JPS63146004A - Optical transmission fiber - Google Patents

Optical transmission fiber

Info

Publication number
JPS63146004A
JPS63146004A JP61292383A JP29238386A JPS63146004A JP S63146004 A JPS63146004 A JP S63146004A JP 61292383 A JP61292383 A JP 61292383A JP 29238386 A JP29238386 A JP 29238386A JP S63146004 A JPS63146004 A JP S63146004A
Authority
JP
Japan
Prior art keywords
refractive index
fiber
meth
core component
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61292383A
Other languages
Japanese (ja)
Inventor
Fumito Aozai
青才 文人
Hiroshi Fukushima
福島 洋
Hisako Hado
羽土 久子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61292383A priority Critical patent/JPS63146004A/en
Publication of JPS63146004A publication Critical patent/JPS63146004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a large-diameter optical transmission fiber made of plastic having excellent flexibility and greatly improved environmental resistance characteristics such as resistance to heat, cold, moisture, oscillation and radiation by using a copolymer of diethylene glycol bisallyl carbonate and specific acryl (meth)acrylate as a core component and an org. polymer having the refractive index lower than the refractive index of the core component as a cladding component. CONSTITUTION:The copolymer of the diethylene glycol bisally carbonate and the acryl (meth)acrylate expressed by formula I is used as the core component and the org. polymer having the refractive index lower by >=0.01 than the refractive index of the core component is used as the cladding component. In formula, R1, R2 are a hydrogen atom or hydrocarbon group of 1-1.8C. The optical fiber which has the excellent flexibility and environmental resistance characteristics and exhibits the characteristics thereof particularly when the fiber is made to a large diameter is obtd. Methyl methacrylate yields the particularly good core material as the more specific example of the copolymer expressed by formula.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は可撓性に非常に優れ、耐環境特性に極めて優れ
た光伝送性繊維とくに大口径とした場合にその特性全発
揮する元学瞭維に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is an optical fiber that exhibits excellent flexibility and environmental resistance, and which exhibits all of its characteristics especially when made into a large diameter fiber. Concerning Liaowei.

〈従来技術〉 従来、光伝送性繊維としては、広い波長にわたって優れ
た光伝送性を有する無機ガラス系のものが知られている
が、加工性が悪く曲げ応力に弱いばかりでなく高価であ
ることから合成樹脂を芯とする光伝送!!、繊維が開発
されている。
<Prior art> Inorganic glass-based fibers have been known to have excellent optical transmission properties over a wide range of wavelengths, but they are not only difficult to process and susceptible to bending stress, but also expensive. Optical transmission using synthetic resin as the core! ! , fibers have been developed.

合成樹脂性の光伝送性繊維は屈折率が大きく、かつ元の
透過性が良好な重合体を芯とし、これよりも屈折率が小
さく、かつ透明な重合体を鞘とした芯−鞘構造を有する
繊維を製造することによって得られる。光透過性の高い
芯成分として有用な重合体としては、無定形の材料が好
ましく、ポリメタクリル酸メチルあるいはポリスチレン
が一般に使用されている。これら芯成分形成用重合体の
うち、ポリメタクリル酸メチルは透明性をはじめとして
力学的性質、熱的性質、耐候性等に優れ、高性能プラス
チック元伝送性繊維の芯材として工業的に用いられてい
る。しかし、このポリメタクリル酸メチルを芯としたグ
ラスチック光伝送性繊維といえども可倒性においては光
分といえるものではなく、直径が11以上になると剛直
で折れやすいものであり、大容量の光を送ることが要求
される大口径のライトガイド等の用途においては、十分
な性能を発揮することができず、大口径で柔軟な光伝送
性繊維の開発が要請されている。
Synthetic resin light transmitting fibers have a core-sheath structure in which the core is a polymer with a high refractive index and good original transparency, and the sheath is a transparent polymer with a lower refractive index. It can be obtained by manufacturing fibers with The polymer useful as a core component with high light transparency is preferably an amorphous material, and polymethyl methacrylate or polystyrene is generally used. Among these polymers for forming core components, polymethyl methacrylate has excellent transparency, mechanical properties, thermal properties, weather resistance, etc., and is used industrially as a core material for high-performance plastic transmission fibers. ing. However, even though this glass fiber is made of polymethyl methacrylate as its core, it cannot be said to be a light transmitting fiber in terms of foldability, and if the diameter exceeds 11, it is rigid and easy to break. In applications such as large-diameter light guides that are required to transmit light, sufficient performance cannot be achieved, and there is a need for the development of large-diameter, flexible light-transmitting fibers.

ま九、ポリメタクリル酸メチルを芯とし次プラスチック
光伝送性繊維はポリメタクリル酸メチルのガラス転移温
度が1000であり、使用環境条件が100C以上にな
ると全く使用することができず、また耐薬品性、耐熱水
性にも劣るため、グラスチック光伝送性繊維の用途を限
られ次ものにしている。
Nine, plastic light transmitting fibers with polymethyl methacrylate as the core have a glass transition temperature of 1000, and cannot be used at all if the environmental conditions exceed 100C, and have poor chemical resistance. However, because of their poor hot water resistance, the applications of glassy optical fibers are limited.

〈発明の構成〉 そこで、本発明者らは、かかる従来のグラスチック光伝
送繊維の欠点を克服した可撓性に優れ、耐熱性、耐寒、
耐湿、耐蛋動、耐放射線等の耐環境特性が大幅に向上し
た大口径のグラスチック元伝送繊維を開発すべく鋭意検
討の結果、本発明に到達した。
<Structure of the Invention> Therefore, the present inventors have developed a fiber that overcomes the drawbacks of the conventional glass optical transmission fiber and has excellent flexibility, heat resistance, cold resistance,
The present invention was achieved as a result of intensive research aimed at developing a large-diameter glass-based transmission fiber with significantly improved environmental resistance properties such as moisture resistance, resistance to oscillation, and resistance to radiation.

すなわち、本発明はジエチレングリコールヒスアリルカ
ーボネー)(Al、一般式〔I〕で示される(メタ)ア
クリル酸アルキルエステル(B)OH2= 0−Go−
R2(1) (式中、R1,R2は水素原子又は炭素数1〜18の炭
化水素基である。) との共重合体を芯成分とし、該芯成分の屈折率よ90.
01以上低い屈折率を有し、実質的に透明で可撓性良好
な有機重合体(C1を鞘成分とすることを特徴とする光
伝送繊維である。
That is, the present invention provides diethylene glycol hisallyl carbonate) (Al, (meth)acrylic acid alkyl ester (B) OH2= 0-Go- represented by the general formula [I]
A copolymer with R2 (1) (wherein R1 and R2 are hydrogen atoms or hydrocarbon groups having 1 to 18 carbon atoms) is used as a core component, and the refractive index of the core component is 90.
It is a light transmission fiber characterized by having a substantially transparent and flexible organic polymer (C1) as a sheath component, and having a refractive index as low as 0.01 or more.

本発明の光伝送繊維の芯成分に用いられる共重合体の一
成分である一般式[1)で示される(メタ)アクリル酸
アルキルエステル(Blの具体例としては、メチル(メ
タ)アクリレート、エチル(メタ)アクリレート、プロ
ピル(メタ)アクリレートフチル(メタ)アクリレ−)
、2−xチルヘキシル(メタ)アクリレート、ステアリ
ル(メタ)アクリレート等が挙げられる。
Specific examples of the (meth)acrylic acid alkyl ester (Bl) represented by the general formula [1], which is one component of the copolymer used as the core component of the optical transmission fiber of the present invention, include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate phthyl (meth)acrylate)
, 2-x tylhexyl (meth)acrylate, stearyl (meth)acrylate, and the like.

中でもメチルメタクリレートがとくに良好な光透過性、
耐熱性、可撓性良好な芯材を提供することができる。
Among them, methyl methacrylate has particularly good light transmittance,
A core material with good heat resistance and flexibility can be provided.

ジエチレングリコールビスアリルカーボネート(A)と
一般式(Dで示される(メタ)アクリル酸アルキルエス
テルFBl t−共重合する場合、本発明の第1成分で
あるジエチレングリコールビスアリルカーボネート(A
l、10〜100重素部、本発明の第2成分である一般
式〔1〕で示される(メタ)アクリル酸アルキルエステ
ル(B)、0〜90重量部となるようにモノマーを配合
するのが好ましい。
When copolymerizing diethylene glycol bisallyl carbonate (A) with a (meth)acrylic acid alkyl ester FBl t represented by the general formula (D), diethylene glycol bisallyl carbonate (A), which is the first component of the present invention, is copolymerized with diethylene glycol bisallyl carbonate (A).
1, 10 to 100 parts by weight, and (meth)acrylic acid alkyl ester (B) represented by the general formula [1], which is the second component of the present invention, 0 to 90 parts by weight. is preferred.

本発明において使用可能な鞘成分は芯成分重合体の屈折
率より0.01以上低い屈折率を有し、実質的に透明な
有機重合体(C)であることが必要である。芯成分形成
用重合体と鞘取分形成用重合体との屈折率の差が0.0
1未満では得られる光伝送性繊維の開口数が小さいばか
シでなく、伝送損失は極めて大きくなるからである。
The sheath component that can be used in the present invention needs to be a substantially transparent organic polymer (C) that has a refractive index that is 0.01 or more lower than the refractive index of the core component polymer. The difference in refractive index between the core component forming polymer and the sheath component forming polymer is 0.0.
This is because if it is less than 1, the numerical aperture of the optically transmitting fiber obtained will not be small, but the transmission loss will be extremely large.

このように本発明の光伝送性繊維の鞘成分として用いる
有機重合体IC)の例としては、たとえばポリテトラフ
ルオロエチレン、テトラフルオロエチレン/バーフルオ
ロアルキルビニルエーテル共重合体、テトラフルオロエ
チレン/ヘキサフルオロプロピレン共重合体、等が使用
可能である。
Examples of the organic polymer IC) used as the sheath component of the light transmitting fiber of the present invention include polytetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, and tetrafluoroethylene/hexafluoropropylene. Copolymers, etc. can be used.

本発明の光伝送性繊維の芯部の径は従来の光伝送性繊維
の範囲5〜3000μm はもちろん、可撓性に優れて
いることから、3000μm よりさらに太(son程
度の超極太の光伝送路も製造できる。
The diameter of the core of the optically transmitting fiber of the present invention is not only within the range of 5 to 3,000 μm for conventional optically transmitting fibers, but due to its excellent flexibility, it is even thicker than 3,000 μm (an ultra-thick optical transmitting fiber on the order of son). Roads can also be manufactured.

鞘層の厚さは1μm 以上の厚さがその光伝送性全良好
に保つために必要となるが、鞘層の上限は使用目的に応
じて適宜選択するのがよい。
The thickness of the sheath layer is required to be 1 μm or more in order to maintain good optical transmission properties, but the upper limit of the sheath layer is preferably selected depending on the purpose of use.

また、本発明の光伝送性繊維を補強するために別種のポ
リマー、例えば、ポリアミド、ポリアミド繊維、ポリア
ミド繊維、金属繊維、炭素繊維等のテンションメンバー
全併用シテ元7アイバーケーブルとすることも可能であ
る。
In addition, in order to reinforce the optical transmission fiber of the present invention, it is also possible to use a different type of polymer, for example, polyamide, polyamide fiber, polyamide fiber, metal fiber, carbon fiber, etc., to create a fiber cable in which all the tension members are combined. be.

本発明の光伝送繊維全製造するには、例えば、芯成分と
して、ジエチレングリコールビスアリルカーボネート(
A)と一般式〔1〕で示される(メタ)アクリル酸アル
キルエステル(Bl及び過酸化物等の硬化触媒を所定の
配合により混合した後、所定の内径を有する鞘形用重合
体で作られた中空体中に吸引あるいは圧入し、熱風乾燥
炉内等で芯成分を重合架橋する方法をとるのが好しい。
In order to fully manufacture the optical transmission fiber of the present invention, for example, diethylene glycol bisallyl carbonate (
A) and a (meth)acrylic acid alkyl ester (Bl) represented by the general formula [1] and a curing catalyst such as peroxide are mixed in a predetermined composition, and then a sheath-shaped polymer having a predetermined inner diameter is made. It is preferable to use a method in which the core component is suctioned or press-fitted into a hollow body, and the core component is polymerized and crosslinked in a hot air drying oven or the like.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

なお実施例にかいて用いた「部」は重量部を示す。Note that "parts" used in the examples indicate parts by weight.

実施例1 ジエチレングリコールビスアリルカーボネート60部、
メチルメタクリレート40部、ジインプロピルパーオキ
シパーカーボネー)0.8部を混合し、室温で攪拌した
後、0.1μm の孔径のメンブランフィルタ−により
濾過した。
Example 1 60 parts of diethylene glycol bisallyl carbonate,
40 parts of methyl methacrylate and 0.8 parts of diimpropyl peroxypercarbonate were mixed, stirred at room temperature, and then filtered through a membrane filter with a pore size of 0.1 μm.

この溶液をテトラフルオロエチレン/ヘキサフルオロプ
ロピレン=85/+5の共重合体(ηo1.5a )よ
りなる内径10鬼、外径12t、長さ10WLの中空パ
イプ中に注入した後、SaCの熱風乾燥炉に入れ、約3
時間で+OOCまで昇温した後100Cで2時間保持し
、大口径光伝送性繊維を得た。
This solution was injected into a hollow pipe made of a copolymer of tetrafluoroethylene/hexafluoropropylene = 85/+5 (ηo1.5a) with an inner diameter of 10 mm, an outer diameter of 12 tons, and a length of 10 WL, and then heated in a SaC hot air drying oven. about 3
The temperature was raised to +OOC over an hour and then held at 100C for 2 hours to obtain a large-diameter optically transmitting fiber.

この光伝送性繊維の660nm Vcおける伝送損失と
可撓性評価結果を第1表に示した。
Table 1 shows the transmission loss and flexibility evaluation results at 660 nm Vc of this optically transmitting fiber.

実施例2 実□施例1でテトラフルオロエチレン/ヘキサフルオロ
プロピレン共重合体よりなる内径1.5鬼、外径2.3
 %の中空糸を鞘材として用いる以外は実施例1と同様
にして光伝送繊維を得て、この繊維を5龍φの細いマン
ドレルに10回巻きつけて60分間(20C)保持した
後、660nm  における伝送損失を測定して可撓性
評価とした。
Example 2 Practical □ In Example 1, the inner diameter was 1.5 mm and the outer diameter was 2.3 mm, which was made of tetrafluoroethylene/hexafluoropropylene copolymer.
An optical transmission fiber was obtained in the same manner as in Example 1 except that a hollow fiber of The flexibility was evaluated by measuring the transmission loss.

得られ友結果を第1表に示し友。The results obtained are shown in Table 1.

実施例3 実施例2でメチルメタクリレートの代りに、2−エチル
ヘキシル、メタクリレートを用いる以外は実施例2と同
様にした。得られた光伝送性繊維の%性を測定した結果
を第1表に示した。
Example 3 The same procedure as Example 2 was carried out except that 2-ethylhexyl and methacrylate were used instead of methyl methacrylate. Table 1 shows the results of measuring the percentage properties of the light transmitting fibers obtained.

実施例4 実施例2でテトラフルオロエチレン/ヘキサフルオロプ
ロピレン共重合体よりなる中空バイブの代りにフン化ビ
ニリデン/ヘキサフルオログロピレン共重合体よりなる
内径1.5酊φ、外径2.3龍のフッ素ゴム中空糸を用
いる以外は実施例2と同様にして光伝送繊維を得、その
特性を測定した結果を第1表に示した。
Example 4 In place of the hollow vibrator made of tetrafluoroethylene/hexafluoropropylene copolymer in Example 2, a hollow vibrator made of vinylidene fluoride/hexafluoroglopylene copolymer with an inner diameter of 1.5 mm and an outer diameter of 2.3 mm was used. A light transmission fiber was obtained in the same manner as in Example 2 except that the fluororubber hollow fiber was used, and the properties of the fiber were measured and the results are shown in Table 1.

実施例5〜7 実施例2でジエチレングリコールビスアリルカーボネー
トとメチルメタクリレートの混合比を第1表に示す組成
としたほかは実施例と同様の方法で光伝送繊維を得、そ
の性能を測定した結果を第1表に合せて示す。
Examples 5 to 7 Optical transmission fibers were obtained in the same manner as in Example 2 except that the mixing ratio of diethylene glycol bisallyl carbonate and methyl methacrylate was changed to the composition shown in Table 1, and the results of measuring the performance are as follows. It is also shown in Table 1.

比較例1 実施例2でジエチレングリコールビスアリルカーボネー
トの代りに、2,2−ビス(4(2−メタクリロイルオ
キシエトキシ)フェニルーグロパン〕を用いる他は実施
例2と同様にした。
Comparative Example 1 The same procedure as in Example 2 was carried out except that 2,2-bis(4(2-methacryloyloxyethoxy)phenyl-glopane) was used instead of diethylene glycol bisallyl carbonate.

得られた結果全第1表に合わせて示した。All the results obtained are shown in Table 1.

比較例2 実施例2でジエチレングリコールビスアリルカーボネー
トの代りに、ジエチレングリコールジメタクリレートを
用いる他は実施例2と同様にして光学繊維を得、その性
能全測定した。結果を第1表に合わせて示した。
Comparative Example 2 An optical fiber was obtained in the same manner as in Example 2 except that diethylene glycol dimethacrylate was used instead of diethylene glycol bisallyl carbonate, and its performance was completely measured. The results are shown in Table 1.

第1表中芯材組底、鞘材ポリマー欄における略号はそれ
ぞれ下記のものである。
In Table 1, the abbreviations in the core material assembly bottom and sheath material polymer columns are as follows.

oGa :ジエチレングリコールビスアリルカーボネー
ト MMA:メチルメタクリレート EHM入:2−エチルへキシルメタクリレートBBMO
P  : 2.2−ビス〔2−メタクリロイルオキシエ
トキシフェニルフプロパン OMAニジエチレングリコールジメタクリレート
oGa: Diethylene glycol bisallyl carbonate MMA: Methyl methacrylate EHM containing: 2-ethylhexyl methacrylate BBMO
P: 2.2-bis[2-methacryloyloxyethoxyphenylphpropane OMA diethylene glycol dimethacrylate

Claims (1)

【特許請求の範囲】 1)ジエチレングリコールビスアリルカーボネート(A
)、一般式〔 I 〕で示される(メタ)アクリル酸アル
キルエステル(B) ▲数式、化学式、表等があります▼〔 I 〕 (式中、R_1、R_2は水素原子又は炭素原子数1〜
18の炭化水素基である。) との共重合体を芯成分とし、該芯成分の屈折率より0.
01以上低い屈折率を有する有機重合体(C)を鞘成分
とすることを特徴とする光伝送繊維。 2)一般式〔 I 〕で示される(メタ)アクリル酸アル
キルエステルがメチルメタクリレートであることを特徴
とする光伝送繊維。
[Claims] 1) Diethylene glycol bisallyl carbonate (A
), (meth)acrylic acid alkyl ester (B) represented by the general formula [ I ] ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ [ I ] (In the formula, R_1 and R_2 are hydrogen atoms or carbon atoms from 1 to
18 hydrocarbon groups. ) is used as a core component, and the refractive index is 0.
An optical transmission fiber characterized in that the sheath component is an organic polymer (C) having a refractive index as low as 0.01 or more. 2) An optical transmission fiber characterized in that the (meth)acrylic acid alkyl ester represented by the general formula [I] is methyl methacrylate.
JP61292383A 1986-12-10 1986-12-10 Optical transmission fiber Pending JPS63146004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292383A JPS63146004A (en) 1986-12-10 1986-12-10 Optical transmission fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292383A JPS63146004A (en) 1986-12-10 1986-12-10 Optical transmission fiber

Publications (1)

Publication Number Publication Date
JPS63146004A true JPS63146004A (en) 1988-06-18

Family

ID=17781079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292383A Pending JPS63146004A (en) 1986-12-10 1986-12-10 Optical transmission fiber

Country Status (1)

Country Link
JP (1) JPS63146004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762118A (en) * 2019-01-23 2019-05-17 中国航空制造技术研究院 One kind radiation protection organic glass containing tantalum and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762118A (en) * 2019-01-23 2019-05-17 中国航空制造技术研究院 One kind radiation protection organic glass containing tantalum and preparation method
CN109762118B (en) * 2019-01-23 2021-07-16 中国航空制造技术研究院 Tantalum-containing radiation-proof organic glass and preparation method thereof

Similar Documents

Publication Publication Date Title
US4617350A (en) Fluorine-containing resin composition for optical use
KR920004429B1 (en) Plastic optical fiber
JPS59227908A (en) Fluorine-containing polymer and its use
JP2821935B2 (en) Plastic optical fiber
US4500694A (en) Optical materials
JPS62109004A (en) Plastic optical fiber its production and resin used
JPS63159459A (en) Resin composition
CA1339175C (en) Optical fiber having plastic cladding and process for preparation thereof
JPS6019106A (en) Plastic optical fiber
JPS63146004A (en) Optical transmission fiber
JP2871086B2 (en) Optical fiber cladding material
JPS61114208A (en) Plastic optical fiber
JPS6157908A (en) Optical resin composition
JP2777289B2 (en) Composition for optical fiber core material and synthetic resin optical fiber using the same
JPH0711605B2 (en) Optical fiber sheath material polymer
JPS63277207A (en) Transparent polymer material
JPS6035641B2 (en) optical transmission fiber
JPH09235322A (en) Optical material and optical waveguide
US5491770A (en) Copolymers for optical fibers
JP3130169B2 (en) Transparent mixed resin composition
JPH06256433A (en) Transparent resin composition
JPS62269905A (en) Optical transmission fiber
JPH0345908A (en) Plastic optical fiber having heat resistance
JP3140593B2 (en) Transparent mixed resin composition and cured resin composition
JP2005234135A5 (en)