JPS63146904A - Functional resin - Google Patents

Functional resin

Info

Publication number
JPS63146904A
JPS63146904A JP29436586A JP29436586A JPS63146904A JP S63146904 A JPS63146904 A JP S63146904A JP 29436586 A JP29436586 A JP 29436586A JP 29436586 A JP29436586 A JP 29436586A JP S63146904 A JPS63146904 A JP S63146904A
Authority
JP
Japan
Prior art keywords
resin
polymer
metal
functional
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29436586A
Other languages
Japanese (ja)
Inventor
Yoshimi Ogawa
義美 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP29436586A priority Critical patent/JPS63146904A/en
Publication of JPS63146904A publication Critical patent/JPS63146904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To provide a functional resin having a good reductive function and stable without being affected by moisture, etc. even when stored in air, by comprising a two-or three-dimensionally crosslinked polymer as a substrate and having functional groups with an anion-exchangeability. CONSTITUTION:A resin represented by either of structural formulas I-III [(R)1 is polymer substrate; (R)2, (R)3 and (R)4 are CxHyOz (x, z>=0, y>=1); (R)5 is metal such as B or Al; n>=1], comprising a two-or three-dimensionally crosslinked polymer as a substrate, having one or more functional groups consisting of quarternary ammonium groups, primary amino groups, secondary amino groups or tertiary amino groups and forming a salt with a metal hydride. The above- mentioned substrate usually includes a polystyrene polymer, a polymethacrylic acid polymer, an acrylic acid polymer and these copolymers with divinylbenzene, etc. The resin does not elute a metal ion, etc., into a soln. to be treated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機能性樹脂に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to functional resins.

更に詳しくは本発明は金属酸化物、各種化合物の還元剤
、水素ガス発生剤、有機化合物などの脱水剤、水素添加
剤、縮合剤として有用で、かつ。
More specifically, the present invention is useful as a reducing agent for metal oxides and various compounds, a hydrogen gas generating agent, a dehydrating agent for organic compounds, a hydrogenating agent, and a condensing agent.

新規な機能性樹脂に関するものである。This invention relates to a new functional resin.

(従来技術) アルデヒド、ケトン、エステル、ラクトン、酸クロライ
ド無水物、■ポキシド、過酸化物などの化合物、あるい
は官能基中にアミド、ラクタム。
(Prior art) Compounds such as aldehydes, ketones, esters, lactones, acid chloride anhydrides, poxides, peroxides, or amides and lactams in functional groups.

イミド、ニトリル、オキシムなどを有する化合物又は、
ジオール、サルファイド、トリサルファイド、スルホニ
ルハライド、チオシアネートなどの硫化物又は金属酸化
物を他の官能基や異なる構造の物質に還元する場合や有
機化合物の脱水、水素添加、縮合を行なう場合および単
に水素ガスの発生を目的とする場合工業的には常圧下ま
たは高圧下で直接水素ガスを用いて還元する方法、ある
いは分解または水などと反応して水 素を発生する固体状(粉末または顆粒)の水素化ホウ素
ナトリウム、水素化ホウ素カリウム、水素化ホウ素カル
シウム、水素化ホウ素亜鉛、水素化アルミニウム、水素
化カルシウム、水素化アルミニウムーリヂウム、水素化
アルミニウムーナトリウム、水素化トリエ1−キシアル
ミニウムーナトリウム、水素化ジイソブチルアルミニウ
ム、水素化ホウ素リチウム、水素化ホウ素セシウム、リ
ボフランなどの化合物を用いて還元を行なう方法などが
ある。
Compounds containing imides, nitriles, oximes, etc., or
When reducing sulfides or metal oxides such as diols, sulfides, trisulfides, sulfonyl halides, and thiocyanates to other functional groups or substances with different structures, when dehydrating, hydrogenating, and condensing organic compounds, and when simply using hydrogen gas When the purpose is to generate hydrogen, the industrial method is reduction using hydrogen gas directly under normal pressure or high pressure, or hydrogenation in solid form (powder or granules) that generates hydrogen by decomposition or reaction with water etc. Sodium boron, potassium borohydride, calcium borohydride, zinc borohydride, aluminum hydride, calcium hydride, hydridium aluminum hydride, sodium aluminum hydride, sodium triethyl-xyaluminum hydride, hydrogen There are methods of reduction using compounds such as diisobutylaluminum oxide, lithium borohydride, cesium borohydride, and ribofuran.

(発明が解決しようとする問題点) 上に述べたように、各種の物質を還元づ−る揚台。(Problem that the invention attempts to solve) As mentioned above, a platform for reducing various substances.

有力な還元方法が各種工業化されている。Various effective reduction methods have been industrialized.

しかしながら、これらの中で前者の水素ガスを用いて直
接還元する方法は高圧下で処理する場合が多く、容器の
材質が制限され、また必然的に耐圧設計を必要とする。
However, among these methods, the former method of direct reduction using hydrogen gas is often processed under high pressure, limits the material of the container, and necessarily requires a pressure-resistant design.

また、忙とえ常圧下で処理する場合でも極めて引火爆発
し易いという水素ガスの本質的な特性のため安全上の対
策を充分考慮する必要がある。
Furthermore, due to the inherent characteristic of hydrogen gas that it is extremely flammable and explosive even when processed under normal pressure, safety measures must be taken into consideration.

従って、必然的に設備経済性において不利となり、簡単
には還元処理が行えない。
Therefore, it is inevitably disadvantageous in terms of equipment economy, and reduction treatment cannot be performed easily.

また、後者のように種々の還元剤を用いて還元を行なう
場合は空気中の湿気、水、酸などで速やかに分解するも
のが多く、そのものの輸送、貯蔵などが繁雑となり、も
し分解したものをそのまま用いた場合には処理時に所定
の機能を発揮させることができない。
In addition, when reducing using various reducing agents as in the latter case, many of the substances are quickly decomposed by moisture in the air, water, acid, etc., making transportation and storage of the substances complicated, and if the decomposed substances are If used as is, it will not be possible to achieve the desired function during processing.

また、不純物除去法として製品中に少量混入させて用い
る場合もあるが、このような場合も含めて処理後に被処
理液中に分解した金属、金属塩。
In addition, metals and metal salts may be mixed into a product in small amounts as an impurity removal method, and metals and metal salts may be decomposed into the liquid to be treated after treatment, including in such cases.

又は金属イオンあるいは酸化金属イオンが残存すること
になる。
Alternatively, metal ions or oxidized metal ions will remain.

被処理液の用途1種類によってはこれらを除去する必要
があり、還元処理の後にイオン交換処理。
Depending on the type of use of the liquid to be treated, these must be removed, and ion exchange treatment is performed after reduction treatment.

沈降または濾過処理、活性白土処理などの工程が必要と
なる。
Steps such as sedimentation or filtration treatment and activated clay treatment are required.

従って当然のことながら工程が複雑となる。Therefore, as a matter of course, the process becomes complicated.

そこで本発明者らは上)ホの水素化ホウ素ナトリウムな
どの還元剤を用いる還元方法による工程を簡素化するた
めに鋭意検討した結果、ポリスチレン系、ポリメタクリ
ル酸系、アクリル酸系、及びそれらとジビニルベンゼン
などとの共重合体系の高分子物を基体とし、陰イオンを
交換する能力を有する4級アンモニウム基、又は1級ア
ミン又(ま2級アミン又は3級アミンなどのような官能
基を有する樹脂、すなわち、一般的にはイオン交換樹脂
と称される高分子物の対イオンとして水素化金属イオン
を吸着した樹脂が前述の種々の還元剤と同様の還元機能
を有し、しかも空気中で保存しても湿気などによる影響
を受けず、安定でかつ、被処理液中には金属イオンなど
の解離溶出することがないことを見出し2本発明を完成
させた。
Therefore, the present inventors conducted intensive studies to simplify the process using a reduction method using a reducing agent such as sodium borohydride (e) above, and found that polystyrene-based, polymethacrylic acid-based, acrylic acid-based, and The base material is a polymer based on a copolymer with divinylbenzene, etc., and contains a quaternary ammonium group that has the ability to exchange anions, or a functional group such as a primary amine (or secondary amine or tertiary amine). A resin that has a hydrogenated metal ion adsorbed as a counter ion of a polymer, generally called an ion exchange resin, has the same reducing function as the various reducing agents mentioned above, and also has a reducing effect in the air. The present inventors have completed the present invention by discovering that it is stable and unaffected by humidity even when stored in water, and that metal ions and the like do not dissociate and elute into the liquid to be treated.

(発明の構成) すなわち1本発明は 「二次元あるいは三次元的に架橋した重合物を基体とし
、少なくとも一個以上の4級アンモニウム基又は1級ア
ミン又は2級アミン又は3級アミンからなる官能基を有
し、水素化金属イオンと塩を形成した下記いずれかの構
造式で示されることを特徴とする機能性樹脂。
(Structure of the Invention) That is, 1. The present invention is based on a functional group consisting of at least one quaternary ammonium group, a primary amine, a secondary amine, or a tertiary amine, which is based on a two-dimensionally or three-dimensionally crosslinked polymer. A functional resin having one of the following structural formulas, which forms a salt with a hydrogenated metal ion.

(R)3 但し くR)1 ;重合物基体 (R)2   :Cx  H,02(X、   Z  
≧  0.   V  ≧  1)(R) ;同上 (R) ;同上 (R)  :B、AIなどの金属 n≧1j である。
(R)3 However, R)1; Polymer substrate (R)2: Cx H,02(X, Z
≧0. V≧1) (R); Same as above (R); Same as above (R): Metal n≧1j such as B and AI.

本発明における二次元または三次元に架橋された構造を
有する樹脂というのは以下のものを含む。
The resin having a two-dimensional or three-dimensional crosslinked structure in the present invention includes the following.

スチレン、メタクリル酸、アクリル酸、ジビニルベンゼ
ンなどの単独重合物または二つ以上を重合開始剤を加え
てラジカル重合を行なわせ架橋構造としたものである。
A homopolymer of styrene, methacrylic acid, acrylic acid, divinylbenzene, etc. or two or more thereof is radically polymerized by adding a polymerization initiator to form a crosslinked structure.

次にこれをクロルメチル化し9次いでアミンを反応させ
ると4級アンモニウム基または1級アミンまたは2級ア
ミンまたは3級アミンなどの官能基を少なくとも分子内
に1個以上導入させることが出来る。
Next, by chloromethylating this and then reacting with an amine, at least one functional group such as a quaternary ammonium group, a primary amine, a secondary amine, or a tertiary amine can be introduced into the molecule.

この高分子は通常陰イオンを交換することができる陰イ
オン交換樹脂と称されている。
This polymer is commonly referred to as an anion exchange resin capable of exchanging anions.

これらはその塩基性の強さにより強塩基性陰イオン交換
樹脂と弱塩基性陰イオン交換樹脂に分類することができ
る。
These can be classified into strongly basic anion exchange resins and weakly basic anion exchange resins depending on the strength of their basicity.

■業的には強塩基性陰イオン交換樹脂としてはローム&
ハース社のIRA−401,IRA−402、IRA−
402−BL、IRA−400゜IRA−400T、I
RA−430,1RA−4358、IRA−900,I
RA−938,IRA−958,IRA−410,IR
A−411゜IRA−910,A−26,A−27,三
菱化成社の5A−10A、5A−11A、SA#100
゜5A−20A、5A−21A、PA  404.PA
  406.PA  408.PA  410.PA4
12、PA  414.PA  416.PA418、
PA 420などがある。
■In terms of industry, ROHM&
Haas IRA-401, IRA-402, IRA-
402-BL, IRA-400゜IRA-400T, I
RA-430,1RA-4358,IRA-900,I
RA-938, IRA-958, IRA-410, IR
A-411゜IRA-910, A-26, A-27, Mitsubishi Chemical's 5A-10A, 5A-11A, SA#100
゜5A-20A, 5A-21A, PA 404. P.A.
406. PA408. PA410. PA4
12, PA 414. PA416. PA418,
There are PA 420, etc.

また9弱塩基性陰イオン交換樹脂としてはローム&ハー
ス社のIRA−68,[RA−45゜IRA−35,I
RA−94,IRA−99,IRA−743などがある
が、特にこの還元機能を有する高分子体としては強塩基
性陰イオン交換樹脂が好ましい。
In addition, as a 9 weakly basic anion exchange resin, IRA-68, [RA-45゜IRA-35, IRA-45゜IRA-35, IRA-45゜
Although examples include RA-94, IRA-99, and IRA-743, strongly basic anion exchange resins are particularly preferred as the polymer having this reducing function.

この陰イオン交換樹脂の対イオンを結合させるための水
素化金属塩としては水素化ホウ素ナトリウム、水素化ホ
ウ素カリウム、水素化ホウ素カルシウム、水素化アルミ
ニウム、水素化リチウム。
Examples of metal hydride salts for binding the counter ions of this anion exchange resin include sodium borohydride, potassium borohydride, calcium borohydride, aluminum hydride, and lithium hydride.

水素化セシウム、水素化カルシウム、水素化アルミニウ
ムーリチウム、水素化アルミニウムーナトリウムなどが
あり、特に安定でかつ、水溶液中で解離し易い水素化ホ
ウ素ナトリウム、水素化ホウ素カリウムなどが好ましい
Examples include cesium hydride, calcium hydride, lithium aluminum hydride, and sodium aluminum hydride. Particularly preferred are sodium borohydride, potassium borohydride, and the like, which are stable and easily dissociated in an aqueous solution.

本発明における機能性樹脂の製法は前述の陰イオン交換
樹脂の遊離型か、あるいは化学的に安定な塩素塩型を用
い、同じく前述の水素化金属塩が解離した状態でのその
水素化金属イオンが陰イオン交換樹脂の固定イオンと対
イオンとなるものであり、その交換反応時の温度は0〜
120℃、好ましくは5〜80℃である。
The method for producing the functional resin in the present invention uses the above-mentioned free form of the anion exchange resin or the chemically stable chlorine salt form, and also uses the above-mentioned metal hydride salt in a dissociated state, and the metal hydride ions thereof are used. is the fixed ion and counter ion of the anion exchange resin, and the temperature during the exchange reaction is 0 to
The temperature is 120°C, preferably 5 to 80°C.

その理由は温度が低いと交換能が低下し、水素化金属イ
オンと陰イオン交換樹脂の対イオンの交換が充分行なわ
れない可能性がある。
The reason for this is that when the temperature is low, the exchange ability decreases, and there is a possibility that the metal hydride ion and the counter ion of the anion exchange resin are not sufficiently exchanged.

また、120℃以上になると官能基が解離し。Furthermore, when the temperature exceeds 120°C, the functional groups dissociate.

陰イオン交換機能が失われるからである。This is because the anion exchange function is lost.

また、水素化金属アルミニウム塩である機能性樹脂への
転化方法は一般的にイオン交換樹脂の再生、転化方法と
同様の方法で行なうが、その1例を以下に示す。
Further, the conversion method to a functional resin which is a metal aluminum hydride salt is generally carried out in the same manner as the regeneration and conversion method of an ion exchange resin, and one example thereof is shown below.

すなわち (a)使用する樹脂の精製 (b)水素化金属アンモニウム塩型機能性樹脂への転化 (C)必要に応じて転化した機能性樹脂の後精製(d)
乾燥 という手順である。
That is, (a) Purification of the resin used (b) Conversion to metal ammonium hydride salt type functional resin (C) Post-purification of the converted functional resin as necessary (d)
The process is called drying.

樹脂の精製は1〜80wt%のに叶、 NaOH、Ca
(叶)2水溶液などアルカリ性水溶液あるいはアルカリ
性で、かつ、イオンを有していない溶剤を用いたもので
洗浄する。
Purification of the resin uses 1 to 80 wt% of Nikan, NaOH, and Ca.
(Kano) 2 Clean with an alkaline aqueous solution such as an aqueous solution or an alkaline solvent that does not contain ions.

好ましくは1〜50%のアルカリ水溶液を用いる。Preferably, a 1-50% alkaline aqueous solution is used.

その後イオンを含まない水または溶剤で洗浄してもよい
It may then be washed with ion-free water or solvent.

また、1〜8Qwt%濃度の塩酸などの酸性水溶液ある
いはイオンを有していない溶剤を用いて再洗浄する。
Further, it is washed again using an acidic aqueous solution such as hydrochloric acid having a concentration of 1 to 8 Qwt% or a solvent that does not contain ions.

塩酸の好ましい濃度は1〜5Qwt%である。The preferred concentration of hydrochloric acid is 1 to 5 Qwt%.

その後イオンを含まない水あるいは溶剤で洗浄してもよ
い。
It may then be washed with ion-free water or solvent.

以上の操作を少なくとも1回以上繰返し必要に応じて乾
燥させてもよい6 水素化金属アンモニウム塩である機能性樹脂への転化は
前述のように精製したイオン交換樹脂に一般的な転化方
法と同様バッチあるいはカラムなどの連続操作により水
素化金属イオンと機能性樹脂の固定イオンとの結合を行
なわせるか、もしくは機能性樹脂の塩素イオンなどの対
イオンとイオン交換させる。
The above operation may be repeated at least once and dried if necessary. 6 The conversion to a functional resin which is a metal ammonium hydride salt is the same as the general conversion method for purified ion exchange resins as described above. The metal hydride ions are bonded to the fixed ions of the functional resin through continuous operations such as batch or column operations, or ion exchange is performed with counter ions such as chloride ions of the functional resin.

この場合における水素化金属イオン塩は水溶液あるいは
溶剤に0.1〜g□wt%になるように溶解させて使用
するが、好ましくは1〜5Qwt%水溶液を用いる。
In this case, the metal hydride ion salt is used by dissolving it in an aqueous solution or a solvent to a concentration of 0.1 to 5 Qwt%, preferably a 1 to 5 Qwt% aqueous solution.

また、溶液のPHが5〜14.好ましくはPHが7アル
力リ性化合物を添加し、Pllを調整してもよい。
In addition, the pH of the solution is 5 to 14. Preferably, an alkaline compound having a pH of 7 may be added to adjust Pll.

PHが5未満の場合は水素化金属塩の分解速度が速く、
充分なイオン交換量が保てなくなるおそれがある。
When the pH is less than 5, the decomposition rate of the metal hydride is fast;
There is a possibility that a sufficient amount of ion exchange cannot be maintained.

また、 PHが10を越える場合はアルカリ性の他のイ
オンによる場合が多く、水素化金属イオンの交換よりも
伯の強塩基性イオンの結合が増加し。
In addition, when the pH exceeds 10, it is often caused by other alkaline ions, and the binding of strong basic ions increases rather than the exchange of hydride metal ions.

やはり単位樹脂重量当たりの還元能力が低下するおそれ
があるからである。
This is because there is a risk that the reducing ability per unit weight of resin will decrease.

転化後は必要に応じ、イオンを含まない水あるいは溶剤
で洗浄し、乾燥させてもよい。
After conversion, if necessary, it may be washed with ion-free water or a solvent and dried.

(発明の効果) 以上のようにして得られる水素化金属アンモニウム塩の
構造を有する機能性樹脂はアルデヒド。
(Effects of the Invention) The functional resin having the structure of a metal ammonium hydride salt obtained as described above is an aldehyde.

ケトン、エステル、ラクトン、酸クロライド無水物、エ
ポキシド、過酸化物などの化合物あるいは官能基中にア
ミド、ラクタム、イミド、ニトリル。
Compounds such as ketones, esters, lactones, acid chloride anhydrides, epoxides, peroxides, or amides, lactams, imides, nitriles in functional groups.

−   ] ン   − オキシムなどを有する化合物あるいはジチオール。−    】    − Compounds containing oximes, etc. or dithiols.

ジサルファイド、トリサルファイド、スルホニルハライ
ド、ヂオシアネートなどの硫化物又は又は金属酸化物の
還元をする場合、有機化合物などの脱水、水素添加縮合
を行なう場合、単に水素ガスを発生させる目的で用いる
場合に使用することによって比較的、化学的に安定な状
態で貯蔵し、従来の各種の還元剤や水素の直接還元と同
能力の還元処理が可能で、しかも被処理液中への金属、
金属塩などの混入がなく、また、簡便な操作で還元処理
ができる。
Used when reducing sulfides or metal oxides such as disulfides, trisulfides, sulfonyl halides, and diocyanates, when dehydrating organic compounds, hydrogenation condensation, or simply generating hydrogen gas. By doing so, it can be stored in a relatively chemically stable state, and it is possible to perform a reduction treatment with the same capacity as the direct reduction of various conventional reducing agents and hydrogen, and it is possible to reduce metals and
There is no contamination with metal salts, etc., and reduction treatment can be performed with simple operations.

本発明の機能性樹脂について以下に実施例を挙げて説明
するがこれらによって本発明が限定されるものではない
The functional resin of the present invention will be described below with reference to Examples, but the present invention is not limited to these.

Claims (1)

【特許請求の範囲】 二次元あるいは三次元的に架橋した重合物を基体とし、
少なくとも一個以上の4級アンモニウム基又は1級アミ
ン又は2級アミン又は3級アミンからなる官能基を有し
、水素化金属イオンと塩を形成した下記( I )(II)
(III)いずれかの構造式で示されることを特徴とする
機能性樹脂。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) 但し (R)_1;重合物基体 (R)_2;C_xH_yO_z(x、z≧0、y≧1
) (R)_3;同上 (R)_4;同上 (R)_5;B、Alなどの金属 n≧1
[Claims] A base made of a two-dimensionally or three-dimensionally crosslinked polymer,
The following (I) and (II) have at least one quaternary ammonium group, or a functional group consisting of a primary amine, a secondary amine, or a tertiary amine, and form a salt with a hydrogenated metal ion.
(III) A functional resin characterized by being represented by any one of the structural formulas. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) However, (R)_1; Polymer base (R) )_2;C_xH_yO_z(x, z≧0, y≧1
) (R)_3; Same as above (R)_4; Same as above (R)_5; Metal n≧1 such as B and Al
JP29436586A 1986-12-10 1986-12-10 Functional resin Pending JPS63146904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29436586A JPS63146904A (en) 1986-12-10 1986-12-10 Functional resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29436586A JPS63146904A (en) 1986-12-10 1986-12-10 Functional resin

Publications (1)

Publication Number Publication Date
JPS63146904A true JPS63146904A (en) 1988-06-18

Family

ID=17806765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29436586A Pending JPS63146904A (en) 1986-12-10 1986-12-10 Functional resin

Country Status (1)

Country Link
JP (1) JPS63146904A (en)

Similar Documents

Publication Publication Date Title
US4615806A (en) Removal of iodide compounds from non-aqueous organic media
CA2577761A1 (en) Modified anion exchange materials with metal inside the materials, method of making same and method of removing and recovering metals from solutions
US3791866A (en) Recovery of waste brine regenerant
US4025467A (en) Strong anion exchange resins free of active chloride and method of preparation
US4060465A (en) Method of purifying the raw brine used in alkali salt electrolysis
US3842000A (en) Process for removal of ammonia from aqueous streams
US2789036A (en) Purification of concentrated alkali metal hydroxide by ion exchange
US4150205A (en) Composite ion exchange resins having low residual amounts of quaternary ammonium cation
JP3629743B2 (en) Method for producing activated carbon
JPS63146904A (en) Functional resin
US4154801A (en) Process for purifying alkali metal hydroxide or carbonate solutions
JPH02233503A (en) Purification of hydrochloric acid
US5484511A (en) Process for the removal of impurities from hydrazine hydrate
KR101701172B1 (en) Hydrogen fluoride adsorbent and selective removal of hydrogen fluoride using the same
JP3866837B2 (en) Ion adsorbent
CA1119416A (en) Process for nickel removal from concentrated aqueous cobaltous sulfate solutions
CN105801900B (en) A kind of imprinted polymer preparation method and application of optional enrichment F- ions
JPH0568969A (en) Adsorption and removal of phosphate ion
JPH0450859B2 (en)
JPH02191543A (en) Method for removing fluoride ion
JPH0218906B2 (en)
JPH0455312A (en) Method for removing metal in caustic alkali solution
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
US3700610A (en) Copolymers of vinylpyridines with 1,3,5-triacryloylhexahydro-1,3,5-triazine
SU1223992A1 (en) Method of processing sorbent