Ink recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272994A (en) * 1988-09-08 1990-03-13 Fuji Xerox Co Ltd Printing method
JPH02243396A (en) * 1989-03-17 1990-09-27 Fuji Xerox Co Ltd Ink recording medium

Similar Documents

Publication Publication Date Title
JPS63151482A (en) Printing recording medium
JP2696935B2 (en) Thermal transfer recording medium
JPH029352B2 (en)
JP2522313B2 (en) Thermal transfer recording medium
JP2569644B2 (en) Print recording medium
JP3003380B2 (en) Recording head for current transfer
JPH0199881A (en) Thermal transfer recording medium
JP2734256B2 (en) Ink media for current transfer
JP2626511B2 (en) Power transfer printing recorder
JPH023381A (en) Sublimation transfer type recording ink medium
JPH062418B2 (en) Print recording medium
JPS6335388A (en) Printing medium
JP2650327B2 (en) Sublimation transfer type recording ink medium
JP2778367B2 (en) Energized thermal transfer recording medium
JP2819626B2 (en) Reproduction method of ink recording medium
JPS6394888A (en) Thermal transfer recording medium
JP2886866B2 (en) Printing method
JPH02239987A (en) Ink recording medium
JP2734897B2 (en) Energized thermal transfer recording medium
JPS62242555A (en) Print recording method
JP2666373B2 (en) Printing method
JPS6394887A (en) Thermal transfer recording medium
JPS6394886A (en) Thermal transfer recording medium
JP2822573B2 (en) Image forming apparatus using powder ink
JPH0445991A (en) Sublimation transfer type ink recording medium