JPS63149096A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding

Info

Publication number
JPS63149096A
JPS63149096A JP29424086A JP29424086A JPS63149096A JP S63149096 A JPS63149096 A JP S63149096A JP 29424086 A JP29424086 A JP 29424086A JP 29424086 A JP29424086 A JP 29424086A JP S63149096 A JPS63149096 A JP S63149096A
Authority
JP
Japan
Prior art keywords
flux
weld metal
welding
toughness
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29424086A
Other languages
Japanese (ja)
Inventor
Seiji Saruhashi
清司 猿橋
Yutaka Nishikawa
裕 西川
Akinobu Goto
明信 後藤
Tomoyuki Abe
知之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29424086A priority Critical patent/JPS63149096A/en
Publication of JPS63149096A publication Critical patent/JPS63149096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain a weld metal which exhibits high toughness by incorporating a specific ratio of specific components into the sheath metal and/or flux of a flux cored wire. CONSTITUTION:3-20% CaF2 (by the total weight % of the wire, hereafter the same), 0.05-2% Fe-Ti or Ti oxide in terms of TiO2 and 0.002-0.05% B alloy or B oxide in terms of B are incorporated into the sheath metal and/or flux of the flux cored wire for gas shielded arc welding. Ni is further added as a constitutional requirement thereto in order to improve the toughness of the weld metal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低温用鋼の溶接に当たり、溶接のまま(以後A
Wと記すこともある)はもちろん残留応力除去焼鈍処理
(以後SR処理と記すこともある)後も溶接金属が高靭
性を示すガスシールドアーク溶接用フラックス入りワイ
ヤ(以後FCWと記すこともある)に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to welding of low-temperature steel.
Flux-cored wire for gas-shielded arc welding (hereinafter sometimes referred to as FCW), in which the weld metal exhibits high toughness even after residual stress removal annealing treatment (hereinafter sometimes referred to as SR treatment). It is related to.

[従来の技術] ガスシールドアーク溶接法は高能率な溶接工法として造
船分野を主体に利用比率が増加しており、最近では海洋
構造物の深海域や寒冷海域への進出により低温用鋼の溶
接にも適用が拡大されている。また構造物も大型化しそ
れに伴なって使用される鋼板も大型化、肉厚化しており
、これらの大型且つ大肉厚な金属の溶接では溶接部に残
留応力が発生するので一般的にはSR処理を施している
[Conventional technology] Gas-shielded arc welding is a highly efficient welding method that is increasingly being used mainly in the shipbuilding field.Recently, with the expansion of marine structures into deep and cold waters, it has become popular for welding low-temperature steel. The application has also been expanded to In addition, structures are becoming larger and the steel plates used are also becoming larger and thicker, and when welding these large and thick metals, residual stress is generated in the weld, so SR treatment is generally used. is being carried out.

一方、ガスシールドアーク溶接に使用されているFCW
は、溶接作業性も良好でかつ低温でも高靭性が得られる
ように改良されてきたため、低温用鋼の溶接にも使用さ
れている。
On the other hand, FCW used in gas shielded arc welding
Since it has been improved to have good welding workability and high toughness even at low temperatures, it is also used for welding low-temperature steels.

[発明が解決しようとする問題点] 前述のように低温用鋼の溶接にも使用されているFCW
中のフラックスは溶接作業性を考慮してTiO2が主成
分になっている。このTiO2含有FCWによる溶接金
属は溶接のままでは低温で比較的高い靭性を有している
が5RIA理後は靭性の低下が著しく、特に低温ではそ
の傾向が強い。
[Problems to be solved by the invention] As mentioned above, FCW is also used for welding low-temperature steel.
The flux inside is mainly composed of TiO2 in consideration of welding workability. The weld metal made of this TiO2-containing FCW has relatively high toughness at low temperatures as welded, but after 5RIA processing, the toughness decreases significantly, and this tendency is particularly strong at low temperatures.

従ってSR処理を施すような構造物にはFCWの通用が
制限されてきた。
Therefore, the applicability of FCW has been limited to structures that undergo SR treatment.

ところが本発明者らの研究、即ちFCW中のフラックス
成分についての研究の結果によると、SR処理後の靭性
の低下はFCW中のT i O2が原因であること、さ
らにT i O2の代替とじてCaFxが使用できるこ
とが判明した。
However, according to the results of the research conducted by the present inventors, that is, the research on flux components in FCW, the decrease in toughness after SR treatment is caused by T i O2 in FCW, and furthermore, as a substitute for T i O2 It has been found that CaFx can be used.

すなわち本発明においてはFCW中のフラックスの主成
分をTie2からCaF2に替えることにより、低温用
鋼の溶接に当たりAWはもちろんSR処理後も高靭性を
示す溶接金属を得ることのできるFCWの提供を目的と
しており、特に低温用鋼の溶接においても良好な結果を
与えるFCWの提供を目的とするものである。
That is, the present invention aims to provide an FCW that can obtain weld metal that exhibits high toughness not only after AW but also after SR treatment when welding low-temperature steel by changing the main component of the flux in FCW from Tie2 to CaF2. The purpose is to provide an FCW that gives good results especially in welding low-temperature steel.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とは外皮金属
中および/またはフラックス中にCaF2 :3〜20
% Fe−TiまたはTi酸化物: T i O□換算で0
.05〜2% B合金またはB酸化物:B換算で0.002〜0.05
% を含有することを構成要旨とし、さらに溶接金属の靭性
を改善するためにNiを構成要件として付は加えたもの
である。
[Means for solving the problems] The present invention that can solve the above problems is that CaF2 is contained in the outer metal and/or the flux in the range of 3 to 20.
% Fe-Ti or Ti oxide: 0 in terms of T i O□
.. 05-2% B alloy or B oxide: 0.002-0.05 in terms of B
%, and Ni has been added as a constituent element to improve the toughness of the weld metal.

[作用] 前述のようにFCW中のフラックスは溶接作業性を考慮
してTie2が主成分となりている。このTie、をフ
ラックスの主成分とするFCWで溶接すると、溶接金属
中に■Tiが歩留る、■TiO2に不純物として含有さ
れているNb、Vも溶接金属中に歩留る、■溶接金属中
の酸素量が高くなるなどの現象が認められる。本発明者
らの研究の結果によると、溶接金属のSR後の靭性の低
下はTi、Nb、Vのように溶接金属を硬化させる成分
が溶接金属中に多く歩留まっていることに起因し、また
酸素含有量が高いことが原因であることが判明した。そ
こでTi0zに替わり得る主成分を種々検討したところ
、性能及び作業性ともに良好なフラックス成分としてC
aF2を見い出したのである。
[Function] As mentioned above, the main component of the flux in FCW is Tie2 in consideration of welding workability. When this Tie is welded with FCW, the main component of which is flux, ■ Ti is retained in the weld metal, ■ Nb and V contained as impurities in TiO2 are also retained in the weld metal, ■ Weld metal Phenomena such as an increase in the amount of oxygen inside are observed. According to the results of research conducted by the present inventors, the decrease in toughness of weld metal after SR is due to the fact that components that harden weld metal, such as Ti, Nb, and V, are present in large quantities in weld metal. It was also found that high oxygen content was the cause. After examining various main components that could replace Ti0z, we found C as a flux component with good performance and workability.
They discovered aF2.

即ちフラックスの主成分をTiO2からCaF、に替え
ることにより当然溶接金属中のTiが低くなり、またT
iO□の不純物として溶接金属中に混入するNb、Vも
押えられ、また塩基度が高くなるため酸素量が低下する
。このようにしてSR処理後にも高靭性を有する溶接金
属が得られるのであるが、さらにFCW中に適量のTi
および81更に必要に応じNiを含有させることにより
溶接金属の5RIA理後の靭性を向上させることができ
る。
That is, by changing the main component of the flux from TiO2 to CaF, the Ti content in the weld metal naturally decreases, and the T
Nb and V mixed into the weld metal as impurities of iO□ are also suppressed, and the basicity increases, so the amount of oxygen decreases. In this way, a weld metal with high toughness can be obtained even after SR treatment, but in addition, an appropriate amount of Ti is added during FCW.
and 81. By further containing Ni as necessary, the toughness of the weld metal after 5RIA processing can be improved.

第1図および第2図に、従来のT i 02をフラック
スの主成分とするFCWを使用して溶接した溶接金属と
本発明によるFCWを使用して溶接した溶接金属のAW
および5Rfi埋後の靭性(シャルピー衝撃値)を示す
。各ワイヤ組成は第1表に示すNo、8(本発明例)と
No、26(従来例)であり、第3図に示す開先形状を
対象として第4表に示す溶接条件でガスシールドアーク
溶接を行なったものである。本発明例のものがAW。
Figures 1 and 2 show the AW of weld metal welded using conventional FCW with T i 02 as the main component of flux and weld metal welded using FCW according to the present invention.
and the toughness (Charpy impact value) after 5Rfi implantation. The composition of each wire is No. 8 (example of the present invention) and No. 26 (conventional example) shown in Table 1, and the gas-shielded arc was applied under the welding conditions shown in Table 4 for the groove shape shown in It was welded. The example of the present invention is AW.

5RIA理後共に高い靭性を示している。Both showed high toughness after 5RIA treatment.

次に本発明FCWの成分およびその限定理由について詳
述する。
Next, the components of the FCW of the present invention and the reasons for their limitations will be explained in detail.

本発明の最大の特徴はフラックスの主要構成成分として
CaF2を含有させた点である。
The most important feature of the present invention is that the flux contains CaF2 as a main component.

CaF2はスラグ形成剤として溶接作業性を決定づける
ほか、スラグの塩基度を高め溶接金属中の酸素量を低下
せしめる。また後述するように適量のTiおよびBの添
加効果と相俟って溶接金属の靭性を著しく向上させる。
CaF2 not only determines welding workability as a slag forming agent, but also increases the basicity of the slag and reduces the amount of oxygen in the weld metal. Further, as will be described later, together with the effect of adding appropriate amounts of Ti and B, the toughness of the weld metal is significantly improved.

なおCaF、に代わる他の金属弗化物、例えばBaF、
NaFなどについても、スラグ塩基度を高め溶接金属中
の酸素量を低下せしめるが、アークが不安定となり、溶
接作業性が低下するので金属弗化物としてはCaF2を
主要構成成分とし、他の金属弗化物は補助的添加にとど
めるべきである。ここでCaF、3%未満ではスラグの
被包が不十分で溶接作業性を損なうほか溶接金属中の酸
素量が低下せず、靭性向上が期待できない、CaF22
0%超ではスラグの被包が過剰となり、アーク不安定な
ど溶接作業性の低下を招く。
Note that other metal fluorides may be used instead of CaF, such as BaF,
NaF and the like also increase the basicity of the slag and reduce the amount of oxygen in the weld metal, but this makes the arc unstable and reduces welding workability. Compounds should only be added as supplements. If CaF is less than 3%, slag encapsulation is insufficient, impairing welding workability, and the amount of oxygen in the weld metal does not decrease, making it impossible to expect improvement in toughness.CaF22
If it exceeds 0%, the slag becomes excessively encapsulated, leading to deterioration in welding workability such as arc instability.

本発明の第2の特徴とするところはCaF2を主要構成
フラックス成分とし、溶接金属中の酸素を十分に低減せ
しめたうえで適量のTiおよびBを複合添加し、フェラ
イト粒の微細化を図り、靭性を向上せしめたところにあ
る。この様なTi。
The second feature of the present invention is that the main flux component is CaF2, oxygen in the weld metal is sufficiently reduced, and appropriate amounts of Ti and B are added in combination to refine the ferrite grains. This is because the toughness has been improved. Ti like this.

Bの添加効果は溶接金属中の酸素量が低レベル(例えば
400 ppm以下)において始めてその効果を発揮す
るものである。
The effect of adding B only becomes apparent when the amount of oxygen in the weld metal is at a low level (for example, 400 ppm or less).

ここではTiはFe−Tiなどの金属化合物、或はTi
e2を始めとするTi酸化物の形で添加することができ
る。Tie、の形で添加できるのは、スラグの塩基度が
十分高いので溶接中にTiO2が還元され、溶接金属中
にTiとして歩留るからである。この様に各種形状でT
iを添加できるが、Tie、の場合はTi源としてのほ
か、スラグ形成剤として働き、ビード外観形状を整える
効果もあるのでTi源としてTie、を添加することが
望ましい、しかし全ワイヤに占めるTi量はTiO2換
算で0.005〜2%とする。
Here, Ti is a metal compound such as Fe-Ti, or Ti
It can be added in the form of Ti oxides such as e2. The reason why TiO2 can be added in the form of Ti is that the basicity of the slag is sufficiently high so that TiO2 is reduced during welding and remains as Ti in the weld metal. T in various shapes like this
However, in the case of Tie, it is desirable to add Tie as a Ti source because it acts not only as a Ti source but also as a slag forming agent and adjusts the appearance shape of the bead. The amount is 0.005 to 2% in terms of TiO2.

O,OS%未満では上記Tiの効果即ち結晶粒微細化と
N固定の効果が期待できず、逆に2%を超えると溶接金
属中のTiが過剰となり強度が著しく高くなりSR後の
靭性を低下させる。
If O,OS% is less than %, the effect of Ti, that is, the effect of grain refinement and N fixation, cannot be expected.On the other hand, if it exceeds 2%, Ti in the weld metal will be excessive and the strength will increase significantly, reducing the toughness after SR. lower.

Bは溶接金属のオーステナイト粒界にB酸化物、B窒化
物として析出し結晶粒微細化による靭性向上に極めて有
効に作用する。BはB合金あるいはB酸化物の形で、B
fi算で全ワイヤ中に0.002〜0.05%の割合で
添加する。Bが0.002%未満では上記B添加効果が
期待できず、0.05%超ではBの局部的偏析による耐
割れ性の低下、焼入れ性の過剰増大により溶接金属が硬
くなり靭性が低下する。Bはこの様に微量でその添加効
果を発揮するものであり、安定して溶接金属中に少量含
有させるためにはB酸化物の形でワイヤ中に添加し、溶
接中の還元反応を利用して溶接金属中に添加する方法が
望ましい。
B precipitates at the austenite grain boundaries of the weld metal as B oxides and B nitrides, and acts extremely effectively to improve toughness by refining grains. B is in the form of B alloy or B oxide;
It is added at a rate of 0.002 to 0.05% in the entire wire, calculated by fi. If B is less than 0.002%, the above-mentioned B addition effect cannot be expected, and if it exceeds 0.05%, the cracking resistance will decrease due to local segregation of B, and the weld metal will become hard and the toughness will decrease due to excessive increase in hardenability. . In this way, B exerts its additive effect in small amounts, and in order to stably contain a small amount in the weld metal, it must be added to the wire in the form of B oxide and take advantage of the reduction reaction during welding. It is desirable to add it to the weld metal.

以上に加えて必要に応じてNiを全ワイヤ中0.1〜5
%の範囲で添加する、これはNiの添加により溶接金属
の靭性を更に改善する効果があるからであり、0.1%
未満ではその効果が発揮されず5%超では溶接金属の高
温割れ感受性が著しく増加する。
In addition to the above, if necessary, add 0.1 to 5% Ni to the entire wire.
This is because the addition of Ni has the effect of further improving the toughness of the weld metal;
If it is less than 5%, the effect will not be exhibited, and if it exceeds 5%, the hot cracking susceptibility of the weld metal will increase significantly.

さらに上記成分に加え必要に応じMgを添加する。Mg
はアーク安定性の向上による溶接作業性の向上と脱酸剤
として溶接金属中の酸素量の低減を達成し靭性の向上を
図る。但し0.05%未満では前記した効果が発揮され
ず8%を超えるとスパッタ発生量が著しく増加し溶接作
業性を損なうので添加量は0.05〜8%が好ましい。
Furthermore, in addition to the above components, Mg is added as necessary. Mg
This improves welding workability by improving arc stability, and as a deoxidizing agent, reduces the amount of oxygen in the weld metal, improving toughness. However, if it is less than 0.05%, the above-mentioned effects will not be exhibited, and if it exceeds 8%, the amount of spatter generated will increase significantly and welding workability will be impaired, so the addition amount is preferably 0.05 to 8%.

さらに本発明ではFe−3t、Fe−Mn。Furthermore, in the present invention, Fe-3t and Fe-Mn.

Fe−Alを添加できる。これらはいずれも脱酸剤とし
て作用するほか、溶接作業性の調整、合金元素(St、
Mn、AIなど)の添加効果による機械的性能(特に強
度)の調整、ブローホールなどの溶接欠陥の低減に効果
がある。また溶接作業性の調整のためアーク安定剤やス
ラグ形成剤を、またガス発生量として金属弗化物、金属
酸化物。
Fe-Al can be added. These all act as deoxidizers, adjust welding workability, and alloy elements (St,
The addition of Mn, AI, etc.) is effective in adjusting mechanical performance (especially strength) and reducing welding defects such as blowholes. In addition, arc stabilizers and slag forming agents are used to adjust welding workability, and metal fluorides and metal oxides are used to control the amount of gas generated.

金属炭酸塩などを適量補助的に添加できる。しかしこれ
ら脱酸剤等の添加は本発明を何ら制限するものではない
Appropriate amounts of metal carbonates etc. can be added as supplements. However, the addition of these deoxidizing agents and the like does not limit the present invention in any way.

フラックスは原材料を混合して、または局部的な偏析を
防止するため水ガラスを用いて一度焼成してから充填す
ることができるが、このような製造方法は本発明を何ら
制限するものではない。
The flux can be filled by mixing raw materials or by firing it once using water glass to prevent local segregation, but such a manufacturing method does not limit the present invention in any way.

FCWの外皮金属は軟鋼1合金鋼のいずれを使用しても
良いが通常は経済的理由により軟鋼を使用するのが望ま
しい。
The outer skin metal of the FCW may be either mild steel or 1-alloy steel, but it is usually desirable to use mild steel for economic reasons.

また溶接の際のシールドガスはCO,、不活性ガスおよ
びこれらの混合ガス等いずれも使用できる。
Further, as a shielding gas during welding, CO, an inert gas, a mixed gas thereof, etc. can be used.

尚当然のことながら本発明のFCWは低温用鋼のみでな
く一般の汎用鋼の溶接に対して適用しても良好な結果が
得られる。
As a matter of course, the FCW of the present invention can provide good results when applied not only to low-temperature steel but also to general general-purpose steel.

[実施例] (1)第1表に示す組成のワイヤ(No、1〜26)を
用いて第3図に示す開先形状の鋼板にガスシールドアー
ク溶接を行なった。作業性、AWおよびSR処理後の機
械的性能のそれぞれの結果を第2表に示す。尚、溶接条
件は第3表に、外皮金属[軟鋼1合金tJ4(1)、合
金鋼(2)]の組成を第4表に示す、またいずれのワイ
ヤもフラックスを混合し外皮金属に充填して成形および
伸線したものであり、ワイヤ径は1.2 ma+φであ
る。
[Example] (1) Gas-shielded arc welding was performed on a steel plate having the groove shape shown in FIG. 3 using wires (Nos. 1 to 26) having the compositions shown in Table 1. The results of workability, mechanical performance after AW and SR treatment are shown in Table 2. The welding conditions are shown in Table 3, and the composition of the sheath metal [mild steel 1 alloy tJ4 (1), alloy steel (2)] is shown in Table 4. For both wires, flux was mixed and the sheath metal was filled. The wire diameter is 1.2 ma+φ.

第3表 第    4    表 (結果) 第2表の結果から明らかなようにN011〜17の本発
明例ワイヤは作業性良好であり、またAWおよびSR処
理後の機械的性能はいずれも良好な結果を示した。
Table 3 Table 4 (Results) As is clear from the results in Table 2, the wires of the present invention No. 011 to 17 have good workability, and both mechanical performance after AW and SR treatments are good. showed that.

CaF、が本発明の下限に満たないNo、18のワイヤ
ではスラグが不足し良好なビード外観が得られず、Ca
F2が過剰なNo、19のワイヤではスラグが過剰にな
りこれも良好なビード外観が得られなかった。
In wire No. 18, in which CaF is less than the lower limit of the present invention, slag is insufficient and a good bead appearance cannot be obtained, and CaF is less than the lower limit of the present invention.
Wire No. 19, in which F2 was excessive, had excessive slag, and a good bead appearance could not be obtained.

TiO2が本発明の下限に満たないNo、20のワイヤ
では、作業性良好とは言えないまでも機械的試験の可能
なビード外観が得られたが、Ti不足のため良好なシャ
ルピー性能が得られなかった。またTie、過剰のNo
、21のワイヤではアーク状態は普通であるがスラグが
流れやすくなり良好なビード外観が得られなかった。
Wire No. 20, in which the TiO2 content was less than the lower limit of the present invention, had a bead appearance that was suitable for mechanical testing, although it could not be said to have good workability, but good Charpy performance could not be obtained due to the lack of Ti. There wasn't. Tie again, excessive No.
, No. 21 had a normal arc condition, but the slag flowed easily and a good bead appearance could not be obtained.

Bが本発明の下限に満たないNo、22のワイヤでは作
業性は良好であったが良好なシャルピー性能が得られな
かった。ま、たB過剰のNo、23のワイヤでは作業性
は良好であったが割れが発生し、機械的性能試験はでき
なかった。
Wire No. 22, in which B was less than the lower limit of the present invention, had good workability, but good Charpy performance could not be obtained. In addition, wire No. 23 containing excess B had good workability, but cracks occurred and mechanical performance tests could not be conducted.

Niが本発明の上限を超えたNo、24のワイヤでは作
業性は良好であったが割れが発生し、機械的性能試験は
できなかった。
Wire No. 24, in which Ni exceeded the upper limit of the present invention, had good workability, but cracks occurred and a mechanical performance test could not be performed.

また、Mgが過剰のNo、25のワイヤではスパッタが
多くなり安定したアーク状態にならず良好なビード外観
が有られなかった。
In addition, wire No. 25 containing excessive Mg caused a lot of sputtering and did not have a stable arc state, and did not have a good bead appearance.

No、26は従来組成のものであり、AWおよびSR処
理後の低温での靭性は悪いが、その他の機械的性質およ
び作業性は良かった。
No. 26 had a conventional composition, and although the toughness at low temperatures after AW and SR treatment was poor, other mechanical properties and workability were good.

(2)さらに第5表に示す溶接条件で厚板鋼(BS43
60.50D、40t)を第4図に示すように積層溶接
を行ない突合せ継手の機械的性能試験を行なった。結果
を第6表に示す。厚板の溶接においてもAWおよびSR
処理後ともに低温で良好な靭性が得られた。
(2) Furthermore, thick plate steel (BS43
60.50D, 40t) was laminated by welding as shown in FIG. 4, and a mechanical performance test of the butt joint was conducted. The results are shown in Table 6. AW and SR even when welding thick plates
Good toughness was obtained at low temperatures in both cases after treatment.

第5表 第6表 [発明の効果] 以上のように低温鋼の溶接に本発明のFCWを使用して
溶接した溶接金属はAWおよび5RIA理後ともに高靭
性を示すものでありた。
Table 5 Table 6 [Effects of the Invention] As described above, the weld metal welded using the FCW of the present invention for welding low-temperature steel showed high toughness both after AW and 5RIA processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1[]および第2図は従来例および本発明によるFC
Wによる溶接金属の靭性の比較を示す図、第3図は本発
明の実施例におけるガスシールドアーク溶接を行なう際
の開先形状を示す図、第4図は本発明実施例における突
合せ継手の積層溶接を示す図である。
1 [ ] and 2 show the conventional example and the FC according to the present invention.
Figure 3 is a diagram showing a comparison of the toughness of weld metal using W, Figure 3 is a diagram showing the groove shape when gas shielded arc welding is performed in an embodiment of the present invention, and Figure 4 is a diagram showing the lamination of a butt joint in an embodiment of the present invention. It is a figure showing welding.

Claims (2)

【特許請求の範囲】[Claims] (1)外皮金属中および/またはフラックス中にCaF
_2:3〜20%(対ワイヤ全重量%の意味、以下同じ
) Fe−TiまたはTi酸化物:TiO_2換算で0.0
5〜2% B合金またはB酸化物:B換算で0.002〜0.05
% を含有することを特徴とするガスシールドアーク溶接用
フラックス入りワイヤ。
(1) CaF in the outer metal and/or flux
_2: 3 to 20% (meaning the total weight % of the wire, the same applies hereinafter) Fe-Ti or Ti oxide: 0.0 in terms of TiO_2
5-2% B alloy or B oxide: 0.002-0.05 in terms of B
A flux-cored wire for gas shielded arc welding characterized by containing %.
(2)外皮金属中および/またはフラックス中にCaF
_2:3〜20%(対ワイヤ全重量%の意味、以下同じ
) Fe−TiまたはTi酸化物:TiO_2換算で0.0
5〜2% B合金またはB酸化物:B換算で0.002〜0.05
% NiまたはNi合金:Ni換算で0.1〜 5% を含有することを特徴とするガスシールドアーク溶接用
フラックス入りワイヤ。
(2) CaF in the outer metal and/or flux
_2: 3 to 20% (meaning the total weight % of the wire, the same applies hereinafter) Fe-Ti or Ti oxide: 0.0 in terms of TiO_2
5-2% B alloy or B oxide: 0.002-0.05 in terms of B
% Ni or Ni alloy: A flux-cored wire for gas-shielded arc welding, characterized in that it contains 0.1 to 5% in terms of Ni.
JP29424086A 1986-12-10 1986-12-10 Flux cored wire for gas shielded arc welding Pending JPS63149096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29424086A JPS63149096A (en) 1986-12-10 1986-12-10 Flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29424086A JPS63149096A (en) 1986-12-10 1986-12-10 Flux cored wire for gas shielded arc welding

Publications (1)

Publication Number Publication Date
JPS63149096A true JPS63149096A (en) 1988-06-21

Family

ID=17805162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29424086A Pending JPS63149096A (en) 1986-12-10 1986-12-10 Flux cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPS63149096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647581A (en) * 1992-06-22 1994-02-22 Lincoln Electric Co:The Electrode with core reduced in fume

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128699A (en) * 1980-02-11 1981-10-08 Chemetron Corp Welding electrode
JPS57199595A (en) * 1981-06-03 1982-12-07 Chemetron Corp Welding electrode
JPS596759A (en) * 1982-06-30 1984-01-13 Hitachi Ltd Rotor for magnet generator
JPS59189097A (en) * 1983-04-11 1984-10-26 Nippon Steel Corp Composite wire for electrogas arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128699A (en) * 1980-02-11 1981-10-08 Chemetron Corp Welding electrode
JPS57199595A (en) * 1981-06-03 1982-12-07 Chemetron Corp Welding electrode
JPS596759A (en) * 1982-06-30 1984-01-13 Hitachi Ltd Rotor for magnet generator
JPS59189097A (en) * 1983-04-11 1984-10-26 Nippon Steel Corp Composite wire for electrogas arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647581A (en) * 1992-06-22 1994-02-22 Lincoln Electric Co:The Electrode with core reduced in fume

Similar Documents

Publication Publication Date Title
EP3208030B1 (en) Flux-cored wire for arc welding of duplex stainless steel
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
EP0688630A1 (en) Flux-cored wire for gas shielded arc welding
JPH09277087A (en) Flux cored wire for arc welding
JP2756084B2 (en) Flux-cored wire for gas shielded arc welding
KR20160139686A (en) Flux cored wire
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JPH06155079A (en) Flux cored wire for gas shielded arc welding
JPH0577086A (en) Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
JP2679880B2 (en) Flux-cored wire for gas shielded arc welding
JPH11347790A (en) Coated electrode for ni group high cr alloy
JPS63149096A (en) Flux cored wire for gas shielded arc welding
JP2756088B2 (en) Flux-cored wire for gas shielded arc welding
JP2528296B2 (en) Composite wire for electrogas arc welding
JP3208556B2 (en) Flux-cored wire for arc welding
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JPH09262693A (en) Flux cored wire for arc welding
JP3718323B2 (en) Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel
JPS59189097A (en) Composite wire for electrogas arc welding
JPH0378197B2 (en)
JPH0347695A (en) Flux cored wire electrode for ultra-high tensile steel
JPH0371237B2 (en)
JP3589882B2 (en) Flux-cored wire for two-electrode single-sided gas shielded arc welding
JPH10175094A (en) Low hydrogen covered electrode for low temperature steel, and its welding method
JPS6045996B2 (en) Flux-cored wire for self-shield arc welding