JPS63149364A - High-energy gas thermal spraying method - Google Patents

High-energy gas thermal spraying method

Info

Publication number
JPS63149364A
JPS63149364A JP61296030A JP29603086A JPS63149364A JP S63149364 A JPS63149364 A JP S63149364A JP 61296030 A JP61296030 A JP 61296030A JP 29603086 A JP29603086 A JP 29603086A JP S63149364 A JPS63149364 A JP S63149364A
Authority
JP
Japan
Prior art keywords
thermal
base material
sprayed
melting point
pure metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61296030A
Other languages
Japanese (ja)
Inventor
Yuji Fukuda
祐治 福田
Masahito Kumon
公文 将人
Hitoshi Yamazaki
均 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61296030A priority Critical patent/JPS63149364A/en
Publication of JPS63149364A publication Critical patent/JPS63149364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To improve the adhesion strength between a first-layer thermal sprayed film and a base material by thermal-spraying a mixture of the high-m.p. and high-hardness material and a low-m.p. pure metal material at the time of forming the thermal sprayed film consisting of the high-m.p. material on the base material surface. CONSTITUTION:The surface of the base material 1 is shotblasted, and then high energy resulting from the explosion or combustion of a gas is utilized. For example, a mixture of the high-m.p. and high-hardness material 3 and a pure metal or the alloy 4 contg. a pure metal is thermal-sprayed by a discontinuous explosion thermal spraying method. The powder of the mixture contg. 75wt% Cr3C2, the material 3, and 25wt% Ni-Cr alloy 4, for example, is thermal- sprayed to form the first-layer thermal sprayed film 2a. The powder of the mixture consisting, for example, of 92% ZrO2 and 8% Y2O3 as the high-m.p. material is then thermal-sprayed by the same thermal spraying method to form a surface-layer thermal sprayed film 2b. By this method, the particles of the material 3 can be infiltrated into the surface of the base material 1, and a strong anchor effect can be exhibited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶射方法、特にガスの爆発又は燃焼等の高エネ
ルギーを利用する高エネルギーガス溶射方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal spraying method, and particularly to a high-energy gas thermal spraying method that utilizes high energy such as gas explosion or combustion.

〔従来の技術〕[Conventional technology]

石炭焚ボイラの伝熱管及びバーナインペラ、ガスタービ
ンやディーゼルエンジン部品等は約500〜1000℃
の高温での耐熱性が、更に燃焼ガス、特にバナジウムを
含む燃焼ガスによって発生する高温腐食や、微粉炭燃焼
等で生じるフライアッシュによる二ローションや、しゆ
う動摩耗などが問題となる。
Heat transfer tubes and burner impellers of coal-fired boilers, gas turbines, diesel engine parts, etc. are approximately 500 to 1000 degrees Celsius.
Furthermore, heat resistance at high temperatures becomes a problem, as well as high-temperature corrosion caused by combustion gases, especially combustion gases containing vanadium, corrosion caused by fly ash caused by combustion of pulverized coal, and wear caused by shearing.

これらの問題に対処する為、材料の耐熱性、耐食性と耐
摩耗性を向上させる方法として材料の表面にこれら諸特
性に優れた材料を溶射する方法が用いられている。
In order to deal with these problems, a method of thermal spraying a material having excellent properties on the surface of the material has been used to improve the heat resistance, corrosion resistance, and wear resistance of the material.

溶射材料としては耐熱性、耐食性、耐摩耗性のいずれに
も優れている必要があり、こうした特性を向上させるた
めには、材料の表面にAu、O,又はZrO,等の酸化
物系セラミックス粉末を用いて、溶射皮膜を形成させる
のが有効である。
Thermal spray materials must have excellent heat resistance, corrosion resistance, and wear resistance. It is effective to form a thermal spray coating using

酸化物系セラミックス等高融点材料の溶射皮膜に必要な
性能としては、上記特性の他に母材との密着強度及び溶
射皮膜中の気孔の有無が重要となる、すなわち溶射皮膜
の密着強度が低いと、運転中の加熱、冷却の繰返しによ
り溶射皮膜が容易に剥離する。
In addition to the above characteristics, the adhesion strength with the base material and the presence or absence of pores in the sprayed coating are important for the performance required for thermal sprayed coatings of high melting point materials such as oxide ceramics.In other words, the adhesion strength of the sprayed coating is low. The thermal spray coating easily peels off due to repeated heating and cooling during operation.

この剥離は主として溶射皮膜の熱膨張率が母材に比して
低いためその差により生ずる熱応力により生じる。−ま
た、溶射皮膜中に気孔が多いとその気孔を通じて燃焼ガ
スが侵入し、母材を酸化させたり腐食させたりする。
This peeling is mainly caused by thermal stress caused by the difference in coefficient of thermal expansion of the sprayed coating, which is lower than that of the base material. -Also, if there are many pores in the sprayed coating, combustion gas will enter through the pores, oxidizing or corroding the base material.

溶射皮膜の密着強度の低下と気孔生成の主原因は、母材
表面に衝突する溶射粒子の温度が低くて溶射粒子の可塑
性が低下する場合、あるいは溶射粒子の衝突速度が低下
して圧着力が減少する場合等である。
The main causes of the decrease in adhesion strength and the formation of pores in thermal sprayed coatings are when the temperature of the sprayed particles colliding with the base material surface is low and the plasticity of the sprayed particles decreases, or when the collision speed of the sprayed particles decreases and the pressure bonding force is reduced. This is the case when the amount decreases.

従って、母材と溶射皮膜との密着強度の向上及び溶射皮
膜の無気孔化のためには、(イ)溶射粒子の速度を速く
し、母材表面への衝突エネルギーを高くすること、(ロ
)溶射粒子を溶融または半溶融状態で衝突させることな
どがあげられる。
Therefore, in order to improve the adhesion strength between the base material and the sprayed coating and to make the sprayed coating porosity-free, it is necessary to (a) increase the velocity of the sprayed particles and increase the impact energy on the base material surface; ) Collision with thermal spray particles in a molten or semi-molten state.

しかし、従来より酸化物系セラミックス等高溶融点材料
の溶射方法として使用されている大気中プラズマ溶射方
法の場合、溶射中の粒子速度があまり速くなく母材表面
に衝突する溶射粒子の衝突エネルギーが低いので溶射粒
子の圧着化が不十分となり、母材と溶射皮膜との密着強
度が低くなっている。また、溶射皮膜中の酸化物系セラ
ミックス等高融点材料の粒子間の結合も不十分で多くの
気孔が生じている。
However, in the case of atmospheric plasma spraying, which has traditionally been used as a method for spraying high melting point materials such as oxide ceramics, the particle velocity during spraying is not very high, and the collision energy of the sprayed particles colliding with the surface of the base material is low. Since it is low, compression of the sprayed particles is insufficient, and the adhesion strength between the base material and the sprayed coating is low. Furthermore, the bonding between particles of high melting point materials such as oxide ceramics in the thermal spray coating is insufficient, resulting in many pores.

一方、溶射粒子の高速化に着目した溶射方法として1w
1素−アセチレンガスの爆発エネルギーを利用した不連
続型爆発溶射方法及び超高速強化ガス溶射方法がある。
On the other hand, 1W is a thermal spraying method that focuses on increasing the speed of spray particles.
There are a discontinuous explosive thermal spraying method and an ultrahigh-speed reinforcing gas thermal spraying method that utilize the explosive energy of mono-acetylene gas.

以後これらを高エネルギーガス溶射方法と称する。この
方式の溶射方法では粒子速度が2から3マツハと高速に
なるため溶射粒子は高エネルギーで母材表面に衝突し、
結果として溶射粒子は母材表面に十分圧着するため、プ
ラズマ溶射方法に比らべて溶射皮膜と母材との密着強度
が向上する。更に、溶射皮膜中の酸化物系セラミックス
等高融点材料の粒子も重なりあうようになり気孔の少な
い溶射皮膜が得られる。
Hereinafter, these will be referred to as high-energy gas spraying methods. In this thermal spraying method, the particle velocity is as high as 2 to 3 matsuha, so the sprayed particles collide with the surface of the base material with high energy.
As a result, the sprayed particles are sufficiently pressed against the surface of the base material, so the adhesion strength between the sprayed coating and the base material is improved compared to the plasma spray method. Furthermore, particles of high melting point materials such as oxide ceramics in the sprayed coating also overlap, resulting in a sprayed coating with fewer pores.

しかし、この溶射方法はガスの爆発エネルギーを熱源と
しているがガス温度としては最高30oO℃程度であり
、酸化物系セラミックス等高融点材料を溶射した場合、
溶射粉末のうちほとんどのものは未溶融状態で母材表面
に衝突するようになる。そのため、高速で母材表面に衝
突した未溶融粒子は母材表面から飛散したり、圧着度の
悪い球状粒子として母材表面に付着するため、溶射皮膜
と母材との密着強度が不十分で、高温下で使用した場合
溶射皮膜が母材から剥離するという欠点があった。
However, although this thermal spraying method uses gas explosion energy as a heat source, the maximum gas temperature is about 30°C, and when high melting point materials such as oxide ceramics are sprayed,
Most of the thermal spray powder collides with the base material surface in an unmolten state. As a result, unmelted particles that collide with the base material surface at high speeds scatter from the base material surface or adhere to the base material surface as spherical particles with poor adhesion, resulting in insufficient adhesion strength between the thermal spray coating and the base material. However, when used at high temperatures, the thermal spray coating peeled off from the base material.

これを改善する方法として、プラズマ溶射方法の場合は
Ni−Cr合金やN i −A Q合金のような低融点
の合金粉末をまず母材表面に溶射し、ついで酸化物系セ
ラミックス等高融点材料を溶射する方法がとられている
。しかし高エネルギーガス溶射方法、特に不連続型爆発
溶射方法の場合、爆発エネルギーを利用しているため温
度制御が困難で、合金粉末は全て完全溶融状態で母材面
上に衝突し凝固する。そのため溶射粒子の母材面内への
食い込みは不十分で母材との密着強度は低いものしか得
られないので、高温使用中の加熱、冷却の繰返しにより
剥離を生じ易い。このため従来は酸化物系セラミックス
等高融点材料の溶射皮膜を高温で使用するのは困難な状
況にあった。
As a method to improve this, in the case of plasma spraying, a low melting point alloy powder such as Ni-Cr alloy or Ni-AQ alloy is first sprayed onto the surface of the base material, and then a high melting point material such as oxide ceramics is sprayed. A method of thermal spraying is used. However, in the case of high-energy gas spraying methods, especially discontinuous explosive spraying methods, it is difficult to control the temperature because explosive energy is used, and the alloy powder collides with the base metal surface in a completely molten state and solidifies. As a result, the thermal spray particles do not penetrate into the surface of the base material sufficiently, and only a low adhesion strength to the base material can be obtained, so that peeling is likely to occur due to repeated heating and cooling during high-temperature use. For this reason, it has been difficult to use thermally sprayed coatings made of high melting point materials such as oxide ceramics at high temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高エネルギーガス溶射方法により合金粉末を溶射すると
、溶射エネルギーが高いため溶射粒子はすべて完全溶融
状態で母材表面に衝突するので。
When alloy powder is sprayed using the high-energy gas spraying method, the spraying energy is high, so all spray particles collide with the surface of the base material in a completely molten state.

溶射粒子の母材面内への食い込みが不十分となり、その
ため初層溶射皮膜と母材との密着強度が低下する。
The thermal spray particles do not penetrate sufficiently into the surface of the base material, resulting in a decrease in the adhesion strength between the initial thermal spray coating and the base material.

本発明の目的は、上記問題点を消除した、母材表面に形
成される初層溶射皮膜と母材との密着強度を向上させる
高エネルギーガス溶射方法を提供することにある。
An object of the present invention is to provide a high-energy gas thermal spraying method that eliminates the above-mentioned problems and improves the adhesion strength between the initial sprayed coating formed on the surface of the base material and the base material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、ガスの爆発ないしは燃焼による高エネ
ルギーを利用して母材面上に高融点材料からなる溶射皮
膜を形成する高エネルギーガス溶射方法において、前記
母材に高融点及び高硬度の物質と低融点の純金属ないし
は該純金属を含む合金との混合物からなる粉末を溶射す
ることにより、前記高融点及び高硬度の物質が前記母材
に食い込み前記純金属ないしは該純金属を含む合金が前
記母材及び前記高融点及び高硬度の物質に密着した状態
で初層溶射皮膜を形成することを特徴とする高エネルギ
ーガス溶射方法を提供することにより達成される。
An object of the present invention is to provide a high-energy gas spraying method for forming a sprayed coating made of a high-melting-point material on a base material surface using high energy from gas explosion or combustion. By spraying a powder consisting of a mixture of a substance and a pure metal with a low melting point or an alloy containing the pure metal, the substance with a high melting point and high hardness bites into the base material and forms the pure metal or an alloy containing the pure metal. This is achieved by providing a high energy gas thermal spraying method characterized in that an initial thermal spray coating is formed in close contact with the base material and the high melting point and high hardness substance.

〔作用〕[Effect]

本発明は母材の表面に高融点及び高硬度の物質と低融点
の純金属ないしは該純金属を含む合金との混合物からな
る粉末をガスの高エネルギーを利用して溶射することに
より、高融点及び高硬度の物質の粒子が未溶融又は半溶
融でかつ硬さを有する状態で母材表面に衝突してその面
内に食い込んで強い投錨効果を発揮して密着し、低融点
の純金属ないしは該純金属を含む合金は完全に溶融して
ぬれ性を有して、母材への移行中に前記高融点及び高硬
度の物質粒子を包んで該粒子の熱分解を妨げ、かつ運動
エネルギーを増大させるので、母材表面に衝突したとき
前記高融点及び高硬度の物質粒子の衝突エネルギーを大
きくさせるとともに、前記高融点及び高硬度の物質粒子
にもまた母材表面にも密着し、全体として母材に対し高
い密着性を有する初層溶射皮膜を形成する。
The present invention utilizes the high energy of gas to thermally spray a powder consisting of a mixture of a substance with a high melting point and high hardness and a pure metal with a low melting point or an alloy containing the pure metal onto the surface of a base material. Particles of highly hard substances collide with the surface of the base material in an unmolten or semi-molten and hard state, bite into the surface of the base material, exert a strong anchoring effect, and stick together, making it possible to form pure metals with low melting points or The alloy containing the pure metal completely melts and has wettability, enveloping the high melting point and high hardness material particles during transfer to the base metal, preventing thermal decomposition of the particles, and absorbing kinetic energy. This increases the collision energy of the material particles with a high melting point and high hardness when they collide with the surface of the base material, and the material particles with a high melting point and high hardness adhere to the surface of the base material as well, and the overall Forms an initial thermal spray coating that has high adhesion to the base material.

〔実施例〕〔Example〕

本実施例で使用した溶射方法は不連続型爆発溶射方法で
あって、これは円筒状のガン内の後部に送給された燃焼
ガスと酸素ガスとが混合状態となってスパークプラグで
点火されて爆発し、内部に供給されている粉末粒子が瞬
間的に高温に加熱されて、ガンの先端から2〜3マツハ
の高速で噴射され、不連続的に噴射が繰返される溶射方
法である。爆発ガスの温度はガスの量又は混合比により
1800〜3000℃となる。
The thermal spraying method used in this example is a discontinuous explosive thermal spraying method, in which the combustion gas and oxygen gas fed into the rear part of a cylindrical gun are mixed and ignited by a spark plug. This is a thermal spraying method in which the powder particles supplied inside are instantaneously heated to a high temperature and are injected from the tip of the gun at a high speed of 2 to 3 mm, and the injection is repeated discontinuously. The temperature of the explosive gas ranges from 1800 to 3000°C depending on the amount or mixing ratio of the gases.

本発明の実施例について図により説明する。Embodiments of the present invention will be described with reference to the drawings.

第1〜3図に示す如く、母材1の表面をショツトブラス
ト処理を行った後、不連続型溶射方法により高融点及び
高硬度の物質3であるクロム炭化物Cr、C,を75重
量%と純金属ないしは該純金属を含む合金4であるNi
−Cr合金を25重量%との混合物である粉末を溶射し
て初層溶射皮膜2aを形成させ、次に高融点材料である
92重量%ZrO,8重量%Y2O3粉末を上記と同じ
溶射方法で溶射し表層溶射皮膜2bを形成させた。
As shown in Figures 1 to 3, after shot blasting the surface of the base material 1, 75% by weight of chromium carbide Cr, C, which is a substance 3 with a high melting point and high hardness, is applied by a discontinuous thermal spraying method. Ni, which is a pure metal or an alloy 4 containing the pure metal
A powder that is a mixture of -Cr alloy and 25% by weight is thermally sprayed to form the first thermal sprayed coating 2a, and then 92% by weight ZrO and 8% by weight Y2O3 powder, which is a high melting point material, is thermally sprayed by the same thermal spraying method as above. A surface sprayed coating 2b was formed by thermal spraying.

以上の方法によって作成した本発明による溶射皮膜2と
、比較材としての従来方式による溶射皮膜とについて、
日本工業規格による密着性試験を行った結果を第1表に
示す。
Regarding the thermal spray coating 2 according to the present invention created by the above method and the thermal spray coating according to the conventional method as a comparison material,
Table 1 shows the results of the adhesion test according to Japanese Industrial Standards.

X・・・繰返し10回で剥離発生。X: Peeling occurred after 10 repetitions.

溶射皮膜の密着性試験は、溶射された試験材を500℃
に加熱し20℃に冷却、700℃に加熱し20℃に冷却
するという急熱、急冷を夫々の試験温度で繰返し行い、
溶射皮膜が剥離するまでの回数を測定することにより行
った。
In the adhesion test of thermal sprayed coatings, the thermally sprayed test material was heated to 500°C.
Repeated rapid heating and cooling at each test temperature, heating to 700°C and cooling to 20°C, then heating to 700°C and cooling to 20°C.
This was done by measuring the number of times it took for the thermal spray coating to peel off.

第1表に示す如く、本発明の方法により作成した溶射皮
膜2は500℃、700”C夫々の試験温度での加熱、
冷却の繰返し試験において繰返し10回で剥離せず、極
めて良好な密着性を示していることがわかる。
As shown in Table 1, the thermal spray coating 2 prepared by the method of the present invention was heated at test temperatures of 500°C and 700"C, respectively.
It can be seen that in the repeated cooling test, no peeling occurred after 10 repetitions, indicating extremely good adhesion.

以上、実施例において示した如く1本発明の方法により
形成した溶射皮膜2が優れた密着性を示す理由は、第2
図に示すように、初層溶射皮膜用の溶射材料が高融点及
び高硬度の物質3としてのクロム炭化物と低融点の純金
属ないしは該純金属を含む合金4としてのN i −C
r合金との混合物の粉末なので、溶射されるとクロム炭
化物3の粒子が未溶融又は半溶融でかつ硬さを有する状
態で母材表面に衝突して母材面に食い込んで投錨効果を
大きくして密着性を高めることによることと、Ni−C
r合金4が完全溶融状態になって高いぬれ性を有し、母
材への移行中にクロム炭化物を包んだ状態となってクロ
ム炭化物が高温で熱分解するのを妨げかつクロム炭化物
の運動エネルギーを増大させるので母材表面への衝突エ
ネルギーを大きくさせるとともに、クロム炭化物粒子に
もまた母材の凹凸面にもよく密着することによるのであ
る。
As shown in the examples above, the reason why the thermal spray coating 2 formed by the method of the present invention shows excellent adhesion is the second reason.
As shown in the figure, the thermal spray material for the first layer thermal spray coating consists of chromium carbide as a substance 3 with a high melting point and high hardness, and N i -C as a pure metal with a low melting point or an alloy 4 containing the pure metal.
Since it is a powder of a mixture with r-alloy, when it is thermally sprayed, the particles of chromium carbide 3 collide with the surface of the base material in an unmolten or semi-molten and hard state and bite into the surface of the base material, increasing the anchoring effect. By increasing the adhesion and Ni-C
r Alloy 4 becomes completely molten and has high wettability, and during transfer to the base material, it wraps around chromium carbide, preventing the chromium carbide from thermally decomposing at high temperatures, and reducing the kinetic energy of the chromium carbide. This is because the impact energy on the base material surface is increased, and the chromium carbide particles also adhere well to the uneven surface of the base material.

初層溶射皮膜2aと表面溶射皮膜2bとが良好な密着性
を有する理由は、第3図に示すように、初層溶射皮膜2
aの表面全体にクロム炭化物3が微細に分散して突起状
に存在しており、このクロム炭化物3が表層溶射皮膜2
bを初層溶射皮膜2aに強固に接合させる糊の役目をし
ているためである。すなわち第4図に溶射皮膜2の断面
ミクロ組織を示すが、初層溶射皮膜2aの表面に存在す
るクロム炭化物3は杭を打ち込んだように表層溶射皮膜
2bの中にもぐり込んでおり、この構造が両溶射皮膜間
の密着性を向上させているためである。
The reason why the initial thermal sprayed coating 2a and the surface thermal sprayed coating 2b have good adhesion is as shown in FIG.
Chromium carbide 3 is finely dispersed and exists in protrusions over the entire surface of a, and this chromium carbide 3 forms the surface sprayed coating 2.
This is because it acts as a glue to firmly bond b to the initial thermal sprayed coating 2a. In other words, Fig. 4 shows the cross-sectional microstructure of the thermal sprayed coating 2, and the chromium carbide 3 present on the surface of the initial thermal sprayed coating 2a sinks into the surface sprayed coating 2b like a stake, and this structure This is because the adhesion between both thermal spray coatings is improved.

また、溶射皮膜2に気孔がきわめて少なくなっているが
、その理由は溶射皮膜粒子の衝突速度が大きいのでよく
圧着するためであり、特に初層溶射皮膜2aでは低融点
のNi−Cr合金4が完全溶融して良好なぬれ性を有し
て、溶射粒子間にもまた母材1ともよく密着するためで
ある。
In addition, there are very few pores in the thermal sprayed coating 2, but this is because the collision speed of the particles in the thermal sprayed coating is high and the particles are pressed together well.Especially in the initial thermal sprayed coating 2a, the Ni-Cr alloy 4 with a low melting point is This is because it is completely melted, has good wettability, and adheres well to the base material 1 as well as between the thermal spray particles.

本実施例においては、溶射皮膜2を2層にしているが、
熱衝撃が厳しい環境に適用する場合には、溶射皮膜を3
層構造とし初層溶射皮膜2aと表層溶射皮膜2bとの間
に中間層として、初層溶射皮膜用の高融点及び高硬度の
物質3と表層溶射皮膜用の高融点材料との混合物の溶射
皮膜を形成することにより、溶射皮膜中の熱膨張係数が
膜厚方向に連続的に変化するようになるので、より長寿
命化がはかれる。
In this example, the thermal spray coating 2 is made of two layers, but
When applied to environments with severe thermal shock, thermal spray coatings are recommended.
A thermal sprayed coating of a mixture of a substance 3 with a high melting point and high hardness for the initial thermal sprayed coating and a high melting point material for the surface thermal sprayed coating, which has a layered structure and is used as an intermediate layer between the initial thermal sprayed coating 2a and the surface thermal sprayed coating 2b. By forming this, the coefficient of thermal expansion in the sprayed coating changes continuously in the film thickness direction, resulting in a longer service life.

本発明において、初層溶射皮膜2aの形成に用いる混合
粉末のうち、高融点及び高硬度の物質3としてはWC,
TiC,Cr3G2等の金属炭化物が適用でき、また、
金属酸化物、金属窒化物等の適用も可能である。
In the present invention, among the mixed powders used for forming the initial thermal spray coating 2a, the high melting point and high hardness substance 3 is WC,
Metal carbides such as TiC and Cr3G2 can be applied, and
It is also possible to apply metal oxides, metal nitrides, etc.

これらの高融点及び高硬度の物質3としては1800〜
3000℃のガス温度で未溶融ないしは半溶融でかつ硬
さを有する状態となる物質であればよい。
These high melting point and high hardness substances 3 are 1800~
Any material may be used as long as it becomes unmolten or semi-molten and hard at a gas temperature of 3000°C.

融点が約1800℃以下の物質では溶射の高温によりほ
とんど溶融するため母材1に衝突した時の食い込みが不
足し十分な密着強度が得られないため、高融点及び高硬
度の物質3の融点として約1800℃以上のものが望ま
しい。
Substances with a melting point of about 1800°C or lower are mostly melted by the high temperature of thermal spraying, so when they collide with the base material 1, there is insufficient biting and sufficient adhesion strength cannot be obtained. A temperature of about 1800°C or higher is desirable.

そして、初層溶射皮膜2aに用いる純金属ないしは該純
金属を含む合金4としては、Ni、Cr。
The pure metal or the alloy 4 containing the pure metal used for the initial thermal spray coating 2a includes Ni and Cr.

Afi、Co等の純金属ないしはそれらを含む合金で、
高エネルギーガス溶射方法で完全溶融するものであれば
よく、融点としては約1800℃以下が望ましい。また
、その成分組成について特に限定するものではないが、
前述の高融点及び高硬度の物質3との混合割合は、純金
属ないしは該純金属を含む合金4が少な過ぎると未溶融
又は半溶融状態で母材表面に衝突する高融点及び高硬度
の物質3の粒子の割合が多くなりすぎ、逆に純金属ない
しは該純金属を含む合金4が多過ぎると初層溶射皮膜2
aと表層溶射皮膜2bとを結合させる役目を担う高融点
及び高硬度の物質3の割合が少な過ぎて、十分な密着強
度が得られなくなるので。
Pure metals such as Afi, Co, etc. or alloys containing them,
Any material can be used as long as it can be completely melted by high-energy gas spraying, and its melting point is preferably about 1800° C. or lower. In addition, although there are no particular limitations on its component composition,
The mixing ratio with the above-mentioned high melting point and high hardness substance 3 is such that if the pure metal or the alloy 4 containing the pure metal is too small, the high melting point and high hardness substance will collide with the surface of the base material in an unmolten or semi-molten state. If the ratio of particles 3 becomes too large, and conversely, the amount of pure metal or alloy 4 containing the pure metal becomes too large, the initial thermal spray coating 2
This is because the proportion of the substance 3 having a high melting point and high hardness that plays the role of bonding a and the surface sprayed coating 2b is too small, making it impossible to obtain sufficient adhesion strength.

高融点及び高硬度の物質3に対する純金属ないしは該純
金属を含む合金4の割合を重量比で10〜50%とする
のが望ましい。
It is desirable that the proportion of the pure metal or the alloy 4 containing the pure metal to the substance 3 having a high melting point and high hardness is 10 to 50% by weight.

一方、表層溶射皮膜2bを形成する溶射材料としては、
A Q、O,、Z r O,、Cr、O,、CaO等の
金属酸化物、もしくはそれらの金属酸化物を主成分とす
る耐摩耗性、耐熱性及び耐食性を有する材質であればよ
く、特にその成分組成を限定するものではない、また、
金属酸化物系以外に、高エネルギーガス溶射方法では密
着性に優れた表層溶射皮膜2bを形成することの困兼な
高融点金属。
On the other hand, the thermal spray material for forming the surface thermal spray coating 2b is as follows:
Any metal oxide such as A Q, O,, Z r O, Cr, O, CaO, or a material containing these metal oxides as a main component and having wear resistance, heat resistance, and corrosion resistance may be used. There is no particular limitation on the component composition, and
In addition to metal oxides, high-melting point metals make it difficult to form a surface sprayed coating 2b with excellent adhesion using high-energy gas spraying methods.

例えばMoやWの場合でも、本発明の高エネルギーガス
溶射方法により、実施例と同等の密着強度を得ることが
出来る。
For example, even in the case of Mo or W, adhesion strength equivalent to that of the embodiment can be obtained by the high-energy gas spraying method of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の高エネルギーガス溶射方法により、母材1の上
に高融点材料の溶射皮膜を形成する場合、初層溶射皮膜
2aとして高融点及び高硬度の物質3と純金属ないしは
該純金属を含む合金4との混合物からなる粉末を溶射す
ることにより、高融点及び高硬度の物質3の粒子が未溶
融又は半溶融でかつ硬さを有する状態で母材表面に強い
投錨効果を有して密着し、そして低融点の純金属ないし
は該純金属を含む合金4は完全溶融して良好なぬれ性を
有して高融点及び高硬度の物質3の移行中と衝突後の溶
射粒子と母材1とによく密着するので。
When a sprayed coating of a high melting point material is formed on the base material 1 by the high energy gas spraying method of the present invention, the initial sprayed coating 2a includes a substance 3 with a high melting point and high hardness and a pure metal or the pure metal. By thermal spraying the powder made of the mixture with Alloy 4, particles of substance 3 with a high melting point and high hardness adhere to the surface of the base material in an unmolten or semi-molten and hard state with a strong anchoring effect. Then, the pure metal with a low melting point or the alloy 4 containing the pure metal is completely melted and has good wettability, so that the material 3 with a high melting point and high hardness is mixed with the sprayed particles during the transfer and after the collision with the base material 1. Because it adheres well to.

初層溶射皮膜2aは母材面に対して密着強度が著しく向
上する。
The adhesion strength of the initial thermal sprayed coating 2a to the base material surface is significantly improved.

更に、初層溶射皮膜2aの上に高融点材料からなる表層
溶射皮膜2bを形成することにより、初層溶射皮膜2a
の表面上に微細に分散した突起状の高融点及び高硬度の
物質3の粒子が表層溶射皮膜2b内にもぐり込んだ構造
になって両溶射皮膜間の密着強度を向上させる。
Furthermore, by forming a surface sprayed coating 2b made of a high melting point material on the initial thermal sprayed coating 2a, the initial thermal sprayed coating 2a is
The particles of the substance 3 having a high melting point and high hardness that are finely dispersed in the shape of protrusions on the surface of the surface sprayed coating 2b have a structure in which they penetrate into the surface sprayed coating 2b, thereby improving the adhesion strength between the two coatings.

以上のように、各溶射皮膜層の境界は高い密着強度を有
するので、溶射皮膜2は高温下での長時間使用や急熱、
急冷の繰返しによっても剥離することがない。
As described above, the boundaries between each thermal sprayed coating layer have high adhesion strength, so thermal sprayed coating 2 can be used for long periods of time at high temperatures, or exposed to sudden heat.
It will not peel off even after repeated rapid cooling.

溶射皮膜2の気孔に関しては、溶射粒子の衝突速度が大
きいのでよく圧着し、特に初層溶射皮膜2aでは低融点
の純金属ないしは該純金属を含む合金4が完全溶融して
良好なぬれ性を有して、溶射粒子間とまた母材め凹凸面
ともよく密着するため気孔のきわめて少ない初層溶射皮
膜2aとなるので、耐食性、耐熱性及び耐摩耗性を要す
る部位へ適用した場合、耐用年数を飛躍的に向上させる
ことができ、工業上の利用価値もきわめて大きい。
Regarding the pores of the thermal sprayed coating 2, the collision speed of the sprayed particles is high, so they are well compressed, and especially in the first layer thermal sprayed coating 2a, the pure metal with a low melting point or the alloy 4 containing the pure metal is completely melted and has good wettability. As a result, the first layer thermal sprayed coating 2a has very few pores due to good adhesion between the sprayed particles and the uneven surface of the base material, so when applied to areas that require corrosion resistance, heat resistance, and abrasion resistance, it has a long service life. can be dramatically improved, and its industrial value is also extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における溶射皮膜の断面構成を
示す説明図、第2図は第1図の母材と初層溶射皮膜の界
面部分を拡大した説明図、第3図は第1図の初層溶射皮
膜と表層溶射皮膜の界面部分を拡大した説明図、第4図
は本発明の実施例における溶射皮膜の断面ミクロ組織を
示す写真でδろ。 1・・・母材、       2・・・溶射皮膜、2a
・・・初層溶射皮膜。 3・・・高融点及び高硬度の物質。 4・・・純金属ないしは該純金属を含む金属。
FIG. 1 is an explanatory diagram showing the cross-sectional structure of the thermal sprayed coating in an example of the present invention, FIG. FIG. 4 is a photograph showing the cross-sectional microstructure of the thermal sprayed coating in an example of the present invention. 1... Base material, 2... Thermal spray coating, 2a
...First layer thermal spray coating. 3...Substance with high melting point and high hardness. 4...Pure metal or metal containing the pure metal.

Claims (1)

【特許請求の範囲】[Claims] (1)ガスの爆発ないしは燃焼による高エネルギーを利
用して母材面上に高融点材料からなる溶射皮膜を形成す
る高エネルギーガス溶射方法において、前記母材に高融
点及び高硬度の物質と低融点の純金属ないしは該純金属
を含む合金との混合物からなる粉末を溶射することによ
り、前記高融点及び高硬度の物質が前記母材に食い込み
前記純金属ないしは該純金属を含む合金が前記母材及び
前記高融点及び高硬度の物質に密着した状態で初層溶射
皮膜を形成することを特徴とする高エネルギーガス溶射
方法。
(1) In a high-energy gas spraying method that uses high energy from gas explosion or combustion to form a sprayed coating made of a high-melting-point material on the surface of a base material, the base material is coated with a high-melting-point, high-hardness material and By thermal spraying a powder made of a pure metal with a melting point or a mixture with an alloy containing the pure metal, the material with a high melting point and high hardness bites into the base material, and the pure metal or alloy containing the pure metal is heated to the base material. A high-energy gas thermal spraying method, characterized in that an initial thermal spray coating is formed in close contact with the material and the substance having a high melting point and high hardness.
JP61296030A 1986-12-12 1986-12-12 High-energy gas thermal spraying method Pending JPS63149364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296030A JPS63149364A (en) 1986-12-12 1986-12-12 High-energy gas thermal spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61296030A JPS63149364A (en) 1986-12-12 1986-12-12 High-energy gas thermal spraying method

Publications (1)

Publication Number Publication Date
JPS63149364A true JPS63149364A (en) 1988-06-22

Family

ID=17828202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296030A Pending JPS63149364A (en) 1986-12-12 1986-12-12 High-energy gas thermal spraying method

Country Status (1)

Country Link
JP (1) JPS63149364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156060A (en) * 1988-12-07 1990-06-15 Babcock Hitachi Kk Surface treatment of metallic material
JP2017071835A (en) * 2015-10-08 2017-04-13 広島県 Membrane production method of aluminum nitride, and aluminum nitride film manufactured by the production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311838A (en) * 1976-07-19 1978-02-02 Eutectic Corp Metal flameemetallization material for obtaining coating having good machinability
JPS61112702A (en) * 1984-11-06 1986-05-30 Fuji Electric Co Ltd Method of forming coating layer on steam turbine rotor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311838A (en) * 1976-07-19 1978-02-02 Eutectic Corp Metal flameemetallization material for obtaining coating having good machinability
JPS61112702A (en) * 1984-11-06 1986-05-30 Fuji Electric Co Ltd Method of forming coating layer on steam turbine rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156060A (en) * 1988-12-07 1990-06-15 Babcock Hitachi Kk Surface treatment of metallic material
JP2017071835A (en) * 2015-10-08 2017-04-13 広島県 Membrane production method of aluminum nitride, and aluminum nitride film manufactured by the production method

Similar Documents

Publication Publication Date Title
US6242050B1 (en) Method for producing a roughened bond coat using a slurry
EP0183638B1 (en) Method of applying continuously graded metallic-ceramic layer on metallic substrates
US5104293A (en) Method for applying abrasive layers to blade surfaces
US9926794B2 (en) Turbine blade tip treatment for industrial gas turbines
JP2007138946A (en) Method for coating article and its product
Dorfman THERMAL SPRAY BASICS.
CA2073652C (en) Rotary seal member coated with a chromium carbide-age hardenable nickel base alloy
JPH01222040A (en) Abrasion-resistant coating substance
KR100794294B1 (en) Method for forming wear-resistant coating comprising metal-ceramic composite
US20080131612A1 (en) Method for making an environment-resistant and thermal barrier coating system on a component
JP2003503601A (en) Ceramic material and manufacturing method, ceramic material utilization method and layer made of ceramic material
US4478275A (en) Abrasion resistant heat pipe
US20010001042A1 (en) Method for depositing braze alloy
JPH09316622A (en) Gas turbine member and its thermal insulation coating method
JPS63149364A (en) High-energy gas thermal spraying method
US4503128A (en) Thermally sprayable ceramics
JPH07116583B2 (en) Thermal cycle thermal spray coating
JPS63290254A (en) Thermally sprayed film combining heat resistance with wear resistance
JP2770967B2 (en) Surface treatment method for metal materials
JP2770968B2 (en) Chromium carbide-metal composite powder for high energy spraying
US7670648B2 (en) Method of forming a diffusion barrier on a titanium alloy substrate
JP2585540B2 (en) Spray method
JP2007138299A (en) Method for coating article and article coated thereby
JP2747087B2 (en) Thermal spray coating material and thermal spray coating heat resistant member
JPH07830B2 (en) Surface coating method for metallic materials