JPS631495B2 - - Google Patents

Info

Publication number
JPS631495B2
JPS631495B2 JP489581A JP489581A JPS631495B2 JP S631495 B2 JPS631495 B2 JP S631495B2 JP 489581 A JP489581 A JP 489581A JP 489581 A JP489581 A JP 489581A JP S631495 B2 JPS631495 B2 JP S631495B2
Authority
JP
Japan
Prior art keywords
flow rate
pressure
fuel flow
furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP489581A
Other languages
Japanese (ja)
Other versions
JPS57117781A (en
Inventor
Fumio Tomimatsu
Isamu Hirose
Yukimitsu Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP489581A priority Critical patent/JPS57117781A/en
Publication of JPS57117781A publication Critical patent/JPS57117781A/en
Publication of JPS631495B2 publication Critical patent/JPS631495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は燃焼炉の気密保持方法に係り、複数の
燃焼炉の排ガスを単一の煙突にて排出する熱設備
において、該煙突の吸引力を燃焼負荷に見合つた
ものとし、気密性を高めて省エネルギー効果の向
上や製品の質の安定等を図る方法の提供を目的と
する。 従来、複数の燃焼炉の排ガスを単一の煙突にて
排出する場合、煙突の吸引能力は、付属燃焼炉が
全基最大負荷燃焼になつても吸収できうるよう設
計されている。従つて、複数の燃焼炉の内、燃焼
停止炉及び低負荷燃焼炉があれば、煙突の吸引力
は過大となる。一般に各燃焼炉は、個別に炉圧調
整ダンパーを有し、この煙突の吸引力を調整して
炉内圧力を適正に保てるように設計されており、
燃焼停止時及び低負荷燃焼時には、この炉圧調整
ダンパーはほぼ全閉となる。 然し乍ら、上記炉圧調整ダンパーは熱膨張等を
考慮して、ダンパーと煙道レンガとの間には5〜
10mm程度の〓間を設けており、燃焼停止時にはこ
の〓間からの洩れが大きく、炉保有熱の放散が多
くなる。一方低負荷燃焼時には、炉圧調整用ダン
パーの僅かな動きで、炉圧が大きく変化し、安定
した炉圧制御を維持することが難かしくなる。 上記問題点を解決すべく、従来、複数の炉を集
合煙道に設置した一つの煙道ダンパーで制御する
場合に、休止している炉を除き、稼動している炉
の平均炉圧により煙道ダンパーを調整する炉圧制
御法が開発されている(特公昭49−3883号)。然
し乍ら、この場合、各炉の燃焼料が近似している
時には良好な制御が得られるが、一般にバツチ式
炉の場合、10%〜70%位までは常に変化し、従つ
て各炉の平均値で圧力制御しようとすると、燃焼
量の多い炉で比較的高い正圧に、逆に少ない炉で
は比較的低い負圧になり、夫々炉から燃焼ガスが
噴き出したり、逆に炉内に外部冷風の侵入が起
り、蓄熱損失が多大となる傾向がみられた。 本発明は、かかる問題を解決すべく創成された
ものである。 以下、本発明の実施例を図に従い説明すると、
第1図は、2系統の熱設備が共通の煙突に夫々主
煙道で連通された配置を平面的に示したもので、
第1.第2各系統の熱設備1は夫々炉群A〜D及び
炉群E〜Hで構成され、各炉で燃焼した排ガスは
煙道2、空気予熱器3及び炉圧調節用ダンパー4
を順次通過して各系統における主煙道5に合流
し、かつ主煙道5を通過する排ガスは煙突6にて
合流、排出され、熱設備の各炉内圧力は炉圧調節
用ダンパー4により調節される。各主煙道5の圧
力調整は各主煙道5に設けられる集合煙道ダンパ
ー7、集合煙道圧力調節計10、圧力検出孔8及
び圧力変換器9でなされる。以下、説明の便宜
上、上記各機器を示す符号は第2系統につき′を
付して説明する。 本発明は、操業負荷の変化と必要な吸引力(主
煙道圧力)との関係を、燃料使用量と必要な吸引
力との関係として把握し、この燃料使用量と必要
な吸引力との関係を第2図に示す如くあらかじめ
求めておき、該関係に基づいて、燃料使用量によ
つて集合煙道圧力調節計10の圧力設定値を自動
的に設定し、一方主煙道5の圧力検出孔8から圧
力を検出し圧力変換器9で信号変換して集合煙道
圧力調節計10に送信する。この主煙道5の圧力
が設定値即ち、必要な吸引力になるように集合煙
道圧力調節計10からの出力信号によつて集合煙
道ダンパー7を自動的に作動させ常に必要な吸引
力に自動的に調節する。 第3図は、1ホール当りの燃料流量と、必要ド
ラフト、即ち第1図で示す炉圧調節用ダンパー4
出口側位置における吸引力(静圧)との関係の好
ましい一例を示し、以下制御手段の基本となるも
のである。そして、各ホールの燃料流量qn及び
全ホールの燃料流量Qを検出した後、各ホールの
中で一番多い燃料流量に対応する必要ドラフト
圧力が上記第3図に示す1ホール当りの燃焼量
と必要ドラフト圧力との関係で算定される。 第4図は、全ホールの最大燃料流量Qmaxに対
する全ホールの燃料流量Qの割合である全燃料流
量に対応する必要ドラフト圧力の好ましい関
係の一例を示すものである。 而して、集合煙道ダンパー7の開度は、最終的
に求める煙突の必要ドラフト、即ち集合煙道圧力
Poが前記ととの和になるように制御される。 これを、先ず、第5図に示す如く集合煙道の中
央から抽気する場合として、具体的に説明する
と、第1に、各ホールの燃料流量q1〜qnの中で
一番多い燃料流量を選択する。第2に、この
に対応するを第3図から決める。例えばが80
%であるなら、=−10mmaqとなる。第3に、
全燃焼量
The present invention relates to a method for maintaining the airtightness of a combustion furnace, and in thermal equipment in which exhaust gas from a plurality of combustion furnaces is discharged through a single chimney, the suction power of the chimney is made commensurate with the combustion load to improve the airtightness. The purpose is to provide methods for improving energy-saving effects and stabilizing product quality. Conventionally, when exhaust gas from a plurality of combustion furnaces is discharged through a single chimney, the suction capacity of the chimney is designed to be able to absorb even if all the attached combustion furnaces reach maximum load combustion. Therefore, if there is a combustion shutdown furnace and a low-load combustion furnace among the plurality of combustion furnaces, the suction force of the chimney will be excessive. Generally, each combustion furnace has an individual furnace pressure adjustment damper, and is designed to adjust the suction force of this chimney to maintain the appropriate pressure inside the furnace.
When combustion is stopped or during low-load combustion, this furnace pressure adjustment damper is almost fully closed. However, in consideration of thermal expansion, etc., the furnace pressure adjusting damper has a gap between the damper and the flue brick.
A gap of approximately 10mm is provided, and when combustion is stopped, there is a large amount of leakage from this gap, and a large amount of the heat retained in the furnace is dissipated. On the other hand, during low-load combustion, a slight movement of the furnace pressure adjusting damper causes a large change in the furnace pressure, making it difficult to maintain stable furnace pressure control. In order to solve the above problem, conventionally, when controlling multiple furnaces with a single flue damper installed in a collective flue, the average furnace pressure of the operating furnaces, excluding the furnaces that are inactive, causes smoke to rise. A furnace pressure control method for adjusting the damper has been developed (Special Publication No. 3883, 1973). However, in this case, good control can be obtained when the combustion charge of each furnace is similar, but in general, in the case of batch type furnaces, it always varies from 10% to 70%, and therefore the average value of each furnace If you try to control the pressure with a furnace with a large amount of combustion, a relatively high positive pressure will result in a furnace with a large amount of combustion, and a relatively low negative pressure will occur in a furnace with a small amount of combustion. There was a tendency for penetration to occur and a large amount of heat storage loss. The present invention was created to solve this problem. Examples of the present invention will be described below with reference to the drawings.
Figure 1 is a plan view of the arrangement in which two systems of heat equipment are connected to a common chimney through their respective main flues.
The heat equipment 1 of each of the first and second systems is composed of furnace groups A to D and furnace groups E to H, respectively, and the exhaust gas combusted in each furnace is passed through a flue 2, an air preheater 3, and a damper 4 for adjusting furnace pressure.
The exhaust gases passing through the main flue 5 in each system are merged and discharged at the chimney 6, and the pressure inside each furnace of the heat equipment is controlled by the furnace pressure regulating damper 4. adjusted. The pressure in each main flue 5 is adjusted by a collective flue damper 7, a collective flue pressure regulator 10, a pressure detection hole 8, and a pressure transducer 9 provided in each main flue 5. Hereinafter, for convenience of explanation, the symbols indicating each of the above-mentioned devices will be explained with a suffix ' for the second system. The present invention grasps the relationship between changes in operating load and required suction power (main flue pressure) as the relationship between fuel usage and required suction power, and calculates the relationship between this fuel usage and required suction power. The relationship is determined in advance as shown in FIG. Pressure is detected from the detection hole 8, converted into a signal by the pressure converter 9, and transmitted to the collective flue pressure regulator 10. The collective flue damper 7 is automatically activated by the output signal from the collective flue pressure regulator 10 so that the pressure in the main flue 5 reaches a set value, that is, the required suction force. automatically adjusts to Figure 3 shows the fuel flow rate per hole and the required draft, that is, the furnace pressure adjusting damper 4 shown in Figure 1.
A preferred example of the relationship with the suction force (static pressure) at the outlet side position is shown below, and is the basis of the control means below. After detecting the fuel flow rate qn of each hole and the fuel flow rate Q of all holes, the required draft pressure corresponding to the highest fuel flow rate in each hole is determined as the combustion amount per hole shown in Fig. 3 above. It is calculated in relation to the required draft pressure. FIG. 4 shows an example of a preferable relationship between the required draft pressure corresponding to the total fuel flow rate, which is the ratio of the fuel flow rate Q of all holes to the maximum fuel flow rate Qmax of all holes. Therefore, the opening degree of the collective flue damper 7 is determined based on the final required draft of the chimney, that is, the collective flue pressure.
Po is controlled so that it becomes the sum of the above and. To explain this specifically, assuming that air is extracted from the center of the collective flue as shown in FIG . select. Second, determine the value corresponding to this from FIG. For example, 80
%, then = -10mmaq. Thirdly,
Total combustion amount

【式】を算出し、かつQの最大 は100×n%であるから、これをQmaxとする。
そして、Q/Qmaxと必要ドラフトの関係を第4
図より決めそれをとする。例えば、Q/Qmax
=50%であれば、=−10mmaqとなる。第4に、
最終的に求める煙突のドラフト、即ち集合煙道圧
力PoがPo=+で求められる。 上記に関し、より具体例を示せば、燃焼炉が5
ホールあり、夫々の燃焼状態が夫々q=80%、20
%、0%、20%、50%であれば最大のqは80%で
あるから、第3図より=−10mmAqである。又、
Q/Qmax=170%/100%×5×100=34%によ
り、第4図から−7mmAqである。よつて、
集合煙道圧力Po=+=−17mmAqとなるので
ある。 次に、第6図に示す如く、集合煙道の端から抽
気する場合として、Poの決定方法を具体的に説
明すると、第1に、各ホールの燃料流量q1〜qn
の中で一番多い燃料流量を選択する。第2にこ
のに対応するを第3図から決める。第3に、
全燃焼量Q、及び最大全燃焼量Qmaxを夫々次式
により算出する。 Q=nq1+(n−1)q2+(n−2)q3………+qn/n Qmax=
100×{n+(n−1)+(n−2)………+1}/n そして、第4に、上記式からQ/Qmax×100
を求め第4図よりを求め、最終的に、Po=
+が求められる。 上記に関し、より具体的に示せば、燃焼炉が5
ホールあり、夫々の燃焼状態が夫々q=80%、20
%、0%、20%、50%であれば、最大のqは80%
であるから、第3図より=−10mmAqである。
又、 Q=1/5(5×80+4×20+3×0+2×20 +1×50)=114 Qmax=100/5×(5+4+3+2+1)=300 であり、Q/Qmax×100=38%であるから、第
4図より=−8mmaqとなり、よつて、集合煙
道圧力Po=+=−10−8=−18mmAqとな
る。 更に、集合煙道の中央から抽気する場合(第5
図)と、端から抽気する場合(第6図)の必要煙
突ドラフトを相対比較する(単位はmmAq)。
[Formula] is calculated, and since the maximum of Q is 100×n%, this is set as Qmax.
Then, the relationship between Q/Qmax and the required draft is determined in the fourth section.
Determine it from the diagram. For example, Q/Qmax
If =50%, then =-10mmaq. Fourthly,
The final draft of the chimney, that is, the collective flue pressure Po is determined by Po=+. Regarding the above, to give a more specific example, if the combustion furnace is
There is a hole, each combustion state is q = 80%, 20
%, 0%, 20%, and 50%, the maximum q is 80%, so from Figure 3, it is = -10 mmAq. or,
Since Q/Qmax=170%/100%×5×100=34%, it is −7 mmAq from FIG. Then,
The collective flue pressure Po=+=-17mmAq. Next, as shown in Fig. 6, the method for determining Po will be explained in detail in the case where air is extracted from the end of the collective flue. First, the fuel flow rate of each hole q 1 ~ qn
Select the highest fuel flow rate. Second, determine what corresponds to this from Figure 3. Thirdly,
The total combustion amount Q and the maximum total combustion amount Qmax are calculated using the following formulas. Q=nq 1 + (n-1) q 2 + (n-2) q 3 ......+qn/n Qmax=
100×{n+(n-1)+(n-2)……+1}/n And, fourthly, from the above formula, Q/Qmax×100
, and from Figure 4, finally, Po=
+ is required. Regarding the above, to be more specific, the combustion furnace is 5
There is a hole, each combustion state is q = 80%, 20
%, 0%, 20%, 50%, the maximum q is 80%
Therefore, from Figure 3, = -10mmAq.
Also, since Q = 1/5 (5 x 80 + 4 x 20 + 3 x 0 + 2 x 20 + 1 x 50) = 114 Qmax = 100/5 x (5 + 4 + 3 + 2 + 1) = 300, and Q/Qmax x 100 = 38%, the From Figure 4, it becomes =-8 mmaq, and therefore, the collective flue pressure Po = + = -10-8 = -18 mmAq. Furthermore, when extracting air from the center of the collective flue (fifth
Compare the required chimney draft (in mmAq) for the case of bleeding air from the end (Fig. 6).

【表】 次に、燃料使用量から圧力設定に至る制御系の
具体例を第7図、第8図を参照して説明すると、
第7図において、()で、各ホールの燃焼量qnと
全ホールの燃焼量Qを検出する。次に()で、各
ホールの中で一番多い燃焼量をみつけ、()
で、このに対応するを、予じめ求めておいた
1ホール当りの燃料流量と1ホール当りの必要ド
ラフト圧力との関係(第3図)から算定する。
()では、集合煙道の中央から抽気する場合と、
端から抽気する場合とを選択して計算する。即
ち、夫々全ホールの最大燃料流量Qmaxに対する
全ホールの燃料流量Qの割合を計算した後、こ
のにより予じめ求めておいた全燃料流量と必要
ドラフト圧力との関係(第4図)から、を算定
する。この場合中央抽気では、
[Table] Next, a specific example of the control system from fuel consumption to pressure setting will be explained with reference to Figures 7 and 8.
In FIG. 7, the combustion amount qn of each hole and the combustion amount Q of all holes are detected at (). Next, in (), find the largest amount of combustion in each hole, and ()
The corresponding value is calculated from the predetermined relationship between the fuel flow rate per hole and the required draft pressure per hole (Fig. 3).
In (), when extracting air from the center of the collective flue,
Calculate by selecting whether air is extracted from the end or not. That is, after calculating the ratio of the fuel flow rate Q of all holes to the maximum fuel flow rate Qmax of all holes, from the relationship between the total fuel flow rate and the required draft pressure (Figure 4) determined in advance, Calculate. In this case, with central bleed air,

【式】Qmax=100×n(%) の式を用い、端抽気では、 Q=nq1+(n−1)q2…+qn/n、 Qmax=100{n+(n−1)+(n−2)…+1}/n の式を用いて選択的に計算する。そして、()
で、集合煙道圧力Poを、Po=+に制御する。
即ち、()で、例えばPo=Po−1mmAqの条件で
各ホールの炉圧調整用ダンパー4の開度θn(%)を
θn<90に制御する。このPo=Po−1mmAqとは、
コンピユータの論理フローにおいて、「Poの値か
ら1を引いてその値をPoとして繰り返せ。」の意
であり、1mmAqよりも各ホールの炉圧が大きい
場合には、集合煙道圧力Poから順次1mmAqづつ
引いてゆき、1mmAqよりも各ホールの炉圧が小
さいという条件のPoを選ぶことである。又、θn
<90とは、第8図を参照して、全開に近い殆んど
−の状態を意味するもので、(θn=100%は
−の状態にダンパーがあることを示し、θn
=0%は−の状態にダンパーがあることを意
味する。)、各ホールの炉圧調整用ダンパー4が殆
んど全開状態でも、炉圧が+1mmAqをこえる場
合には煙突6の吸引力を1mmAqづつ強める動作
を与えるためにPn+1mmAqとθn<90の2つの
状態量が同時不成立の時Poを−1mmAq下げよう
とするものである。そして、()で、上記()の
制御から()へのループが所定間隔(例えば5分
単位)で行なわれる。 第9図は、上述したロジツクで演算し、煙突の
ドラフトを制御(2次圧力制御ループ)すると共
に、ピツト内圧力を検出し、設定値よりの偏差信
号により、各ピツト毎の炉圧調整用ダンパー4を
制御(1次圧力制御ループ)とされ、二段圧力制
御方式とされている。 本発明によれば、主煙道5を適当な吸引力に保
つことによつて炉内圧力が安定し、省エネルギー
効果及び製品の質の安定、操業の安定に大きく寄
与するのである。従つて、第1図に示す設備で、
本発明が適用されない従来において、熱設備1の
A〜D側の操業負荷とE〜H側の操業負荷は同一
の場合は稀で、これが異なる場合には各系統の主
煙道5,5′では必要な吸引力は異なるが煙突6
が共用のため主煙道5,5′に生ずる実際の吸引
力は同一であり、負荷の小さい側は過大な吸引力
となり、炉圧調整用ダンパー4の〓間からの洩れ
が大きくなり製品品質及び省エネルギー面で多大
な悪影響を生じていたが、本発明によりこれら問
題が解決されるのである。 上記省エネルギー効果の具体例を第10図に基
づき説明すると、図は燃焼停止後の炉内温度降下
状況を、本発明の適用前(点線図示)、後(実線
図示)で比較したものであり、本発明の実施によ
り炉内は適正炉圧に保たれて温度降下も少なくな
つている。これを熱量原単位に換算すると、4.1
×103Kcal/Ton製品の節減となる。然して、従
来、炉内圧力が負圧となり炉内温度の検出器は外
部から侵入した冷風の影響を受け不正確な温度を
指示することになり、品質、操業が不安定であ
り、又、燃焼停止後温度降下が大きいため次の燃
焼開始時着火が不安定となつていたが、これらの
点が解消されたのである。 又、本発明は、近年の排熱回収ボイラーによる
排熱回収時に、冷風の侵入を少くして排熱温度を
高めるために適用でき、有益なる創作である。
[Formula] Using the formula Qmax=100×n(%), for end bleed, Q=nq 1 + (n-1)q 2 ...+qn/n, Qmax=100{n+(n-1)+(n -2)...+1}/n is selectively calculated. and,()
Then, the collective flue pressure Po is controlled to Po=+.
That is, in (), for example, under the condition of Po=Po-1 mmAq, the opening degree θn (%) of the furnace pressure adjustment damper 4 of each hole is controlled so that θn<90. This Po=Po−1mmAq is
In the computer logic flow, it means "subtract 1 from the value of Po and repeat that value as Po." If the furnace pressure in each hole is greater than 1 mmAq, sequentially 1 mmAq from the collective flue pressure Po. Step by step, select Po under the condition that the furnace pressure in each hole is smaller than 1 mmAq. Also, θn
<90, referring to Figure 8, means an almost negative state close to fully open (θn = 100% indicates that the damper is in a negative state, and θn
=0% means that the damper is in a negative state. ), even if the furnace pressure adjustment damper 4 in each hall is almost fully open, if the furnace pressure exceeds +1 mmAq, the two pressures Pn + 1 mmAq and θn < 90 are applied to increase the suction force of the chimney 6 by 1 mmAq. This is intended to lower Po by -1 mmAq when the state quantities do not hold simultaneously. Then, in (), a loop from the control in () to () is performed at predetermined intervals (for example, every 5 minutes). Figure 9 shows how the above-mentioned logic is used to control the chimney draft (secondary pressure control loop), detect the pressure inside the pit, and use the deviation signal from the set value to adjust the furnace pressure for each pit. The damper 4 is controlled (primary pressure control loop), and a two-stage pressure control system is used. According to the present invention, by maintaining the main flue 5 at an appropriate suction force, the pressure inside the furnace is stabilized, which greatly contributes to energy saving, stable product quality, and stable operation. Therefore, with the equipment shown in Figure 1,
In the past to which the present invention is not applied, the operating loads on the A to D sides of the thermal equipment 1 and the operating loads on the E to H sides are rarely the same, and when they are different, the main flues 5, 5' of each system The required suction power is different, but chimney 6
Since the main flues 5 and 5' are shared, the actual suction force generated in the main flues 5 and 5' is the same, and the side with the smaller load will have an excessive suction force, which will increase the leakage from between the dampers 4 for adjusting the furnace pressure, resulting in poor product quality. However, the present invention solves these problems. A specific example of the above energy saving effect will be explained based on FIG. 10. The figure compares the temperature drop in the furnace after combustion has stopped before (dotted line) and after (solid line) the application of the present invention. By implementing the present invention, the inside of the furnace can be maintained at an appropriate furnace pressure and the temperature drop can be reduced. Converting this to heat intensity is 4.1
×10 3 Kcal/Ton product savings. However, in the past, the pressure inside the furnace became negative and the temperature detector inside the furnace was affected by the cold air entering from the outside and indicated an inaccurate temperature, resulting in unstable quality and operation, and also caused combustion problems. The large temperature drop after stopping made ignition unstable at the start of the next combustion, but these issues have been resolved. Furthermore, the present invention is a useful creation that can be applied to reduce the intrusion of cold air and increase the exhaust heat temperature during exhaust heat recovery using recent exhaust heat recovery boilers.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図は全体配置
の簡略線図、第2図は燃料使用量と必要な吸引力
との関係図、第3図は1ホール当りの燃料流量と
必要ドラフトの関係を示す具体例図、第4図は全
燃料流量と必要ドラフト圧力の関係を示す具
体例図、第5図は中央抽気の配置を示す簡略線
図、第6図は端抽気の配置を示す簡略線図、第7
図は制御行程図、第8図はダンパーの開度説明
図、第9図は二段制御方式を示す説明図、第10
図は本発明の効果を示す例示図である。 1…熱設備、5…主煙道(集合煙道)、6…煙
突、7…集合煙道ダンパー、qn…各ホールの燃
料流量、n…各ホールの中で一番多い流量、
…nに対応する必要ドラフト圧力、Q…全ホー
ルの燃料流量、Qmax…全ホールの最大燃料流
量、…全燃料流量、…に対応する必要ドラ
フト圧力、Po…集合煙道圧力。
The figures show an embodiment of the present invention. Fig. 1 is a simplified diagram of the overall layout, Fig. 2 is a diagram showing the relationship between fuel consumption and required suction power, and Fig. 3 is a diagram showing the relationship between fuel consumption and required suction power per hole. A specific example diagram showing the relationship between drafts, Fig. 4 is a specific example diagram showing the relationship between total fuel flow rate and required draft pressure, Fig. 5 is a simplified diagram showing the arrangement of central bleed air, and Fig. 6 is an arrangement of end bleed air. Simplified diagram showing 7th
The figure is a control stroke diagram, Figure 8 is an explanatory diagram of the damper opening, Figure 9 is an explanatory diagram showing the two-stage control system, and Figure 10 is an explanatory diagram showing the two-stage control system.
The figure is an exemplary diagram showing the effects of the present invention. 1...Heat equipment, 5...Main flue (collective flue), 6...Chimney, 7...Collective flue damper, qn...Fuel flow rate in each hall, n...Highest flow rate in each hall,
... Required draft pressure corresponding to n, Q ... Fuel flow rate of all holes, Qmax ... Maximum fuel flow rate of all holes, ... Total fuel flow rate, ... Required draft pressure corresponding to ..., Po ... Collective flue pressure.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の燃焼炉の排ガスを単一の煙突にて排出
する熱設備において、予じめ1ホール当りの燃料
流量と1ホール当りの必要ドラフト圧力との関係
並びに全燃料流量と必要ドラフト圧力との関係を
求めておき、各ホールの燃料流量qn及び全ホー
ルの燃料流量を検出し、各ホールの中で一番多い
流量に対応する必要ドラフト圧力を算定する
一方、全ホールの最大燃料流量Qmaxに対する全
ホールの燃料流量Qの割合である全燃料流量に
対応する必要ドラフト圧力を算定し、集合煙道
圧力Poが前記ととの和になるよう集合煙道
ダンパーの開度を制御することによつて、煙突の
吸引力を燃焼負荷に見合つたものとし、以つて気
密性を高めるようにしたことを特徴とする燃焼炉
の気密保持方法。
1. In thermal equipment that discharges exhaust gas from multiple combustion furnaces through a single chimney, the relationship between the fuel flow rate per hole and the required draft pressure per hole, as well as the relationship between the total fuel flow rate and the required draft pressure, shall be determined in advance. After determining the relationship, detect the fuel flow rate qn of each hole and the fuel flow rate of all holes, calculate the required draft pressure corresponding to the highest flow rate among each hole, and calculate the required draft pressure for the maximum fuel flow rate Qmax of all holes. By calculating the required draft pressure corresponding to the total fuel flow rate, which is the ratio of the fuel flow rate Q of all holes, and controlling the opening degree of the collective flue damper so that the collective flue pressure Po becomes the sum of the above. A method for maintaining the airtightness of a combustion furnace, characterized in that the suction force of the chimney is made commensurate with the combustion load, thereby improving airtightness.
JP489581A 1981-01-14 1981-01-14 Airtight retention of burning furnace Granted JPS57117781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP489581A JPS57117781A (en) 1981-01-14 1981-01-14 Airtight retention of burning furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP489581A JPS57117781A (en) 1981-01-14 1981-01-14 Airtight retention of burning furnace

Publications (2)

Publication Number Publication Date
JPS57117781A JPS57117781A (en) 1982-07-22
JPS631495B2 true JPS631495B2 (en) 1988-01-13

Family

ID=11596399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP489581A Granted JPS57117781A (en) 1981-01-14 1981-01-14 Airtight retention of burning furnace

Country Status (1)

Country Link
JP (1) JPS57117781A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060550U (en) * 1983-09-30 1985-04-26 株式会社ノーリツ Combustion device with multiple combustion chambers

Also Published As

Publication number Publication date
JPS57117781A (en) 1982-07-22

Similar Documents

Publication Publication Date Title
CN110260356B (en) Energy-saving control method of fluidized bed boiler
CN105240868B (en) Boiler automatic combustion adjustment control method based on coal-air ratio coal correction
CN105805739A (en) Circulating fluidized bed combustion method for adjusting temperature of superheated steam
WO2020179197A1 (en) Hot water supply device, hot water supply program, hot water supply method, and recording medium
CN105509035A (en) Method and device for determining opposite firing air supply quantity and automatic control system
CN103760191A (en) Dynamic-compensation-based cleanliness factor detection method and device
CN210021695U (en) High-efficient SNCR deNOx systems of circulating fluidized bed boiler
JPS631495B2 (en)
JP2002073105A (en) Method and system for controlling number of installed devices
CN110486949B (en) Double-fan gas water heater control method and gas water heater
CN113048801B (en) Waste heat recovery control method for hot rolling heating furnace
CN205316379U (en) Boiler operation oxygen volume automatic control system and boiler
JP2671246B2 (en) Method of controlling the number of once-through boilers
JPS5823527B2 (en) Kinnetsuronadoniokeru
CN109708104B (en) Efficient SNCR denitration method and system for circulating fluidized bed boiler
CN105135471A (en) Switching control device and method for operation mode of oxygen-enriched combustion system
CN206361951U (en) The hot equipment thermic load self-reacting device of one kind combustion
CN114135900B (en) Air door control method and device based on hearth over-fire air temperature monitoring
JP2001201001A (en) Multi-boiler installing system provded with device for controlling the number of boilers
KR102086164B1 (en) Method for controlling temperature of generating boiler
SU1017008A1 (en) Apparatus for automatic control of thermal duty of coke dry quenching installation
JPS61217602A (en) Control system of boiler device
CN113915639A (en) Method for determining secondary air quantity of secondary air burner in furnace and method and system for determining opening of secondary air baffle
JPH0875377A (en) Furnace pressure controlling method for heating furnace
JPS63294402A (en) Method of controlling temperature of main steam of boiler