JPS63148050A - Combustion control method for water heater - Google Patents

Combustion control method for water heater

Info

Publication number
JPS63148050A
JPS63148050A JP61293376A JP29337686A JPS63148050A JP S63148050 A JPS63148050 A JP S63148050A JP 61293376 A JP61293376 A JP 61293376A JP 29337686 A JP29337686 A JP 29337686A JP S63148050 A JPS63148050 A JP S63148050A
Authority
JP
Japan
Prior art keywords
temperature
hot water
set temperature
amount
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61293376A
Other languages
Japanese (ja)
Other versions
JPH0343542B2 (en
Inventor
Takeshi Sakata
武司 坂田
Kokichi Yamada
康吉 山田
Yutaka Sasaki
裕 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP61293376A priority Critical patent/JPS63148050A/en
Publication of JPS63148050A publication Critical patent/JPS63148050A/en
Publication of JPH0343542B2 publication Critical patent/JPH0343542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/34Signal processing; Details thereof with feedforward processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger

Landscapes

  • Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To allow the computation of combustion quantity demand as the need arises by providing sensors that detect the feed water temperature, water flow rate and delivered hot water temperature, and performing a feed-forward control and a proportional, integrating control based on the information from the sensors and set temperature determined by users. CONSTITUTION:The feed-forward quantity is defined by (set temperature - feed water temperature) X (water flow rate) X (set temperature - delivered hot water temperature) X alpha...(4), and the combustion quantity demand F is determined by (set temperature - feed water temperature) X (water flow rate) X (set temperature - delivered hot water temperature) Xalpha + (set temperature - delivered hot water temperature) X (water flow rate) X KP + SIGMA(set temperature - delivered hot water temperature) X K1...(5). Therefore, the value of multiplying term for correction of (set temperature - delivered hot water temperature) Xalpha...(6) in the equation (4) or (4') becomes greater because of a greater difference between the set temperature and delivered hot water temperature when the set temperature is raised or the delivered hot water temperature is reduced as the flow rate is increased. As a result, the value of combustion quantity demand F as represented by equation (5) becomes sufficiently great transiently, improving its rise characteristics. Similarly, when the set temperature is lowered or delivered hot water temperature is increased due to a reduced flow rate, the combustion quantity demand is quickly reduced, thereby improving the falling characteristics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はガス燃焼給湯機等において、当該給湯機の能力
を合理的に利用しながら燃焼を図る燃焼制御方法に関し
、特に要求燃焼量の演算方法における改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a combustion control method for achieving combustion in a gas-fired water heater, etc. while rationally utilizing the capacity of the water heater, and particularly to a method for calculating the required combustion amount. Concerning improvements in methods.

〈従来の技術〉 昨今、ガス等を燃料とし、第2図に示されるような概念
構成で表される給湯機が盛んに開発される傾向にある。
<Prior Art> Recently, water heaters that use gas or the like as fuel and have a conceptual configuration as shown in FIG. 2 have been actively developed.

使用者が蛇口2を開くと、人力流路6から流れ込んだ水
はガスバーナ4により加熱される熱交換器3にて加温さ
れ、湯となって出湯流路7から当該蛇口2を介し出力さ
れる。
When the user opens the faucet 2, the water that flows in from the manual flow path 6 is heated by the heat exchanger 3 heated by the gas burner 4, and is turned into hot water and output from the hot water flow path 7 through the faucet 2. Ru.

これに際し、人力流路6の側では水量センサ8にて水量
(給水量または出湯量)れを、また給水温センサ9によ
り給水温Tcをそれぞれ検出し、それら情報S、 、 
T、を主制御回路としてのマイクロコンピュータ5に送
り込む。ただし水量s1は出湯流路7の側で検出するこ
ともできる。
At this time, on the side of the manual flow path 6, a water flow sensor 8 detects the amount of water (water supply amount or hot water output amount), and a water supply temperature sensor 9 detects the water supply temperature Tc, and the information S, ,
T, is sent to the microcomputer 5 as a main control circuit. However, the water amount s1 can also be detected on the hot water outlet flow path 7 side.

一方、熱交換器3から蛇口2に至る出力流路7の途中に
あっては、出湯温センサ10により出湯温Toが検出さ
れ、これもマイクロコンピュータ5に帰還される。
On the other hand, in the middle of the output flow path 7 from the heat exchanger 3 to the faucet 2, the outlet hot water temperature To is detected by the outlet hot water temperature sensor 10, and this is also fed back to the microcomputer 5.

こうした各種センサ情報に加え、マイクロコンピュータ
5に与えられるもう一つの情報は、使用者が好みの温度
を指定する設定温情報T3である。
In addition to these various sensor information, another piece of information given to the microcomputer 5 is set temperature information T3 for specifying the user's preferred temperature.

このような装置構成において、マイクロコンピュータ5
はそのときときで最適な燃焼が行なわれるよう、空気量
制御信号Saにより空気量調節器11を、またガス量制
御信号Sgによりガス比例弁12を制御すべく、選択し
た制御方式に応じ、当該そのときどきに必要な要求燃焼
量Fを算出する。
In such a device configuration, the microcomputer 5
In order to perform optimal combustion at that time, the air amount regulator 11 is controlled by the air amount control signal Sa, and the gas proportional valve 12 is controlled by the gas amount control signal Sg, depending on the selected control method. The required combustion amount F required at that time is calculated.

しかるに従来、このための制御方式としてもっとも一般
的なのは、特開昭55−75156号公報や特開昭57
−33749号公報等に開示のように、フィードフォワ
ード制御(FF制御)と比例制御(P制御)を併用する
方式であり、ためにこの場合、要求燃焼量Fの算出式は
、フィードフォワード量を“F、”とし、比例制御量を
“F、”とすると、次式0式% ここにおいて特に、フィードフォワード量F、は給湯機
の能力を越えることなく、かつまた当該能力を最大限に
発揮させるため、蛇口2の開度とは独立に、水量バルブ
制御信号S、を介して水量バルブ1を制御するのにも用
いられる。
However, conventionally, the most common control methods for this purpose are those disclosed in Japanese Patent Laid-Open No. 55-75156 and Japanese Patent Laid-Open No. 57
As disclosed in Publication No. 33749, etc., this is a system that uses both feedforward control (FF control) and proportional control (P control), so in this case, the formula for calculating the required combustion amount F is based on the feedforward amount. If "F," is the proportional control amount, and the proportional control amount is "F," then the following formula is 0. Therefore, it is also used to control the water volume valve 1 via the water volume valve control signal S, independently of the opening degree of the faucet 2.

これに対し、いわゆる比例、積分、微分制御(PID制
御)を取入れた方式も当然に考えられ、その場合、要求
燃焼量Fの演算式は、新たに積分制御量を“F、°”、
微分制御量をF I)l“とすると次のようになる。
On the other hand, a system that incorporates so-called proportional, integral, and differential control (PID control) can also be naturally considered, and in that case, the calculation formula for the required combustion amount F will be calculated by adding the integral control amount to "F, °",
Letting the differential control amount be F I), it will be as follows.

F = Fp+ p、+ F。F=Fp+p,+F.

=(設定温TB−出湯温T。)×水量れ×KP+Σ(設
定温Ts−出湯温T。)×に1+(前回の出湯温−今回
の出湯温)xK。
= (Set temperature TB - Hot water temperature T.) x Water volume x KP + Σ (Set temperature Ts - Hot water temperature T.) x 1 + (Previous hot water temperature - Current hot water temperature) x K.

199.■ これに対し本出願人等の研究により、この種給湯機の燃
焼制御に採用すべき制御形式として最も望ましいのでは
と考えられる方式があり、これはフィードフォワード(
FF)制御と比例(P)、積分制御(I)を併用する方
式である。
199. ■ On the other hand, research conducted by the applicant et al. has shown that there is a system that is considered to be the most desirable control type to be adopted for combustion control in this type of water heater, and this is a feedforward (
This is a method that uses a combination of FF) control, proportional (P), and integral control (I).

したがってこのFF十P I制御においては、上記要求
燃焼量Fの演算式は下式■のように定義される。
Therefore, in this FF10PI control, the calculation formula for the above-mentioned required combustion amount F is defined as the following formula (2).

F = F、+ l’P十F。F = F, + l’P ten F.

=(設定温T、−給水温Tc) X水量SW+(設定温
T、−出湯温To) X水量SwX KP十Σ(設定温
T8−出湯温T。)×に。
= (Set temperature T, - water supply temperature Tc) X water amount SW + (set temperature T, - hot water temperature To)

019.■ 〈発明が解決しようとする問題点〉 静特性からだけするならば、上記各演算式■〜■に即し
たいずれの制御方式を採用しても、共に安定な出湯温T
。を得ることができる。
019. ■〈Problems to be solved by the invention〉 From the perspective of static characteristics, no matter which control method is adopted according to each of the above calculation formulas ■ to ■, both stable hot water temperature T can be achieved.
. can be obtained.

しかしまず、要求燃焼量の演算に上記■、■式を用いる
方式、つまりFF+P制御、PID制御は、上記■の演
算式に従うFF+PI制御に比すと劣った点がある。
First, however, the methods using the above formulas (1) and (2) to calculate the required combustion amount, that is, FF+P control and PID control, are inferior to the FF+PI control according to the above formula (2).

FF十P制御は残留偏差が大きく、出湯温T。が設定温
T8に対してどうしてもズレやずいという欠点があるし
、PID制御はその演算系が複雑になりがちで演算処理
に時間が掛かり、この種の給湯機用としての実効的な応
答性に劣り、原理からする程には優れないという欠点が
ある。
FF1P control has a large residual deviation and the outlet temperature is T. PID control has the disadvantage that it inevitably deviates from the set temperature T8, and the calculation system of PID control tends to be complicated and takes a long time to process, and the effective response for this type of water heater is poor. It has the disadvantage that it is not as good as it should be based on its principle.

これに対し、上記0式に従って要求燃焼量Fを求めるF
F+PI制御は、上記のような欠点が程度において最も
少ない。
On the other hand, F
F+PI control has the least amount of the above-mentioned drawbacks.

しかしそれでも当該動特性、すなわち過渡特性において
は不満が残り、出湯温T。が設定温T8に至るまでの収
束時間は未だ十分に短いとは決して言えず、特に給湯機
の最大能力をオーバした時や最大能力近傍の燃焼から最
小燃焼へ移行した際等においての収束時間は相当長目に
なっていた。
However, there remains dissatisfaction with the dynamic characteristics, that is, the transient characteristics, and the hot water temperature T. The convergence time until the temperature reaches the set temperature T8 is still not sufficiently short, especially when the maximum capacity of the water heater is exceeded or when the combustion transitions from combustion near the maximum capacity to minimum combustion. It had been quite a long time.

本発明はこうした従来例の持つ欠点を全て解消ないし緩
和すべく、従来例の中でも比較的優れていると思われる
上記0式に従うFF+PI制御にさらに改良を加えんと
するものである。
The present invention aims to further improve the FF+PI control according to the above formula 0, which is considered to be relatively superior among the conventional examples, in order to eliminate or alleviate all the drawbacks of the conventional examples.

く問題点を解決するための手段〉 本発明は上記目的を達成するため、要求燃焼量の算出に
工夫を凝らし、次のような構成の給湯機用水量バルブ制
御方法を提供する。
Means for Solving the Problems> In order to achieve the above object, the present invention devises the calculation of the required combustion amount and provides a water flow valve control method for a water heater having the following configuration.

給水温、水量、出湯温を各検出するセンサを有し、それ
ら情報と使用者により設定される設定温情報とから、フ
ィードフォワード制御と比例、積分制御とに基づき、そ
のときどきで要求される要求燃焼量を演算する給湯機に
おける燃焼制御方法であって; 上記フィードフォワード量を (設定温−給水温)×(水量) ×(設定温−出湯温)×α    380.■にて定義
し、もって上記要求燃焼量を (設定温−給水温)X(水量) ×(設定温−出湯温)Xα +(設定温−出湯温)×(水量)×KP+Σ(設定温−
出湯温) xK、  、、、、■により求めることを特
徴とする給湯機における燃焼制御方法。
It has sensors that detect each of the water supply temperature, water volume, and hot water temperature, and based on these information and the set temperature information set by the user, it calculates the demands required at any given time based on feedforward control, proportional control, and integral control. A combustion control method in a water heater that calculates the combustion amount; Define the above required combustion amount as (set temperature - water supply temperature) x (water amount) x (set temperature - hot water temperature)
A method of controlling combustion in a water heater, characterized in that the temperature of hot water discharged from the water is determined by xK, , , , ■.

(作用および効果〉 上記本発明の構成によれば、顕かなように、先に挙げた
従来のFF+PIP+における要求燃焼量演算式■の中
、フィードフォワード量F2を表す第一項が改良され、
上記0式に示されるように、当該従来のフィードフォワ
ード量F、に対し、本発明により求められるフィードフ
ォワード量FP°はF、’=F、X (設定温−出湯温
)×α 018.■゛となっている。
(Operations and Effects) According to the configuration of the present invention, as is obvious, the first term representing the feedforward amount F2 in the required combustion amount calculation formula (2) in the conventional FF+PIP+ mentioned above is improved,
As shown in the above equation 0, with respect to the conventional feedforward amount F, the feedforward amount FP° obtained by the present invention is F,'=F,X (set temperature - outlet temperature) x α 018. ■゛.

したがって、設定温が上がったときや流量増大により出
湯温が下がったときには、上記0式または■゛式中 (設定温−出湯温)×α   ・・・・・・■なる補正
積項の値は設定温と出湯温の差が大きくなることから大
きくなり、ために式■で表される要求燃焼量Fの値も過
渡的に十分大きくなって立ち上がり特性か良くなり、同
様に設定温が下がった場合や流量減少により出湯温が上
がった際にはいち速く要求燃焼量Fが小さくなり、立ち
下がり特性も良好になる。
Therefore, when the set temperature rises or the outlet temperature decreases due to an increase in the flow rate, the value of the correction product term in the above equation 0 or ■゛ formula is (set temperature - outlet temperature) × α ・・・・・・■ As the difference between the set temperature and the outlet temperature increases, the value of the required combustion amount F expressed by formula (■) becomes sufficiently large transiently, and the start-up characteristics improve, and the set temperature similarly decreases. When the temperature of the hot water rises due to a decrease in the flow rate or a decrease in the flow rate, the required combustion amount F quickly decreases, and the fall characteristics also improve.

このように、本発明によって要求燃焼量演算式中、フィ
ードフォワード量演算に (設定温−出湯温)×α   ・・・・・・■なる補正
積項が加味されたFF+P I制御は、従来のFF+P
 I制御の特性をさらに改善する働きがあり、将来的に
汎用されると思われるこの種給湯機の制御方式として極
めて望ましいものとなる。
In this way, the FF+PI control in which the correction product term (set temperature - outlet hot water temperature) x α...■ is added to the feedforward amount calculation in the required combustion amount calculation formula according to the present invention is different from the conventional FF+P
This has the effect of further improving the characteristics of I control, making it extremely desirable as a control method for this type of water heater that is expected to be widely used in the future.

また、一般に第2図中に示されている水量バルブ1の制
御にはフィードフォワード量を用いるが、これに際して
も本発明により上記補正積項■を加味されたフィードフ
ォワード量FP°を採用すれば、出湯温を上げる必要が
あるときにはいち速く水量バルブを閉方向に動作させて
速やかに出湯量を絞った後、出湯温が上がるにつれて逆
に開方向に動作させてから停止させ、全く同様に出湯温
を下げる必要のあるときには水量バルブを素早く開方向
に動作させて速やかに出湯量を増した後、閉方向に動作
させてから停止させることができ、したがって出湯温T
。の制御のみならず、出湯量の制御も良好になし得、こ
れによってまた、出湯温の立ち上がり、立ち下がり特性
をさらに幇助し、良好にすることができる。
In addition, the feedforward amount is generally used to control the water flow valve 1 shown in FIG. When it is necessary to raise the hot water temperature, the water flow valve is quickly operated in the closing direction to quickly reduce the amount of hot water, and then as the hot water temperature rises, it is reversely operated in the open direction, and then stopped, and the hot water is discharged in exactly the same way. When it is necessary to lower the temperature, the water flow valve can be quickly operated in the open direction to quickly increase the amount of hot water dispensed, then operated in the closed direction and then stopped, thus reducing the discharge hot water temperature T.
. Not only can the amount of hot water be well controlled, but also the amount of hot water dispensed can be well controlled, thereby further aiding and improving the rise and fall characteristics of the hot water temperature.

なお、上記0式中における選択定数項にP+に□は、こ
の種の自動制御系の常として、従来からも設計的、実験
的に設定されるものであったが、これと全く同様に、今
般フィードフォワード量FP。
Note that the selection constant term P+ and □ in the above equation 0 have traditionally been set by design and experiment, as is usual for this type of automatic control system; The current feedforward amount FP.

の演算項に新たに追加された補正積項■中、定数αもま
た、実験的、設計的に適当値に設定し得るものである。
The constant α in the correction product term (2) newly added to the operational terms can also be set to an appropriate value experimentally or by design.

〈実 施 例〉 第1図には本発明における既述の演算式■に従って算出
された要求燃焼量FによるFF+PIP+の動作例が示
されている。
<Embodiment> FIG. 1 shows an example of the operation of FF+PIP+ according to the required combustion amount F calculated according to the above-mentioned arithmetic formula (2) in the present invention.

あらかじめ述べて置くと、第1図中の各過渡期において
、実線■、■、■、■で記された曲線は本発明によった
場合を、仮想線■、■、■で記された曲線は弐〇により
フィードフォワード量FFを求める従来のFF+P I
制御によった場合を各示している。
To state in advance, in each transition period in FIG. is the conventional FF + P I that calculates the feedforward amount FF by 2〇
Each case is shown under control.

時刻T1で示されるように、出湯量(水量)SWが零の
状態から第2図に示される蛇口2が開かれ、ある流量で
急に流れ始めたような場合、あらかじめ設定されている
設定温Tsに出湯温T。を持って行くに際し、本発明の
制御方式が採用されたものでは、既述したフィードフォ
ワード量FF゛を求める式■の中、 (設定温−出湯温)×α   ・・・・・・■なる補正
積項の値が当該蛇口開放の当初、極めて大きくなり、0
式にて求められる要求燃焼量Fの値もこの項■の影響で
十分過渡的に大きくなることから、図中、実線■で示さ
れるように、そのときの設定温T3のいかんによっては
速やかに給湯機の最大能力程度にまでもなり得、これに
伴って出湯温T。も曲線■で示されるように、ややオー
バシュート気味になる程素早く立ち上がった後、短い収
束時間で設定温T3に収束するようになる。
As shown at time T1, when the faucet 2 shown in FIG. 2 is opened from a state where the hot water output (water amount) SW is zero and the water suddenly starts flowing at a certain flow rate, the preset temperature will change. The hot water temperature is Ts. In the case where the control method of the present invention is adopted, in the formula (■) for determining the feedforward amount FF゛, (set temperature - hot water temperature) x α...■ At the beginning of opening the faucet, the value of the corrected product term becomes extremely large and becomes 0.
The value of the required combustion amount F determined by the formula also increases sufficiently transiently due to the influence of this term (■), so as shown by the solid line (■) in the figure, depending on the set temperature T3 at that time, It can reach up to the maximum capacity of the water heater, and as a result, the hot water temperature T. As shown by the curve ■, the temperature rises quickly enough to slightly overshoot, and then converges to the set temperature T3 in a short convergence time.

これに対し、本発明による補正積項■を有さない従来方
式では、仮想線■で示されるように、要求燃焼量Fの過
渡的な値もそれ程には大きくなり得す、したがって仮想
線の曲線ので示されるように出湯温T。の立ち上がりも
悪く、また設定温Tsへの収束時間も長くなる。
On the other hand, in the conventional method that does not have the correction product term (■) according to the present invention, the transient value of the required combustion amount F can also be that large, as shown by the virtual line (■). The hot water temperature T as shown by the curve. The temperature rise is also slow, and the time required to converge to the set temperature Ts becomes longer.

さらに時刻T2以降に示されるように、水量Swには変
化がないが、使用者により設定温T3が変更された場合
、本発明によれば同様に、上記補正積項の値が過渡的に
大きくなる(設定温Tsと出湯温T。
Further, as shown after time T2, when the water amount Sw remains unchanged but the set temperature T3 is changed by the user, according to the present invention, similarly, the value of the correction product term becomes transiently large. (The set temperature Ts and the hot water temperature T.

の差がこの時点T2で過渡的に大きくなる)ことから、
曲線■、■で示されるように、立ち上がりが急峻で収束
時間の短い要求燃焼量Fの変化と、これに伴う出湯温T
。の変化カーブが得られるが、従来方式の場合には、曲
線■、■で示されるように、積分項の影響をもろに受け
て立ち上がりも鈍く、設定温への収束時間も長いものと
なる。
(the difference becomes transiently large at this point T2),
As shown by the curves ■ and ■, changes in the required combustion amount F with a steep rise and short convergence time, and the accompanying change in the outlet temperature T
. However, in the case of the conventional method, as shown by curves ■ and ■, the rise is slow due to the influence of the integral term, and the time for convergence to the set temperature is long.

こうした特性傾向は負方向においても全く同様で、例え
ば時刻T3で示されるように、使用者が設定温T3を急
に低下させた場合、本発明の制御方式によるとほぼ微分
的な程、立ち下がりの鋭い曲線0が得られ、ために出湯
温T。も素早く応答して短い収束時間で設定温T3にま
で低下するが、従来方式によった場合、曲線■、■で示
されるように、要求燃焼量Fの立ち下がりも鈍く、収束
時間も長くなるため、出湯温T。が設定温T3に低下す
るまでの時間も長目になる。
These characteristic trends are exactly the same in the negative direction. For example, when the user suddenly lowers the set temperature T3 as shown at time T3, according to the control method of the present invention, the temperature decreases almost differentially. A sharp curve 0 is obtained, so the hot water temperature T. responds quickly and drops to the set temperature T3 in a short convergence time, but when using the conventional method, as shown by curves ■ and ■, the required combustion amount F falls slowly and the convergence time becomes long. Therefore, the hot water temperature is T. The time it takes for the temperature to drop to the set temperature T3 also becomes longer.

一方、時刻T4以降に示されるように、使用者により蛇
口2が細められ、水量S1が低下した場合等には、同様
に要求燃焼量Fは俊敏に応答して低下演算され、かつ短
い収束時間で設定温T8を満足する要求燃焼量Fに収束
するため、出湯温T。の方には温度レベル的にも時間的
にも大きな変化ないし変動は起こさないで済む。
On the other hand, as shown after time T4, when the user narrows the faucet 2 and the water amount S1 decreases, the required combustion amount F is similarly calculated to decrease in response quickly, and the convergence time is short. In order to converge to the required combustion amount F that satisfies the set temperature T8, the outlet temperature T. In this case, there are no large changes or fluctuations in temperature level or time.

対して従来方式によった場合には、仮想線の曲線ので示
されるように、出湯温T0の一時的な温度変化幅が大き
くなり、使用者をして不快感を与えることになりがちで
ある。
On the other hand, in the case of the conventional method, as shown by the imaginary curve, the range of temporary temperature change in the outlet hot water temperature T0 becomes large, which tends to cause discomfort to the user. .

このように、本発明によれば、様々な過渡的な変化に対
し、全て敏捷に応答し得、あるいはまた不快な温度変動
を最小限に抑えることができるが、これに加えて、本発
明における演算式■により求められるフィードフォワー
ド量FP°を水量バルブの制御にも用いれば、出湯量特
性も向上することができ、これがまた出湯温特性に寄与
するという、比喰的に言うと望ましい“正帰還現象°゛
を期待することができる。
As described above, according to the present invention, it is possible to quickly respond to various transient changes, or to minimize unpleasant temperature fluctuations. If the feedforward amount FP° obtained by the calculation formula A feedback phenomenon can be expected.

例えば水量バルブの制御方法には、(1)給湯機の能力
を中心に上下に所定の幅の所にしきい値を定め、フィー
ドフォワード量が下側しきい値を下回っているときには
水量バルブを開方向に動作させ続け、逆に上側しきい値
を上回っているときには閉方向に動作させ続ける一方、
上下しきい値開にフィードフォワード量が入った場合に
は水量バルブを停止させる“一定しきい便法°゛や、(
II)フィードフォワード量の増加方向と減少方向とで
上記上下のしきい値を異ならせた“ビステリシス付き一
定しきい便法”、(III)下側しきい値と給湯機能力
との間では一定のデユーティ比に従って開方向への動作
指令と停止指令を交互に発し、上側しきい値と給湯機能
力の間では同じく一定のデユーティ比に従って閉方向動
作指令と停止指令とを交互に発する“一定しきい値固定
デューティ制御法′°等があり、さらに今般、別途出願
するように、新たに本出願人が開発した手法として、(
IV)デユーティ制御領域に入った場合にはそのときど
きのフィードフォワード量と給湯機能力の絶対値差に応
じてデユーティ比を可変にするという°゛一定しきい値
可変デユーティ制御法″もある。
For example, a water flow valve control method involves (1) setting a threshold at a predetermined width above and below the capacity of the water heater, and opening the water flow valve when the feedforward amount is below the lower threshold; conversely, when it exceeds the upper threshold, it continues to operate in the closing direction,
The “constant threshold expedient” or (
II) "Constant threshold expedient with bisteresis" in which the above upper and lower thresholds are different depending on the increasing and decreasing direction of the feedforward amount, (III) The lower threshold and the hot water heating function are constant. A command to operate in the opening direction and a stop command are issued alternately according to the duty ratio of There are fixed threshold duty control methods, etc.;
IV) There is also a "constant threshold variable duty control method" in which the duty ratio is made variable in accordance with the absolute value difference between the feedforward amount and the hot water supply function at that time when the duty control region is entered.

特に、最後に述べた本出願人開示になる“一定しきい値
可変デユーティ制御法”は、常に給湯機の能力に極めて
近い位置に水量バルブの開度を付けることができ、また
実際上、各しきい値および給湯機能力近傍での流量変動
に伴うフィードフォワード量の変動に対しては、水量バ
ルブが実質的には電気機械要素であってその応答速度に
制限のあることを利用し、自動的に不感帯を作ることが
できるため、既述した従来の他の水量バルブ制御方法で
は起こりがちであったハンチングのおそれ等も回避し得
る点等で優れている。
In particular, the "constant threshold value variable duty control method" disclosed by the present applicant mentioned at the end can always set the opening of the water flow valve at a position extremely close to the capacity of the water heater, and in practice, each In response to fluctuations in the feedforward amount due to flow fluctuations near the threshold and hot water supply function, automatic Since it is possible to create a dead zone, it is advantageous in that it can avoid the risk of hunting, which tends to occur with the other conventional water flow valve control methods mentioned above.

が、これらいずれの水量バルブ制御法によるにしても、
そのためのフィードフォワード量の演算式として、本発
明におけるフィードフォワード量の演算式■を用いると
、その応答特性を向上することがてき、さらにその結果
、出湯温特性も向上することができる。
However, no matter which of these water flow valve control methods is used,
If the feedforward amount calculation formula (2) of the present invention is used as the calculation formula for the feedforward amount for this purpose, the response characteristics can be improved, and as a result, the outlet hot water temperature characteristics can also be improved.

特に例えば、第1図中、先に説明した時刻T2における
ように、設定温T3の変化に伴い要求燃焼量Fの演算式
■中における補正積項■の値が過渡的に大きくなると、
対応するフィードフォワード量FP゛もこの瞬間、大き
くなり、したがって当該フィードフォワード量FP°に
より水量バルブが制御される場合には、第1図中、記号
■で示されるように僅かな期間、水量バルブは閉方向に
動作され、したがってその分、記号■で示されるように
出湯量の低減を生み、ために出湯温T。の増加を早める
一方、当該出湯温T。の増加にしたがっての望ましい範
囲内の若干のオーバシュートに伴っては逆に開方向に動
作した後、停止指令を受けて安定流量に入るという動作
をなし得る。
Particularly, for example, when the value of the correction product term (■) in the calculation formula (■) for the required combustion amount F increases transiently as the set temperature T3 changes, as at the time T2 described above in FIG.
The corresponding feedforward amount FP゛ also increases at this moment, and therefore, if the water flow valve is controlled by the feedforward amount FP°, the water flow valve will be closed for a short period of time as shown by the symbol ■ in Fig. 1. is operated in the closing direction, resulting in a reduction in the amount of hot water discharged as shown by the symbol ■, and therefore the temperature T of hot water discharged. While accelerating the increase in the temperature of the hot water, T. If there is a slight overshoot within the desired range due to an increase in the flow rate, the flow rate may be reversely operated in the opening direction, and then receive a stop command and enter a stable flow rate.

これに対し、従来方式の演算によるフィードフォワード
量F、に従って制御される場合には、第1図中、記号■
で示される仮想線曲線のように、出湯量の変化はなく、
したがってこの出湯量の変化を利用して早目に設定温T
3にまで出湯温T。を引き込むという動作は期待できな
い。
On the other hand, when the control is performed according to the feedforward amount F calculated by the conventional method, the symbol ■
As shown by the virtual line curve, there is no change in the amount of hot water,
Therefore, by utilizing this change in the amount of hot water, you can set the temperature at an early stage.
The hot water temperature reaches 3. It is not possible to expect a behavior that will draw in people.

以上、本発明につき説明したが、なお、先に作用の項に
おいても述べた通り、本発明により定義される要求燃焼
量Fの演算式■中、それぞれの項における定数項に1.
 Kp、αは、設計的、実験的に各々適当値に定め得る
ものである。
The present invention has been explained above, but as mentioned earlier in the section of operation, in the calculation formula (2) for the required combustion amount F defined by the present invention, the constant term in each term is 1.
Kp and α can each be set to appropriate values by design or experiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従って構成された給湯機における燃焼
制御方法の適用動作例の説明図、第2図は本発明を適用
可能な給湯機の概念的な説明図、である。 図中、1は水量バルブ、2は蛇口、3は熱交換器、4は
ガスバーナ、5はマイクロコンピュータ、8は水量セン
サ、9は給水温センサ、10は出湯温センサ、S、は流
量、TBは設定温、T、は給水温、Toは出湯温、であ
る。
FIG. 1 is an explanatory diagram of an example of an application operation of the combustion control method in a water heater configured according to the present invention, and FIG. 2 is a conceptual diagram illustrating a water heater to which the present invention can be applied. In the figure, 1 is a water flow valve, 2 is a faucet, 3 is a heat exchanger, 4 is a gas burner, 5 is a microcomputer, 8 is a water flow sensor, 9 is a water supply temperature sensor, 10 is a hot water outlet temperature sensor, S is a flow rate, TB is the set temperature, T is the water supply temperature, and To is the hot water temperature.

Claims (1)

【特許請求の範囲】 給水温、水量、出湯温を各検出するセンサを有し、それ
ら情報と使用者により設定される設定温情報とから、フ
ィードフォワード制御と比例、積分制御とに基づき、そ
のときどきで要求される要求燃焼量を演算する給湯機に
おける燃焼制御方法であって; 上記フィードフォワード量を (設定温−給水温)×(水量) ×(設定温−出湯温)×α にて定義し、もって上記要求燃焼量を (設定温−給水温)×(水量) ×(設定温−出湯温)×α +(設定温−出湯温)×(水量)×K_P +Σ(設定温−出湯温)×K_I により求めることを特徴とする給湯機における燃焼制御
方法。
[Claims] It has a sensor that detects each of the water supply temperature, water amount, and hot water temperature, and uses these information and set temperature information set by the user to control the temperature based on feedforward control, proportional control, and integral control. A combustion control method in a water heater that calculates the required combustion amount from time to time; the above feedforward amount is defined as (set temperature - water supply temperature) x (water amount) x (set temperature - outlet hot water temperature) x α Then, the above required combustion amount is (set temperature - water supply temperature) x (water amount) x (set temperature - outlet hot water temperature) x α + (set temperature - outlet hot water temperature) x (water quantity) x K_P + Σ (set temperature - outlet hot water temperature) )×K_I.
JP61293376A 1986-12-11 1986-12-11 Combustion control method for water heater Granted JPS63148050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293376A JPS63148050A (en) 1986-12-11 1986-12-11 Combustion control method for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293376A JPS63148050A (en) 1986-12-11 1986-12-11 Combustion control method for water heater

Publications (2)

Publication Number Publication Date
JPS63148050A true JPS63148050A (en) 1988-06-20
JPH0343542B2 JPH0343542B2 (en) 1991-07-02

Family

ID=17793974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293376A Granted JPS63148050A (en) 1986-12-11 1986-12-11 Combustion control method for water heater

Country Status (1)

Country Link
JP (1) JPS63148050A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268448A (en) * 1988-09-02 1990-03-07 Rinnai Corp Control device for hot water feeder
JPH0271045A (en) * 1988-09-06 1990-03-09 Rinnai Corp Controller for hot water supplying apparatus
JPH02263011A (en) * 1989-03-31 1990-10-25 Toto Ltd Instantaneous hot water maker with kerosene fuel
JPH037809A (en) * 1989-06-02 1991-01-16 Matsushita Electric Ind Co Ltd Control device of hot water maker
JPH0325244A (en) * 1989-06-20 1991-02-04 Paloma Ind Ltd Temperature control device
FR2741939A1 (en) * 1995-12-01 1997-06-06 Gaz De France INSTALLATION FOR PRODUCING DOMESTIC HOT WATER BY GAS BOILER AND METHOD FOR CONTROLLING THE TEMPERATURE OF DOMESTIC HOT WATER IN SUCH AN INSTALLATION
WO2008014626A1 (en) * 2006-08-02 2008-02-07 Toby Ag Method for the regulation of a burner
WO2008017177A1 (en) * 2006-08-10 2008-02-14 Toby Ag Method for controlling a burner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268448A (en) * 1988-09-02 1990-03-07 Rinnai Corp Control device for hot water feeder
JPH0271045A (en) * 1988-09-06 1990-03-09 Rinnai Corp Controller for hot water supplying apparatus
JPH0718588B2 (en) * 1988-09-06 1995-03-06 リンナイ株式会社 Water heater controller
JPH02263011A (en) * 1989-03-31 1990-10-25 Toto Ltd Instantaneous hot water maker with kerosene fuel
JPH037809A (en) * 1989-06-02 1991-01-16 Matsushita Electric Ind Co Ltd Control device of hot water maker
JPH0325244A (en) * 1989-06-20 1991-02-04 Paloma Ind Ltd Temperature control device
FR2741939A1 (en) * 1995-12-01 1997-06-06 Gaz De France INSTALLATION FOR PRODUCING DOMESTIC HOT WATER BY GAS BOILER AND METHOD FOR CONTROLLING THE TEMPERATURE OF DOMESTIC HOT WATER IN SUCH AN INSTALLATION
EP0781965A1 (en) * 1995-12-01 1997-07-02 Gaz De France Domestic hot water producing system with a gas heater and method for controlling the temperature of the domestic hot water in such a system
WO2008014626A1 (en) * 2006-08-02 2008-02-07 Toby Ag Method for the regulation of a burner
WO2008017177A1 (en) * 2006-08-10 2008-02-14 Toby Ag Method for controlling a burner

Also Published As

Publication number Publication date
JPH0343542B2 (en) 1991-07-02

Similar Documents

Publication Publication Date Title
JPS63148050A (en) Combustion control method for water heater
JPS6157529B2 (en)
JPH04126951A (en) Hot water temperature control device for hot water feeder
JPS6144111Y2 (en)
JP2734390B2 (en) Hot water outlet temperature control method
JPS61250446A (en) Control of hot-water supplier
JPS605284Y2 (en) Temperature control device for floor heating
JPH01150741A (en) Control device for feed hot water temperature of hot water feeder
JP2808736B2 (en) Water heater control device
JP2669662B2 (en) Water heater control device
JPS59229127A (en) Water heater
JPH08240342A (en) Device for controlling hot water-feeding
JP2830257B2 (en) Water control device for water heater
JP3103674B2 (en) Hot water supply temperature control device
JPH0322690Y2 (en)
JP3300150B2 (en) Combustion apparatus and method for updating combustion capacity
JPH0481087B2 (en)
JPH03186150A (en) Hot water supply control device
JPH1038375A (en) Combustion equipment
JPH0339227B2 (en)
JP3996157B2 (en) Water heater
JPH0712840Y2 (en) Mixing hot water temperature control device for water heaters, etc.
JPH0141090Y2 (en)
JPH08159460A (en) Hot-water supply apparatus
JPH07127909A (en) Hot water supply heater