JPS63149557A - Trackless scanning apparatus for inspecting pipe - Google Patents

Trackless scanning apparatus for inspecting pipe

Info

Publication number
JPS63149557A
JPS63149557A JP61294863A JP29486386A JPS63149557A JP S63149557 A JPS63149557 A JP S63149557A JP 61294863 A JP61294863 A JP 61294863A JP 29486386 A JP29486386 A JP 29486386A JP S63149557 A JPS63149557 A JP S63149557A
Authority
JP
Japan
Prior art keywords
piping
pipe
rigidity
running bodies
pipe part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61294863A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yuji
弘幸 湯地
Fumio Tomizawa
富沢 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61294863A priority Critical patent/JPS63149557A/en
Publication of JPS63149557A publication Critical patent/JPS63149557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To allow a scanning apparatus to smoothly run along a bent pipe part, by changing the rigidity and shape of the connecting body in the bent pipe part according to the position thereof. CONSTITUTION:Each axial direction running body 2 of a scanning apparatus is constituted of the base 21 surrounding piping 3 and the axial direction drive mechanism 22 fixed to the base 21. A plurality of the running bodies 2 are connected by rigidity variable connectors 1, and three drive mechanisms 22 and three connectors 1 are provided at symmetric positions so as to surround the piping 3. During a time when the running bodies 2 are positioned at the straight pipe part of the piping 3, the postures of the running bodies 2 to the piping 3 and the shapes of the connectors 1 are held as shown by a drawing. When the posture sensor mechanism 23 provided to the running bodies 2 detects that the running bodies 2 enter the bent pipe part of the piping 3, the connector 1 positioned on the side of the abdominal part of the bent pipe part is changed. That is, the sensors 23 control the postures of the running bodies 2 so as to make the same always vertical to the piping 3 and, after it is confirmed that the running bodies 2 become vertical to the piping 3, by providing rigidity to the connectors 1 to hold the postures of the running bodies 2, the piping can be inspected while the running bodies are allowed to stably run along the bent pipe part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電プラント等の配管の超音波検査等
のための走査装置に係り5特に軌道を設けず、直管部や
曲管部を配管の周方向に偏って回ることなく安定して走
査し得る無軌道式走査装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a scanning device for ultrasonic inspection of piping in nuclear power plants, etc. 5 In particular, the present invention relates to a scanning device for ultrasonic inspection of piping in nuclear power plants, etc. The present invention relates to a trackless scanning device that can stably scan a pipe without turning eccentrically in the circumferential direction of the pipe.

〔従来の技術〕[Conventional technology]

直管部2曲管部を配管の周方向に偏って回ることなく安
定して走査し得る無軌道式走査装置の従来例として、第
2図に示すようなものがある。上記従来例は、複数個の
軸方向走行体Cを剛体の連節体りで連結し走行体を長く
することにより直進性を確保している。
As a conventional example of a trackless scanning device that can stably scan a straight pipe part and two curved pipe parts without turning eccentrically in the circumferential direction of the pipe, there is one shown in FIG. In the above-mentioned conventional example, a plurality of axially traveling bodies C are connected by a rigid articulated body to make the traveling bodies long, thereby ensuring straight-line performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

剛体の連節体をもつ上記従来例の走査装置では、連節体
が曲管部の腹部や背部にくる配置になる場合は、その曲
管部は走行不能になる。何故ならば、複数個の軸方向走
行体は各々配管に垂直に姿勢を保持するため、軸方向走
行体間の距離は、その周方向によって異なる。従って、
連節体の長さを変えられない従来技術では、上記の場合
は適用できない。
In the above-mentioned conventional scanning device having a rigid articulated body, if the articulated body is located at the abdomen or back of a curved tube portion, the curved tube portion becomes unable to travel. This is because each of the plurality of axially traveling bodies maintains a posture perpendicular to the piping, so the distance between the axially traveling bodies varies depending on the circumferential direction. Therefore,
The conventional technology that cannot change the length of the articulated body cannot be applied to the above case.

本発明の目的は、複数個の軸方向走行体間にある連節体
が、曲管部の腹部若しくは背部に位置した場合も走行体
を管の周方向に回転させることなくスムーズに曲管部を
走査し得る無軌道式の走査装置を提供するものである。
An object of the present invention is to smoothly connect a plurality of axially running bodies to a bent pipe without rotating the running bodies in the circumferential direction of the pipe even when the joint body between the plurality of axially running bodies is located at the abdomen or back of the bent pipe. The present invention provides a trackless scanning device capable of scanning.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、連節体の剛性を任意に変えられる剛性
制御手段とその形状を所望の形に変えられる形状可変手
段とで構成する連節体により達成できる。
The object of the present invention can be achieved by an articulated body comprising a rigidity control means that can arbitrarily change the rigidity of the articulated body and a shape variable means that can change its shape into a desired shape.

〔作用〕[Effect]

本発明では、走査装置が曲管部にさしかかった時に連節
体が配管と接触しないように、曲管部における連節体の
位置によって剛性制御機構と形状可変手段とで、その連
節体の剛性と形状を変えることにより曲管部を自由に走
行することができる。
In the present invention, a rigidity control mechanism and a shape variable means are used to control the joint body according to the position of the joint body in the curved pipe part so that the joint body does not come into contact with the pipe when the scanning device approaches the curved pipe part. By changing the rigidity and shape, it is possible to freely travel around the curved pipe section.

〔実施例〕〔Example〕

次に1本発明の一実施例を第1図並びに、第3図乃至第
8図を用いて説明する。
Next, one embodiment of the present invention will be described with reference to FIG. 1 and FIGS. 3 to 8.

第1図は本発明の1実施例における剛性可変連節体の構
成を示す断面図である。
FIG. 1 is a cross-sectional view showing the configuration of a variable rigidity articulated body in one embodiment of the present invention.

剛性可変連節体は、軸方向走行体ベース21と連結する
ジヨイント15.剛性可変連節体の剛性を変える電磁粘
性流体11〔以下E R(Electr。
The variable rigidity articulated body has a joint 15. which is connected to the axial traveling body base 21. Magneto-rheological fluid 11 (hereinafter referred to as ER (electr)) that changes the rigidity of the variable-rigidity articulated body.

−Rheological )流体と略す〕、剛性可変
連節体の形状を変化させる形状記憶合金コイル12、及
び被覆材13とから構成される。ジヨイント15は軸方
向走行体ベース21に対し曲折可能な自在軸ジヨイント
にし、剛性可変連節体が変化しやすくする。形状記憶合
金コイル12は、ジヨイント15に固定された電極板1
41及び142でジヨイント15に固定する。、電極板
141は形状記憶合金コイル12に電流を供給するもの
で形状記憶合金コイル12と導通させる。電極板142
はER流体11に電界を供給するもので形状記憶合金コ
イル12とは絶縁する。ER流体11とは、該流体に印
加する電界強度により粘性が変化する流体である。被覆
材1,3は、剛性可変連節体の形状が変化しやすい材質
(例えばゴム)にする。
-Rheological (abbreviated as "fluid")], a shape memory alloy coil 12 that changes the shape of the variable rigidity joint body, and a covering material 13. The joint 15 is a flexible shaft joint that can be bent with respect to the axial traveling body base 21, so that the variable rigidity articulated body can be easily changed. The shape memory alloy coil 12 is connected to the electrode plate 1 fixed to the joint 15.
41 and 142 to fix it to the joint 15. The electrode plate 141 supplies current to the shape memory alloy coil 12 and is electrically connected to the shape memory alloy coil 12 . Electrode plate 142
supplies an electric field to the ER fluid 11 and is insulated from the shape memory alloy coil 12. The ER fluid 11 is a fluid whose viscosity changes depending on the electric field intensity applied to the fluid. The covering materials 1 and 3 are made of a material (for example, rubber) that allows the shape of the variable-rigidity articulated body to change easily.

第3図は、第1図で示した剛性可変連節体1を用いた走
査装置の軸方向走行部の構成を示した斜視図である。
FIG. 3 is a perspective view showing the configuration of an axial traveling section of a scanning device using the variable rigidity articulated body 1 shown in FIG. 1.

走査装置の軸方向走行体2は、被検査物である配管3を
囲んで着脱可能なように(例えば二つ割り型)に構成し
たドーナツ状のベース21と、該ベース21に固定され
て配管3の外周に接触して回転する駆動輪を有する3個
の軸方向駆動機構22とから構成される軸方向走行体2
と、複数個の軸方向走行体2を連結する剛性可変連節体
1とから構成されている。上記の3個の軸方向駆動機構
22、並びに3本の剛性可変連節体1は、配管3を取り
囲んで対称位置(互いに120℃の位置)に設けである
The axially moving body 2 of the scanning device has a donut-shaped base 21 that surrounds a pipe 3 that is an object to be inspected and is configured to be removable (for example, split in two), and a donut-shaped base 21 that is fixed to the base 21 and that is attached to the pipe 3. An axial traveling body 2 composed of three axial drive mechanisms 22 having drive wheels that rotate in contact with the outer periphery.
and a variable-rigidity articulated body 1 that connects a plurality of axial traveling bodies 2. The three axial drive mechanisms 22 and the three variable rigidity joints 1 are provided at symmetrical positions (at 120° C. from each other) surrounding the pipe 3.

第4図は、第3図の軸方向走行体2に設けた軸方向駆動
機構22に搭載した姿勢センサ機構23の1実施例を示
した図である。姿勢センサ機構23は、同センサ全体を
支持する支持部238゜支持部238に固定された案内
棒239a。
FIG. 4 is a diagram showing one embodiment of the attitude sensor mechanism 23 mounted on the axial drive mechanism 22 provided in the axial traveling body 2 of FIG. 3. FIG. The posture sensor mechanism 23 includes a guide rod 239a fixed to a support section 238 which supports the entire sensor.

239b、案内棒239a、239bを上下移動するセ
ンサ支柱234.距離センサ233.距離センサ233
を保持しセンサ支柱234に固定されたセンサ保持具2
372.距離センサ233の上下移動を案内し、支持部
239に固定されたセンサ案内板2371.センサ支柱
に装着された車軸231b、車輪231bを中心に回動
可能なセンサ板232.センサ板232の距離センサ2
33と反対側に取りつけられた車輪231a、センサ保
持具2372を常に押しつけることによって姿勢センサ
機端23全体を配管3に押し付けるバネ236、及びセ
ンサ板232とセンサ保持具2372につけられ、セン
サ板232をセンサ保持具側に引張っているバネ235
から構成している。そこで配管3の曲率が変化し車軸2
31bが浮いた時は、バネ236に支持部239が下に
押えられ、センサ板232が車輪231bを中心に回転
し、センサ板232と距離センサ233との距離が変化
し、その変化を距離センサで検出し曲率の変化を検出す
る。一方、配管3の曲率が変化し車軸231aが浮いた
時は、バネ235で車軸231bを中心に引張られて、
センサ板232と距離センサ233との距離が変化し、
以下同様に曲率の変化を検出する。
239b, a sensor column 234 that moves up and down the guide rods 239a and 239b. Distance sensor 233. Distance sensor 233
The sensor holder 2 is fixed to the sensor support 234.
372. A sensor guide plate 2371 that guides the vertical movement of the distance sensor 233 and is fixed to the support section 239. An axle 231b attached to a sensor column, and a sensor plate 232 rotatable around the wheel 231b. Distance sensor 2 on sensor plate 232
33, a spring 236 that presses the entire attitude sensor end 23 against the piping 3 by constantly pressing the sensor holder 2372, and a spring 236 that is attached to the sensor plate 232 and the sensor holder 2372 to hold the sensor plate 232. Spring 235 pulling toward the sensor holder side
It consists of Therefore, the curvature of the pipe 3 changes and the axle 2
31b floats, the support part 239 is pressed down by the spring 236, the sensor plate 232 rotates around the wheel 231b, the distance between the sensor plate 232 and the distance sensor 233 changes, and the change is detected by the distance sensor. to detect changes in curvature. On the other hand, when the curvature of the pipe 3 changes and the axle 231a floats, it is pulled around the axle 231b by the spring 235,
The distance between the sensor plate 232 and the distance sensor 233 changes,
Thereafter, changes in curvature are detected in the same manner.

次に、軸方向駆動輪が軸方向走行体ベースに180°の
位置に取り付けられた軸方向走行体を用いて、軸方向走
行体の姿勢制御について説明する。
Next, attitude control of the axial traveling body will be described using an axial traveling body in which the axial drive wheels are attached to the axial traveling body base at a position of 180 degrees.

まず、姿勢センサ機構による傾斜角検出原理を述べる。First, the principle of tilt angle detection using the posture sensor mechanism will be described.

軸方向走行体が配管に対して前傾姿勢になると、軸方向
走行体のベースと一諸に距離センサ233も第4図破線
のごとく傾斜する。一方、センサ板232は車輪231
aと車輪231bとがバネ235とバネ236によって
配管に押しつけられているので、常に配管表面と平行に
保持される。この結果、姿勢センサ機端のセンサ板23
2と距離センサ233との距離は軸方向走行体が配管に
垂直な姿勢の時に比べて長くなる。その長さの変化を距
離センサ233で検出し、軸方向走行体と配管の傾斜角
を検出する。また軸方向走行体が配管に対して後に傾い
た姿勢になると、姿勢センサ機構のセンサ板232と距
離センサ233との距離は軸方向走行体が配管に垂直な
姿勢の時に比べ短くなっている。
When the axially traveling body leans forward with respect to the piping, the distance sensor 233 also tilts along with the base of the axially traveling body as shown by the broken line in FIG. On the other hand, the sensor plate 232
Since the wheels 231b and 231b are pressed against the pipe by the springs 235 and 236, they are always held parallel to the pipe surface. As a result, the sensor plate 23 at the end of the attitude sensor
2 and the distance sensor 233 is longer than when the axial traveling body is in a posture perpendicular to the piping. A distance sensor 233 detects a change in the length, and detects an inclination angle between the axially traveling body and the pipe. Further, when the axially traveling body is in a posture tilted backward with respect to the piping, the distance between the sensor plate 232 of the posture sensor mechanism and the distance sensor 233 is shorter than when the axially traveling body is in a posture perpendicular to the piping.

上述の軸方向走行体の姿勢を配管に対して垂直に制御す
るには、傾斜角が零になるように配管の軸方向駆動輪の
回転速度を増減させる。この時軸方向走行体の重心の移
動速度が直管部走行時と変化しないよう配管曲管部の腹
部側の軸方向駆動輪の減速量と、背部側の軸方向駆動輪
の加速量が同一になるよう制御する。
In order to control the attitude of the above-mentioned axial traveling body perpendicularly to the pipe, the rotational speed of the axial drive wheel of the pipe is increased or decreased so that the angle of inclination becomes zero. At this time, the amount of deceleration of the axial drive wheel on the ventral side of the bent pipe section is the same as the amount of acceleration of the axial drive wheel on the back side so that the moving speed of the center of gravity of the axially running body does not change from when running on the straight pipe section. control so that

第5図は、剛性可変連節体1の中央に設けた形状記憶合
金コイル12の温度による形状の変化状態を示した斜視
図である。形状記憶合金はその温度を形状変化温度より
高くした時と低くした時とで違った形状を記憶すること
ができる。この形状記憶合金の特徴を利用し剛性可変連
節体の形状を変化させる。第3図で示した軸方向走行体
2が配管3の直管部を走行する時は剛性可変連節体1を
真直にし、また軸方向走行体2が曲管部を走行する時、
形状を変化させた剛性可変連節体1が配管3と接触しな
いように外側に剛性可変連節体を変形させるようにする
。そのために、形状記憶合金コイル12の温度Tl と
、形状記憶合金コイル12の形状変化温度Toとの関係
が、To>T1の時第3図(a)のような真すぐな形状
、またTo<Tzの時第3図(b)のような曲率を持っ
た形状になるような形状記憶合金コイル12に形状を記
憶させる。形状記憶合金コイル12の温度は、形状記憶
合金コイル12に電流を流すことにより変化させる。
FIG. 5 is a perspective view showing how the shape of the shape memory alloy coil 12 provided at the center of the variable rigidity articulated body 1 changes depending on temperature. Shape memory alloys can memorize different shapes depending on whether the temperature is higher or lower than the shape change temperature. Utilizing the characteristics of this shape memory alloy, the shape of the variable rigidity joint can be changed. When the axial traveling body 2 shown in FIG. 3 travels through the straight pipe section of the piping 3, the variable rigidity articulated body 1 is made straight, and when the axial traveling body 2 runs through the curved pipe section,
The variable-rigidity articulated body 1 whose shape has been changed is deformed outward so that the variable-rigidity articulated body 1 does not come into contact with the piping 3. Therefore, when the relationship between the temperature Tl of the shape memory alloy coil 12 and the shape change temperature To of the shape memory alloy coil 12 is To>T1, a straight shape as shown in FIG. 3(a) or To< When Tz, the shape is memorized in the shape memory alloy coil 12, which has a curvature as shown in FIG. 3(b). The temperature of the shape memory alloy coil 12 is changed by passing an electric current through the shape memory alloy coil 12.

第1図に示した剛性可変速節体1の形状変化の制御シー
ケンスを第6図を用いて、剛性可変連節体1の形状を、
第6図(a)の状態から第6図(b)の状態に変化させ
る場合を例に説明する。
Using the control sequence for changing the shape of the rigid variable speed articulated body 1 shown in FIG. 1 as shown in FIG. 6, the shape of the rigid variable speed articulated body 1 is changed to
The case where the state shown in FIG. 6(a) is changed to the state shown in FIG. 6(b) will be explained as an example.

第6図(a)の剛性可変連節体1の形状記憶合金コイル
の温度は形状記憶合金コイルの変形温度より低く第5図
(a)で示した形状である。またその時のER流体の状
態は電解を印加された剛体状である。以下、シーケンス
を説明する。
The temperature of the shape memory alloy coil of the variable rigidity articulated body 1 shown in FIG. 6(a) is lower than the deformation temperature of the shape memory alloy coil, resulting in the shape shown in FIG. 5(a). Further, the state of the ER fluid at that time is a rigid body to which electrolysis is applied. The sequence will be explained below.

1、ER流体に印加している電界を小さくシ。1. Reduce the electric field applied to the ER fluid.

ER流体を軟化させ剛性可変連節体1の形状を変化しや
すくする。
The ER fluid is softened to make it easier to change the shape of the variable rigidity articulated body 1.

2、形状記憶合金コイルに電流を供給し形状記憶合金コ
イルの温度を上昇させ、形状記憶合金コイルを第5図(
b)の形状にし、剛性可変連節体1の相対的な長さを変
化させる。
2. Supply current to the shape memory alloy coil to increase the temperature of the shape memory alloy coil, and the temperature of the shape memory alloy coil as shown in Figure 5 (
b), and the relative length of the variable rigidity articulated body 1 is changed.

3、剛性可変連節体1の相対的な長さを所望の長さにし
た後、ER流体に印加する電界を大きくし剛性可変連節
体1を剛体にする。
3. After setting the relative length of the variable-rigidity articulated body 1 to a desired length, the electric field applied to the ER fluid is increased to make the variable-rigidity articulated body 1 rigid.

4、形状記憶合金コイルに供給していた電流を断つ。こ
の時形状記憶合金は、徐々に第5図(a)の形状に戻ろ
うとするがER流体が同一形状を保持する。ER流体は
剛性を持った時、2つの軸方向走行体を結ぶ構造材の役
目をする。
4. Cut off the current supplied to the shape memory alloy coil. At this time, the shape memory alloy gradually tries to return to the shape shown in FIG. 5(a), but the ER fluid maintains the same shape. When the ER fluid has rigidity, it serves as a structural member that connects two axially traveling bodies.

上記とは逆に第6図(b)から第6図(a)のように剛
性可変連節体1の姿勢を変化させる時は、上記の工程の
2と4を逆にした工程で行える。
Contrary to the above, when changing the posture of the variable rigidity articulated body 1 as shown in FIG. 6(b) to FIG. 6(a), it can be done by reversing steps 2 and 4 of the above steps.

第3図のような走査装置を用いて被検査物である配管3
の溶接部31を超音波センサで検査する時の、走査装置
の姿勢と軸方向走行体2の動作を第7図から第8図を用
いて説明する。
Piping 3, which is the object to be inspected, using a scanning device as shown in Figure 3.
The attitude of the scanning device and the operation of the axially traveling body 2 when inspecting the welded portion 31 of the present invention with an ultrasonic sensor will be explained with reference to FIGS. 7 and 8.

超音波センサで配管3の溶接部31の検査をする時は、
溶接部31の左右両側から超音波センサで、検査する必
要がある。第7図に示すような配管3の溶接部31を直
管側から検査する時は、軸方向走行体2を周方向に回転
させることなく、また軸方向走行体2の姿勢を配管に対
して垂直に保ちながら走行する必要がある。そのために
複数個の軸方向走行体2の各々の距離をできるだけ長(
、また3本の剛性可変連節体の相対的な長さを同一にす
る必要がある。そのために、剛性可変連節体を第6図(
a)のように制御する。
When inspecting the welded part 31 of the pipe 3 with an ultrasonic sensor,
It is necessary to inspect the welded portion 31 from both the left and right sides using ultrasonic sensors. When inspecting the welded part 31 of the pipe 3 from the straight pipe side as shown in FIG. It is necessary to run while staying vertical. For this purpose, the distance between each of the plurality of axially traveling bodies 2 is made as long as possible (
Furthermore, it is necessary that the relative lengths of the three variable stiffness joints be the same. To that end, we constructed a variable-rigidity articulated body as shown in Figure 6 (
Control as in a).

次に、第7図に示す配管3の溶接部31を曲管部から査
検する時は、前述した剛性可変連節体の形状変化の制御
シーケンスを使用し、次に説明するように軸方向走行体
2を配管3の直管部から曲管部へ走行させた後に第8図
で示すような姿勢に軸方向走行体2を保持してから検査
を行う6以下。
Next, when inspecting the welded part 31 of the pipe 3 shown in FIG. 6 or less, in which the inspection is carried out after the traveling body 2 has traveled from the straight pipe section to the curved pipe section of the piping 3, and then the axially traveling body 2 is held in the posture shown in FIG.

軸方向走行体2が配管3の直管部から曲管部へ移動する
工程を説明する。
A process in which the axial traveling body 2 moves from the straight pipe section to the curved pipe section of the pipe 3 will be explained.

軸方向走行体2が配管3の直管部に位置する間軸方向走
行体2の配管3に対する姿勢と剛性可変連節体1の形状
は第6図(a)のように保持されている。第4図に示し
た軸方向走行体2に設けられた軸方向駆動機構22に搭
載されている姿勢センサ機構23が、軸方向走行体2が
曲管部に入ったことを検知した後、曲管部の腹部側に位
置した剛性可変連節体1の形状を前述の剛性可変連節体
1の形状変化の制御に従い変形させる。軸方向走行体2
の姿勢は姿勢センサにより常に配管3に対し垂直になる
ように制御している。複数個の軸方向走行体2の各々が
曲管部に入った後は、軸方向走行体2が配管に垂直にな
ったことを確認後、剛性可変連節体1に剛性を持たせ第
8図に示す姿勢に保持する。その後はこの姿勢を保持す
ることによって安定して曲管部でも検査することができ
る。
While the axially traveling body 2 is located in the straight pipe portion of the pipe 3, the attitude of the axially traveling body 2 with respect to the pipe 3 and the shape of the variable rigidity articulated body 1 are maintained as shown in FIG. 6(a). After the attitude sensor mechanism 23 mounted on the axial drive mechanism 22 provided on the axially traveling body 2 shown in FIG. 4 detects that the axially traveling body 2 has entered the curved pipe section, The shape of the variable-rigidity articulated body 1 located on the ventral side of the tube portion is deformed according to the above-described shape change control of the variable-rigidity articulated body 1. Axial running body 2
The attitude of the pipe 3 is always controlled to be perpendicular to the pipe 3 by a posture sensor. After each of the plurality of axial traveling bodies 2 enters the bent pipe section, after confirming that the axial traveling bodies 2 are perpendicular to the pipe, the rigidity variable articulated body 1 is made rigid and the eighth Hold in the position shown in the figure. Thereafter, by maintaining this posture, even curved pipe sections can be inspected stably.

上記とは逆に配管3の曲管部から直管部へ軸方向走行体
2を走行させる時も、上記の直管部から曲管部への走行
シーケンスを逆に応用することにより曲管部から直管部
へ走行することができる。
Contrary to the above, when the axial traveling body 2 is run from the bent pipe part to the straight pipe part of the pipe 3, the above running sequence from the straight pipe part to the bent pipe part can be reversely applied to the bent pipe part. It is possible to travel from the pipe to the straight pipe section.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、無軌道式の走査装置が曲管部を通過す
る際、複数の軸方向走行体間の連節部が曲管部の内側若
しくは外側に位置した場合でも。
According to the present invention, when the trackless scanning device passes through a curved pipe section, even if the joint portion between the plurality of axial traveling bodies is located inside or outside the curved pipe section.

走行体を管の周方向に回転させることなく曲管部をスム
ーズに走査することができる。
The curved pipe portion can be smoothly scanned without rotating the traveling body in the circumferential direction of the pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の剛性可変連節体の断面図、
第2図は従来例の説明図、第3図は本発明の剛性可変連
節体を用いた軸方向走行体の斜視図、第4図は姿勢セン
サの一実施例を示す説明図。 第5図は形状記憶合金コイルの形状変化を示した斜視図
、第6図は剛性可変連節体の形状変化を示した説明図、
第7図は配管の直管部における軸方向走行体の姿勢と剛
性可変連節体の形状を示した説明図、第8図は配管の曲
管部における軸方向走行体と剛性可変連節体の形状を示
した説明図である。 1・・・剛性可変連節体、2・・・軸方向走行体、3・
・・配管、11・・・ER流体、12・・・形状記憶合
金コイル13・・・被覆材、15・・・ジヨイント、2
1・・・軸方向走行体ベース、22・・・軸方向駆動機
構、31・・・溶接線。
FIG. 1 is a sectional view of a variable rigidity joint according to an embodiment of the present invention;
FIG. 2 is an explanatory diagram of a conventional example, FIG. 3 is a perspective view of an axial traveling body using the variable rigidity articulated body of the present invention, and FIG. 4 is an explanatory diagram showing one embodiment of a posture sensor. FIG. 5 is a perspective view showing the shape change of the shape memory alloy coil, FIG. 6 is an explanatory diagram showing the shape change of the variable rigidity joint body,
Fig. 7 is an explanatory diagram showing the posture of the axially running body and the shape of the variable-rigidity articulated body in the straight pipe section, and Fig. 8 is the axially running body and the variable-rigidity articulated body in the curved part of the pipe. It is an explanatory view showing the shape of. DESCRIPTION OF SYMBOLS 1... Rigidity variable joint body, 2... Axial direction running body, 3...
...Piping, 11...ER fluid, 12...Shape memory alloy coil 13...Coating material, 15...Joint, 2
DESCRIPTION OF SYMBOLS 1... Axial direction traveling body base, 22... Axial direction drive mechanism, 31... Welding line.

Claims (1)

【特許請求の範囲】[Claims] 1、被検査物である管に対して着脱可能な輪状のベース
と、このベースに対して支承されて前記の管に接触する
走行用の駆動輪を有する複数個の軸方向走行体間を連結
する連節体とで構成される管検査用の無軌道式走査装置
において、該連節体の剛性を変える剛性制御手段と、該
連節体の形状を変える形状可変手段とを有する連節体を
具備することを特徴とする、管検査用の無軌道式走査装
置。
1. Connection between a plurality of axial running bodies having a ring-shaped base that is detachable from the pipe that is the object to be inspected, and a driving wheel for running that is supported by this base and comes into contact with the pipe. A trackless scanning device for pipe inspection comprising an articulated body having a rigidity control means for changing the rigidity of the articulated body and a shape variable means for changing the shape of the articulated body. A trackless scanning device for pipe inspection, comprising:
JP61294863A 1986-12-12 1986-12-12 Trackless scanning apparatus for inspecting pipe Pending JPS63149557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294863A JPS63149557A (en) 1986-12-12 1986-12-12 Trackless scanning apparatus for inspecting pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294863A JPS63149557A (en) 1986-12-12 1986-12-12 Trackless scanning apparatus for inspecting pipe

Publications (1)

Publication Number Publication Date
JPS63149557A true JPS63149557A (en) 1988-06-22

Family

ID=17813229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294863A Pending JPS63149557A (en) 1986-12-12 1986-12-12 Trackless scanning apparatus for inspecting pipe

Country Status (1)

Country Link
JP (1) JPS63149557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112903A1 (en) * 2018-11-29 2020-06-04 Saudi Arabian Oil Company Crawler vehicle with automatic probe normalization
US11760127B2 (en) 2020-12-03 2023-09-19 Saudi Arabian Oil Company Two-wheel compact inspection crawler with automatic probe normalization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020112903A1 (en) * 2018-11-29 2020-06-04 Saudi Arabian Oil Company Crawler vehicle with automatic probe normalization
US11548577B2 (en) 2018-11-29 2023-01-10 Saudi Arabian Oil Company Crawler vehicle with automatic probe normalization
US11760127B2 (en) 2020-12-03 2023-09-19 Saudi Arabian Oil Company Two-wheel compact inspection crawler with automatic probe normalization

Similar Documents

Publication Publication Date Title
US11098854B2 (en) Magnetic crawler vehicle with passive rear-facing apparatus
ES2776458T3 (en) Unfolding mechanism for passive normalization of an instrument in relation to the surface of a workpiece
US20200172184A1 (en) Crawler vehicle with automatic probe normalization
KR101108933B1 (en) Device for automatically welding inside-joint portion of steel pipes using intelligent robot and method for automatically welding thereof
JPH0479416B2 (en)
US20220176736A1 (en) Two-wheel compact inspection crawler with automatic probe normalization
CN111896554B (en) A ordinary pressure storage tank wall climbing robot for miniature appearance detection in surface
JPS6134459A (en) Trackless scanner for inspection of pipe
JPS63149557A (en) Trackless scanning apparatus for inspecting pipe
CN107435718A (en) The manufacture method of ball-screw apparatus, transfer and keeper
JP5740283B2 (en) Pipe thickness measuring device
JPH09295573A (en) Traveling mechanism in pipe
CN112503301B (en) Nondestructive inspection positioning device and inspection equipment for return bend
JPS6297794A (en) Work device for inner surface of pipe
JPS61182895A (en) Self-traveling device outside pipe
JPS61250553A (en) Trackless type scanning apparatus for inspecting pipe
JP2003199221A (en) Diagnostic apparatus for electric wire
JPH0683898B2 (en) Self-propelled welding robot
JPH038310B2 (en)
JPS61113555A (en) Travelling device in duct
JPH0358951B2 (en)
KR20230046669A (en) Driving apparatus for pipeline
JPH0820425B2 (en) In-service vehicle
JPS61120056A (en) Moving device in narrow space
JP2513197Y2 (en) Sensor holding device for pipe outer surface inspection