JPS63147894A - Vapor growth method and vertical vapor growth device - Google Patents

Vapor growth method and vertical vapor growth device

Info

Publication number
JPS63147894A
JPS63147894A JP29438986A JP29438986A JPS63147894A JP S63147894 A JPS63147894 A JP S63147894A JP 29438986 A JP29438986 A JP 29438986A JP 29438986 A JP29438986 A JP 29438986A JP S63147894 A JPS63147894 A JP S63147894A
Authority
JP
Japan
Prior art keywords
substrate
vapor phase
susceptor
turntable
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29438986A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
雅弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Original Assignee
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, Osaka Titanium Co Ltd filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP29438986A priority Critical patent/JPS63147894A/en
Publication of JPS63147894A publication Critical patent/JPS63147894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To carry out the vapor growth of a film with improved uniformity of thickness by revolving a set of plural substrates around a certain point in a bell jar, and revolving the central point with a gas inlet pipe or a gas outlet pipe as the center to uniformize the influence of a gas stream. CONSTITUTION:Four substrates 15 are respectively set at regular intervals on four susceptors 13 placed on a turntable 12, and each susceptor 13 is rotated along with the rotation of the turntable 12 in the same direction. In this case, each substrate 15 is revolved around the rotatory shaft 11 of the table 12, hence the center (point b) of the susceptor 13 is revolved. The locus of point (a) is shown by a chain line, the locus of point (b) is shown by a full line, and the locus of point (c) is shown by a broken line. The figures of the loci of respective substrates 15 are made similar, and the lengths of the loci are equalized. Accordingly, the same effect of the gas, which is blown into a reaction chamber, ascends, and again descends, can be exerted on each substrate 15. As a result, the thickness of the film on the substrate 15 is uniformized, and the yield of the product can be increased.

Description

【発明の詳細な説明】 利用産業分野 この発明は、化学反応により、基板上に所要の半導体薄
膜を気相成長させる縦型気相成長装置を用いる気相成長
方法と該装置の改良に係り、基板のサセプタへのローデ
ィング位置にかかわらず、反応室内の原料ガス流の影響
を均一化を図り、高精度エピタキシャル成長させて、製
品歩留を向上させることができる気相成長方法と縦型気
相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to a vapor phase growth method using a vertical vapor phase growth apparatus for vapor phase growth of a desired semiconductor thin film on a substrate by a chemical reaction, and to an improvement of the apparatus. Regardless of the loading position of the substrate onto the susceptor, the influence of the source gas flow in the reaction chamber is made uniform, allowing for high-precision epitaxial growth and a vertical vapor growth method that can improve product yield. Regarding equipment.

背景技術 今日、集積回路の量産には、高温に加熱された基板を収
納したベルジャー内に、一方より原料ガスを導入し、該
基板上に特定組成の薄膜を気相化学反応により形成し、
ベルジャーの他方より該ガスを排出する構成からなる気
相成長装置が用いられている。
BACKGROUND ART Today, in the mass production of integrated circuits, raw material gas is introduced from one side into a bell jar containing a substrate heated to high temperature, and a thin film of a specific composition is formed on the substrate by a vapor phase chemical reaction.
A vapor phase growth apparatus is used which is configured to exhaust the gas from the other side of the bell jar.

ベルジャー内の原料ガスの流体力学的な検討や、基板の
加熱方法などにより、横型、縦型、バレル型等の各種型
式の気相成長装置が開発され、ベルジャー内の原料ガス
の流れ状態が、薄膜厚みの均一性に悪影響を与えること
が知られており、基板上に薄膜を所要厚みに均一に形成
するには、温度、圧力、ガス濃度、ガス流れ、基板表面
などの各種要素を最適に選択、保持する必要があるとさ
れている。
Various types of vapor phase growth equipment, such as horizontal, vertical, and barrel types, have been developed based on hydrodynamic studies of the raw material gas in the bell jar and substrate heating methods, and the flow state of the raw material gas in the bell jar has been It is known that the uniformity of thin film thickness is adversely affected. In order to uniformly form a thin film to the required thickness on a substrate, various factors such as temperature, pressure, gas concentration, gas flow, and substrate surface must be optimized. It is said that it is necessary to select and maintain.

第6図に示す縦型気相成長装置は、基台(1)に垂直に
軸支された筒状回転軸(2)に水平装着されたテーブル
状のサセプター(3)に、基板(4)を載置するもので
、ドーム型の石英ベルジャー(5)を基台(1)に被せ
、前記回転軸(2)に同軸配置したガス導入口(6)よ
り原料ガスがベルジャー(5)内のドーム部内、すなわ
ち反応室内へ吹込まれ、反応室内を下降したガスは下部
の基台(1)に設けたガス排出口(7)より排出し、ま
た、サセプター(3)の下部と基台(1)間に加熱源と
しての高周波コイル(8)が配置されている。また、石
英ベルジャー(5)の外周に、冷却媒体を循環させるた
めのステンレス鋼製からなり、該石英ベルジャー(5)
と相似形の金属ベルジャー(9)が配置される 上記構成からなる縦型気相成長装置において、基板は、
第5図Aに示す如く、テーブル型サセプタ上に、内周列
と外周列の2列にローデングされる。原料ガスはサセプ
タの内周から外周、あるいは外周から内周へと流れるた
め、基板はローディングされた位置によってガス流の影
響を大きく受け、エピタキシャル厚み分布や比抵抗分布
等の気相成長の高精度化が妨げられる問題があった。
The vertical vapor phase growth apparatus shown in FIG. A dome-shaped quartz bell jar (5) is placed on the base (1), and the raw material gas is fed into the bell jar (5) through the gas inlet (6) coaxially arranged with the rotating shaft (2). The gas that is blown into the dome, that is, into the reaction chamber and descends inside the reaction chamber, is discharged from the gas outlet (7) provided in the lower base (1), and is also discharged from the lower part of the susceptor (3) and the base (1). ) A high frequency coil (8) as a heating source is arranged between the two. In addition, the quartz bell jar (5) is made of stainless steel for circulating a cooling medium around the outer periphery of the quartz bell jar (5).
In the vertical vapor phase growth apparatus having the above configuration in which a metal bell jar (9) having a similar shape is arranged, the substrate is
As shown in FIG. 5A, the susceptors are loaded in two rows, an inner row and an outer row, on a table-type susceptor. Because the raw material gas flows from the inner circumference to the outer circumference or from the outer circumference to the inner circumference of the susceptor, the substrate is greatly affected by the gas flow depending on the loaded position, and the high precision of vapor phase growth such as epitaxial thickness distribution and resistivity distribution is There were problems that hindered the development of

従来、例えば、特開昭59−194424号公報には、
反応容器の排気口に接続した排気管にそのコンダクタン
スを可変となすバルブを付設し、ガス供給量を変えるこ
となく反応ガス流量を調整し、サセプタの半径方向での
膜厚の均一化を計った気相成長装置が提案されている。
Conventionally, for example, Japanese Patent Application Laid-Open No. 59-194424 has
A valve that makes the conductance variable was attached to the exhaust pipe connected to the exhaust port of the reaction vessel, and the reaction gas flow rate was adjusted without changing the gas supply amount, thereby making the film thickness uniform in the radial direction of the susceptor. A vapor phase growth apparatus has been proposed.

また、特開昭59−220917号公報には、テーブル
型サセプタに円周上にローデングした基板配列に対応さ
せて、サセプタ外周部に切欠を設け、外周部における熱
容量を少なく設定して基板に対する熱分布を均一化し、
結晶欠陥を防止した気相成長装置が提案されている。
Furthermore, in Japanese Patent Application Laid-open No. 59-220917, a table-type susceptor is provided with a notch on the outer periphery of the susceptor in accordance with the arrangement of substrates loaded on the circumference, and the heat capacity at the outer periphery is set to be small to heat the substrates. equalize the distribution,
A vapor phase growth apparatus that prevents crystal defects has been proposed.

しかし、従来のいずれの技術も、サセプタへの基板のロ
ーディング位置により、反応ガス流の影響が変化するこ
とが避けられず、エピタキシャル成長の高精度化が妨げ
られていた。
However, in any of the conventional techniques, the influence of the reaction gas flow inevitably changes depending on the loading position of the substrate onto the susceptor, which hinders high precision epitaxial growth.

発明の目的 この発明は、サセプタにローデングされた多数枚の基板
が、それぞれのローディング位置の違いにかかわらず、
ガス流の影響が均一となり、膜厚の均一性を向上させ、
製品歩留を向上させることができる気相成長方法並びに
縦型気相成長装置を目的としている。
Purpose of the Invention This invention provides a method for handling a large number of substrates loaded onto a susceptor, regardless of their loading positions.
The effect of gas flow becomes uniform, improving the uniformity of film thickness,
The objective is to provide a vapor phase growth method and a vertical vapor phase growth apparatus that can improve product yield.

発明の構成 この発明は、縦型気相成長装置における基板への原料ガ
ス流の影響を均一化することを目的に種々検討した結果
、ベルジャー内で、複数枚1組の基板をそれぞれある1
点回りに公転させ、かつ前記中心点をガスの導入または
排出管を中心に公転させることにより、サセプタ上のい
ずれの位置に載置された基板も略同−条件の原料ガス流
に接触し、成形薄膜厚みの均一性が向上し、また、基板
上での温度分布の均一精度が大きく向上し、基板の結晶
学的なすべりが防止され、製品歩留が向上することを知
見したものである。
Structure of the Invention As a result of various studies aimed at equalizing the influence of the raw material gas flow on the substrates in a vertical vapor phase growth apparatus, the present invention has developed a system in which a set of a plurality of substrates is placed in a bell jar.
By revolving around the point and revolving the center point around the gas introduction or discharge pipe, the substrate placed at any position on the susceptor comes into contact with the raw material gas flow under substantially the same conditions, It was discovered that the uniformity of the formed thin film thickness is improved, the uniformity of temperature distribution on the substrate is greatly improved, crystallographic slippage of the substrate is prevented, and product yield is improved. .

すなわち、この発明は、 基板を載置するサセプタを包囲して反応室を形成するベ
ルジャーを有し、テーブル型サセプタの中心部に配置し
た管にて半導体ガスを導入または吸引し、水素還元、熱
分解法等の化学的反応により、基板上に結晶層を気相成
長させる縦型気相成長装置において、複数枚を1組とし
た基板をそれぞれ同テーブル上の任意の同一点を中心に
公転させ、かつサセプタの回転による回転軸を中心とし
た各基板の公転とにより、載置した少なくとも1組の各
基板のターンテーブル上での軌道長を相互に近似させて
気相成長させることを特徴とする気相成長方法であり、
また、複数組載置した際の各組の交点中心を、サセプタ
回転軸を中心とする同一円周上に配置したことを特徴と
する気相成長方法である。
That is, the present invention has a bell jar that surrounds a susceptor on which a substrate is placed to form a reaction chamber, and a semiconductor gas is introduced or sucked through a tube placed in the center of the table-type susceptor to reduce hydrogen and heat. In a vertical vapor phase growth device that grows a crystal layer on a substrate in a vapor phase using a chemical reaction such as a decomposition method, each set of multiple substrates is rotated around the same arbitrary point on the same table. , and the vapor phase growth is performed by causing the orbit lengths of the at least one set of mounted substrates on the turntable to approximate each other by revolving each substrate around the rotation axis due to the rotation of the susceptor. It is a vapor phase growth method that
Moreover, the vapor phase growth method is characterized in that the intersection centers of each set when a plurality of sets are placed are arranged on the same circumference centered on the susceptor rotation axis.

さらに、この発明は、 基板を載置するためのターンテーブルを包囲して反応室
を形成するベルジャーを有し、水素還元、熱分解法等の
化学的反応により、基板上に結晶層を気相成長させる縦
型気相成長装置において、半導体ガスノズルまたは排出
管を同心配置した回転軸にて回転可能なターンテーブル
上に、該テーブルの半径以下の直径を有し複数の基板を
載置できるテーブル型サセプタを、複数台、回転可能に
かつ回転中心軸をターンテーブルの同一円周上に配置し
たことを特徴とする縦型気相成長装置である。
Further, the present invention has a bell jar that surrounds a turntable for placing a substrate to form a reaction chamber, and forms a crystal layer on the substrate in a vapor phase by a chemical reaction such as hydrogen reduction or thermal decomposition. In a vertical vapor phase growth apparatus for growth, a table type in which a plurality of substrates having a diameter equal to or less than the radius of the table can be placed on a turntable rotatable about a rotating shaft on which a semiconductor gas nozzle or an exhaust pipe is arranged concentrically. This is a vertical vapor phase growth apparatus characterized in that a plurality of susceptors are rotatable and their central axes of rotation are arranged on the same circumference of a turntable.

発明の図面に基づく開示 第1図A、Bはこの発明による製造方法を示、すターン
テーブルの上面説明図と載置された基板の軌跡説明図で
ある。第2図はこの発明による気相成長装置のターンテ
ーブルの縦断説明図である。第5図A、Bは従来製造方
法を示すターンテーブルの上面説明図と載置された基板
の軌跡説明図である。
Disclosure of the Invention Based on Drawings FIGS. 1A and 1B are an explanatory top view of a turntable and an explanatory diagram of the locus of a placed substrate, showing a manufacturing method according to the present invention. FIG. 2 is a longitudinal sectional view of the turntable of the vapor phase growth apparatus according to the present invention. FIGS. 5A and 5B are an explanatory view of the top of a turntable and an explanatory view of the locus of a placed substrate, showing a conventional manufacturing method.

第6図は従来の気相成長装置の縦断説明図である。FIG. 6 is a longitudinal sectional view of a conventional vapor phase growth apparatus.

第2図に示す縦型気相成長装置は、基台(10)に垂直
に軸支された筒状回転軸(11)に水平装着されたター
ンテーブル(12)上に、ターンテーブル(12)の半
径より小円からなる4枚のサセプタ(13)を水平に回
転可能に軸支装着してあり、各サセプタ(13)上に基
板(15)を載置する構成からなる。
The vertical vapor phase growth apparatus shown in FIG. Four susceptors (13) each having a radius smaller than the radius of the four susceptors (13) are horizontally rotatably mounted on shafts, and a substrate (15) is placed on each susceptor (13).

また、筒状回転軸(11)には、大円ギア(16)が軸
支されており、前記のターンテーブル(12)に軸支さ
れたサセプタ(13)の回転軸(14)が、ターンテー
ブル(12)を貫通してその垂下先端に小ギア(17)
が貫着され、前記大円ギア(16)と歯合し、筒状回転
軸(11)の回転により、ターンテーブル(12)の回
転並びに、前記大円ギア(16)と小ギア(17)との
ギア比に応じたサセプタ(13)の回転かえられる構成
である。
Further, a large circular gear (16) is pivotally supported on the cylindrical rotating shaft (11), and the rotating shaft (14) of the susceptor (13) that is pivotally supported on the turntable (12) is rotated. A small gear (17) passes through the table (12) and is attached to its hanging tip.
is penetrated and meshed with the large circular gear (16), and the rotation of the cylindrical rotating shaft (11) causes the turntable (12) to rotate and the large circular gear (16) and small gear (17) to rotate. The rotation of the susceptor (13) can be changed according to the gear ratio.

ドーム型の石英ベルジャー(20)を基台(10)に被
せ、前記回転軸(11)に同軸配置したガス導入口(1
8)より原料ガスがベルジャー(20)内のドーム部内
、すなわち反応室内へ吹込まれ、反応室内を上昇し再度
下降、あるいはターンテーブル(12)の内周から外周
方向へ移動したガスは、反応室下部の基台(10)に設
けたガス排出口(19)より排出する。
A dome-shaped quartz bell jar (20) is placed on the base (10), and a gas inlet (1) is placed coaxially with the rotating shaft (11).
8) The raw material gas is blown into the dome part of the bell jar (20), that is, into the reaction chamber, rises within the reaction chamber, and then descends again, or the gas that moves from the inner circumference to the outer circumference of the turntable (12) flows into the reaction chamber. The gas is discharged from the gas outlet (19) provided in the lower base (10).

マタ、石英ベルジャー(20)とステンレスM5uの金
属ベルジャー(21)との間に加熱源としてのランプ(
22)が配置されている。
A lamp (as a heating source) is installed between the quartz bell jar (20) and the stainless steel M5u metal bell jar (21).
22) is located.

発明の作用・効果 上述した構成において、第1図A図に示す如く、ターン
テーブル(12)に載置された4枚のサセプタ(13)
に、それぞれ4枚の基板(15)を等間隔で載置した場
合、ターンテーブル(12)の回転(図で時計回り)に
ともない、各サセプタ(13)も同方向に回転する。
Functions and Effects of the Invention In the above-described configuration, as shown in FIG. 1A, four susceptors (13) placed on a turntable (12)
When four substrates (15) are placed at equal intervals, as the turntable (12) rotates (clockwise in the figure), each susceptor (13) also rotates in the same direction.

ここで、ターンテーブル(12)の1回転時にサセプタ
(13)も1回転するよう大円ギア(16)と小ギア(
17)とのギア比を設定した場合、サセプタ(13)の
直径方向の3点(a、Cは基板の中心点、bはサセプタ
の回転中心)の回転軌跡を測定したところ、B図の結果
を得た。
Here, the large circular gear (16) and small gear (
17), we measured the rotation locus at three points in the diametrical direction of the susceptor (13) (a and C are the center points of the substrate, and b is the center of rotation of the susceptor), and the results shown in Figure B were obtained. I got it.

すなわち、各基板(15)は、ターンテーブル(12)
の回転軸(11)を中心に公転するとともに、載置され
るサセプタ(13)の中心(b点)を中心にも公転する
ことになり、a点軌跡は一点鎖線、b点軌跡は実線、C
点軌跡は破線で示す如(、各基板(15)の軌跡は相似
形でかつ同軌跡長さである。
That is, each board (15) has a turntable (12)
It revolves around the rotation axis (11) of the susceptor (11), and also revolves around the center (point b) of the susceptor (13) on which it is placed, the trajectory of point a is a dashed line, the trajectory of point b is a solid line, C
The point loci are shown by broken lines (the loci of each substrate (15) are similar in shape and have the same locus length).

従って、各基板(15)は、反応室内へ吹込まれて反応
室内を上昇し再度下降、あるいはターンテーブル(12
)の内周から外周方向へ移動したガスに対して、同一条
件の影響を受けることになる。
Therefore, each substrate (15) is blown into the reaction chamber, ascends within the reaction chamber, and descends again, or the turntable (12)
) will be affected by the same conditions for the gas that moves from the inner circumference to the outer circumference.

すなわち、この発明による気相成長装置では、各基板(
15)は同一条件の反応ガス流に接触できるため、サセ
プタ(13)上での載置位置にかかわらず、いずれの基
板上に成長する薄膜の膜厚並びに性状も均一化される利
点がある。
That is, in the vapor phase growth apparatus according to the present invention, each substrate (
Since the substrate 15) can be brought into contact with the reaction gas flow under the same conditions, there is an advantage that the thickness and properties of the thin film grown on any substrate can be made uniform regardless of the mounting position on the susceptor (13).

これに対して、従来の縦型気相成長装置では、前述した
この発明装置のターンテーブル(12)に相当する大円
のテーブル型サセプタ(3)上に、外周列及び内周列の
2列に複数枚の基板(4)が載置される。
On the other hand, in a conventional vertical vapor phase growth apparatus, two rows, an outer circumferential row and an inner circumferential row, are placed on a large circular table-type susceptor (3) corresponding to the turntable (12) of the present invention apparatus described above. A plurality of substrates (4) are placed on.

ここで、外周列基板(4)の中心点d点と、内周列の基
板の中心点e点との回転軌跡を測定すると、第5図B図
に示す如く、各軌跡は大小の同心円となり、サセプタ(
3)上での軌跡位置並びに軌跡長さも全く異なり、各基
板(4)はそれぞれ異なる条件の反応ガスと接触するこ
とになり、基板(4)上に成長する薄膜の膜厚並びに性
状が不均一となり易い。
Here, when measuring the rotation locus between the center point d of the outer row substrate (4) and the center point e of the inner row substrate, each locus becomes concentric circles of different sizes, as shown in Figure 5B. , susceptor (
3) The trajectory position and trajectory length on the substrate (4) are completely different, and each substrate (4) comes into contact with the reaction gas under different conditions, resulting in nonuniform film thickness and properties of the thin film grown on the substrate (4). It's easy to become.

また、この発明による装置と従来装置と比較すると、基
板のローディング量に差がでる力′f、この発明よる気
相成長はエピタキシャル厚み分布や比抵抗分布等の気相
成長の高精度化が達成できるため、製品ばらつきが減少
し、単位当りの歩留は従来装置に比べて大きく向上する
利点がある。
In addition, when comparing the device according to the present invention with the conventional device, there is a force 'f that causes a difference in the loading amount of the substrate. This has the advantage of reducing product variations and greatly improving yield per unit compared to conventional equipment.

実施例 第2図に示したこの発明による縦型気相成長装置を用い
て、 サセプター; 直径270mm、 回転数8/min メインテーブル; 直径700mm 回転数8/min 加熱時間; 1時間 加熱温度;  1120℃、 反応時間;30分 半導体ガス;  5iHC13 基板; 4φ< 100>ウェハー なる条件の気相成長を行なった。
Example Using the vertical vapor phase growth apparatus according to the present invention shown in FIG. 2, Susceptor: diameter 270 mm, rotation speed 8/min Main table: diameter 700 mm, rotation speed 8/min Heating time: 1 hour Heating temperature: 1120 ℃, reaction time: 30 minutes, semiconductor gas, 5iHC13 substrate, 4φ<100> wafer.

また、従来例として第6図に示した縦型気相成長装置を
用いて、 サセプター: 直径600mm。
Further, as a conventional example, a vertical vapor phase growth apparatus shown in FIG. 6 was used, and a susceptor: diameter was 600 mm.

回転数8/min 加熱時間; 1時間 加熱温度;  1120℃、 反応時間;30分 半導体ガス;  5iHC13 基板; 4Φ< 100>ウェハー なる条件の気相成長を行なった。Rotation speed 8/min Heating time: 1 hour Heating temperature: 1120℃, Reaction time: 30 minutes Semiconductor gas; 5iHC13 Substrate; 4Φ<100> wafer Vapor phase growth was carried out under the following conditions.

すなわち、この発明のメインテーブル径と従来装置のサ
セプタ径をほぼ同一となし、反応ガス流等のベルジャー
内の反応条件を同一となして気相成長行い、各基板上に
気相成長した薄膜のエピタキシャル厚みteばらつきと
、比抵抗peばらつき並びにte分布とpe分布を測定
した。
That is, the diameter of the main table of the present invention and the diameter of the susceptor of the conventional device are made almost the same, and the reaction conditions in the bell jar, such as the reaction gas flow, are made the same to perform vapor phase growth, and the thin film grown in vapor phase on each substrate is Epitaxial thickness te variations, resistivity pe variations, te distribution, and pe distribution were measured.

測定の結果、この発明装置の場合、 teばらつき;±1.6%、peばらつき;±1.2%
であったが、 従来装置の場合、 teばらつき;±4.7%、peばらつき;±4.5%
であり、この発明装置により、各ばらつきが著しく減少
したことが分かる。
As a result of measurement, in the case of this invention device, te variation: ±1.6%, pe variation: ±1.2%
However, in the case of the conventional device, te variation: ±4.7%, pe variation: ±4.5%
It can be seen that each variation was significantly reduced by the device of the present invention.

te分布とpe分布は、第4図に示す如く、外周側及び
内周側の各基板の径方向の3点を測定し、ターンテーブ
ルまたはテーブル型サセプタの外周側から1の番号を付
して、第3図に示す如く、グラフの横軸に上記位置を、
縦軸に測定値を示した。
As shown in Figure 4, the te distribution and the pe distribution are determined by measuring three points in the radial direction of each substrate on the outer circumferential side and the inner circumferential side, and assigning numbers 1 from the outer circumferential side of the turntable or table-type susceptor. , as shown in Figure 3, the above position is plotted on the horizontal axis of the graph,
Measured values are shown on the vertical axis.

・印がこの発明装置の場合であり、Q印が従来装置の場
合を示す。
・The mark shows the case of this invention device, and the mark Q shows the case of the conventional device.

すなわち、この発明装置によると、サセプタへのローデ
ィング位置にかかわらず、基板上の薄膜性状が均一化さ
れることが分かる。
That is, it can be seen that according to the apparatus of the present invention, the properties of the thin film on the substrate are made uniform regardless of the loading position on the susceptor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、Bはこの発明による製造方法を示すターンテ
ーブルの上面説明図と載置された基板の軌跡説明図であ
る。第2図はこの発明による気相成長装置のターンテー
ブルの縦断説明図である。第3図A、Bは実施例におけ
るエピタキシャル厚み分布を示すグラフと比抵抗分布を
示すグラフである。 第4図は第3図のエピタキシャル厚み分布と比抵抗分布
の測定位置を示すターンテーブルの説明図である。 第5図A、Bは従来製造方法を示すターンテーブルの上
面説明図と載置された基板の軌跡説明図である。第6図
は従来の気相成長装置の縦断説明図である。 lO・・・基台、11・・・筒状回転軸、12・・・タ
ーンテーブル、13・・・サセプタ、14・・・回転軸
、16・・・大円ギア、17・・・小円ギア、18・・
・ガス導入口、19・・・ガス排出口、20・・・石英
ベルジャー、21・・・金属ベルジャー、22・・・ラ
ンプ。
FIGS. 1A and 1B are an explanatory view of the top of a turntable and an explanatory view of the locus of a mounted substrate, showing the manufacturing method according to the present invention. FIG. 2 is a longitudinal sectional view of the turntable of the vapor phase growth apparatus according to the present invention. FIGS. 3A and 3B are graphs showing epitaxial thickness distribution and resistivity distribution in Examples. FIG. 4 is an explanatory diagram of a turntable showing measurement positions of the epitaxial thickness distribution and resistivity distribution of FIG. 3. FIGS. 5A and 5B are an explanatory view of the top of a turntable and an explanatory view of the locus of a placed substrate, showing a conventional manufacturing method. FIG. 6 is a longitudinal sectional view of a conventional vapor phase growth apparatus. lO... Base, 11... Cylindrical rotating shaft, 12... Turntable, 13... Susceptor, 14... Rotating shaft, 16... Large circle gear, 17... Small circle Gear, 18...
- Gas inlet, 19... Gas outlet, 20... Quartz bell jar, 21... Metal bell jar, 22... Lamp.

Claims (1)

【特許請求の範囲】 1 基板を載置するサセプタを包囲して反応室を形成するベ
ルジャーを有し、テーブル型サセプタの中心部に配置し
た管にて半導体ガスを導入または吸引し、水素還元,熱
分解法等の化学的反応により、基板上に結晶層を気相成
長させる縦型気相成長装置において、複数枚を1組とし
た基板をそれぞれ同サセプタ上の任意の同一点を中心に
公転させ、かつサセプタの回転による回転軸を中心とし
た各基板の公転とにより、載置した少なくとも1組の各
基板のターンテーブル上での軌道長を相互に近似させて
気相成長させることを特徴とする気相成長方法。 2 基板を複数組載置した際の各組の公転中心を、テーブル
型サセプタ回転軸を中心とする同一円周上に配置したこ
とを特徴とする特許請求の範囲第1項記載の気相成長方
法 3 基板を載置するためのターンテーブルを包囲して反応室
を形成するベルジャーを有し、水素還元,熱分解法等の
化学的反応により、基板上に結晶層を気相成長させる縦
型気相成長装置において、半導体ガスノズルまたは排出
管を同心配置した回転軸にて回転可能なターンテーブル
上に、該テーブルの半径以下の直径を有し複数の基板を
載置できるテーブル型サセプタを、複数台、回転可能に
かつ回転中心軸をターンテーブルの同一円周上に配置し
たことを特徴とする縦型気相成長装置。
[Claims] 1. It has a bell jar that surrounds a susceptor on which a substrate is placed to form a reaction chamber, and a semiconductor gas is introduced or sucked through a tube placed in the center of the table-type susceptor to reduce hydrogen, In a vertical vapor phase growth device that grows a crystal layer on a substrate in a vapor phase through a chemical reaction such as pyrolysis, a set of multiple substrates each revolves around the same arbitrary point on the same susceptor. and each substrate revolves around the rotation axis due to the rotation of the susceptor, so that the trajectory lengths of each of the at least one set of mounted substrates on the turntable are approximated to each other, and vapor phase growth is performed. A vapor phase growth method. 2. The vapor phase growth according to claim 1, characterized in that when a plurality of sets of substrates are placed, the centers of revolution of each set are arranged on the same circumference centered on the rotation axis of the table-type susceptor. Method 3 A vertical type that has a bell jar that surrounds a turntable on which the substrate is placed to form a reaction chamber, and grows a crystal layer on the substrate in a vapor phase through chemical reactions such as hydrogen reduction and thermal decomposition. In a vapor phase growth apparatus, a plurality of table-type susceptors having a diameter equal to or less than the radius of the table and on which a plurality of substrates can be placed are placed on a turntable rotatable about a rotation axis on which a semiconductor gas nozzle or an exhaust pipe is arranged concentrically. A vertical vapor phase growth apparatus characterized in that the table is rotatable and the central axis of rotation is arranged on the same circumference of the turntable.
JP29438986A 1986-12-09 1986-12-09 Vapor growth method and vertical vapor growth device Pending JPS63147894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29438986A JPS63147894A (en) 1986-12-09 1986-12-09 Vapor growth method and vertical vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29438986A JPS63147894A (en) 1986-12-09 1986-12-09 Vapor growth method and vertical vapor growth device

Publications (1)

Publication Number Publication Date
JPS63147894A true JPS63147894A (en) 1988-06-20

Family

ID=17807097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29438986A Pending JPS63147894A (en) 1986-12-09 1986-12-09 Vapor growth method and vertical vapor growth device

Country Status (1)

Country Link
JP (1) JPS63147894A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149769U (en) * 1989-05-18 1990-12-21
DE4404110A1 (en) * 1993-04-22 1994-10-27 Mitsubishi Electric Corp Substrate holder for MOCVD and MOCVD devices
WO2011044412A1 (en) 2009-10-09 2011-04-14 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same
US20110300297A1 (en) * 2010-06-07 2011-12-08 Veeco Instruments Inc. Multi-wafer rotating disc reactor with inertial planetary drive
JP2014049667A (en) * 2012-09-03 2014-03-17 Tokyo Electron Ltd Plasma processing apparatus, and substrate processing apparatus provided with the same
US8794427B2 (en) 2011-09-20 2014-08-05 International Business Machines Corporation Multi-generational carrier platform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117417A (en) * 1986-11-05 1988-05-21 Nec Corp Vapor growth equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117417A (en) * 1986-11-05 1988-05-21 Nec Corp Vapor growth equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149769U (en) * 1989-05-18 1990-12-21
DE4404110A1 (en) * 1993-04-22 1994-10-27 Mitsubishi Electric Corp Substrate holder for MOCVD and MOCVD devices
DE4404110C2 (en) * 1993-04-22 1998-01-22 Mitsubishi Electric Corp Substrate holder for organometallic chemical vapor deposition
US5782979A (en) * 1993-04-22 1998-07-21 Mitsubishi Denki Kabushiki Kaisha Substrate holder for MOCVD
CN102639761A (en) * 2009-10-09 2012-08-15 克里公司 Multi-rotation epitaxial growth apparatus and reactors incorporating same
EP2486174A1 (en) * 2009-10-09 2012-08-15 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same
WO2011044412A1 (en) 2009-10-09 2011-04-14 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same
EP2486174A4 (en) * 2009-10-09 2013-11-06 Cree Inc Multi-rotation epitaxial growth apparatus and reactors incorporating same
US9637822B2 (en) 2009-10-09 2017-05-02 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same
US20110300297A1 (en) * 2010-06-07 2011-12-08 Veeco Instruments Inc. Multi-wafer rotating disc reactor with inertial planetary drive
WO2011156371A1 (en) * 2010-06-07 2011-12-15 Veeco Instruments, Inc. Multi-wafer rotating disc reactor with inertial planetary drive
CN102934220A (en) * 2010-06-07 2013-02-13 威科仪器有限公司 Multi-wafer rotating disc reactor with inertial planetary drive
US9230846B2 (en) * 2010-06-07 2016-01-05 Veeco Instruments, Inc. Multi-wafer rotating disc reactor with inertial planetary drive
US8794427B2 (en) 2011-09-20 2014-08-05 International Business Machines Corporation Multi-generational carrier platform
US8807318B2 (en) 2011-09-20 2014-08-19 International Business Machines Corporation Multi-generational carrier platform
DE102012216091B4 (en) * 2011-09-20 2016-10-20 International Business Machines Corporation Multi-generation carrier platform and method for operating a multi-generation carrier platform
JP2014049667A (en) * 2012-09-03 2014-03-17 Tokyo Electron Ltd Plasma processing apparatus, and substrate processing apparatus provided with the same

Similar Documents

Publication Publication Date Title
US4421786A (en) Chemical vapor deposition reactor for silicon epitaxial processes
TW589397B (en) Process chamber with a base with sectionally different rotational drive and layer deposition method in such a process chamber
US3608519A (en) Deposition reactor
JPS63147894A (en) Vapor growth method and vertical vapor growth device
JPH05152207A (en) Vapor growth method
JPS6090894A (en) Vapor phase growing apparatus
JPH0786173A (en) Film deposition
JPS63150912A (en) Formation of thin film and apparatus therefor
JPS61212014A (en) Semiconductor wafer processing device using chemical vapor deposition method
JPH04313220A (en) Metal organic vapor growth apparatus
JPH10177961A (en) Vapor growth device and method
JPS6316617A (en) Vapor growth equipment
JPH0193130A (en) Vertical furnace
JPH01133320A (en) Thin-film processing device
JPH02212393A (en) Vapor growth method and its device
JPH08250429A (en) Vapor growth method for semiconductor and its equipment
JPH01291421A (en) Vapor growth apparatus
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JPS5876139A (en) Vapor growth method
JPS6021528A (en) Plasma gas-phase reactor
JPS63300512A (en) Chemical vapor deposition apparatus
JPS61190948A (en) Film forming device
JPS63291894A (en) Reactor for vapor surface treatment
JPS61202424A (en) Chemical vapor deposition equipment
JPH0360027A (en) Vapor deposition device