JPS63145741A - Al-cu-mg high tensile aluminum alloy for casting and its production - Google Patents

Al-cu-mg high tensile aluminum alloy for casting and its production

Info

Publication number
JPS63145741A
JPS63145741A JP29261486A JP29261486A JPS63145741A JP S63145741 A JPS63145741 A JP S63145741A JP 29261486 A JP29261486 A JP 29261486A JP 29261486 A JP29261486 A JP 29261486A JP S63145741 A JPS63145741 A JP S63145741A
Authority
JP
Japan
Prior art keywords
aluminum alloy
casting
alloy
strength
small amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29261486A
Other languages
Japanese (ja)
Other versions
JPH0759731B2 (en
Inventor
Toru Tanaka
徹 田中
Noriyuki Yasumoto
安元 則之
Kenji Matsuda
松田 謙治
Toshimitsu Hori
利光 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61292614A priority Critical patent/JPH0759731B2/en
Publication of JPS63145741A publication Critical patent/JPS63145741A/en
Publication of JPH0759731B2 publication Critical patent/JPH0759731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To produce an Al alloy for casting having excellent fatigue strength and heat resistance, by melting and producing an Al-Cu-Mg alloy added with a small quantity of V and W, then casting, and subjecting said alloy to a solution treatment, quenching, tempering and artifical aging treatment at adequate temps. CONSTITUTION:The Al-Cu-Mg alloy added with, by weight, 0.10-0.30% V and 0.05-0.35% W is melted and produced, and is cast, preferably in a vacuum atm. Said alloy is then subjected to the solution treatment at about 520 deg.C. The alloy is quenched in hot water upon ending of the solution treatment and is tempered at about 160 deg.C to subject to the artifical aging treatment. The antifatigue characteristic, castability and heat resistance are thereby improved and the Al-Cu-Mg high tensile Al alloy for casting comparable to a forged article is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両、船舶、陸上機械分野で用いられるvI造
用AN−Cu−Mg系高力アルミニウム合金及びその製
造方法に関するしのである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an AN-Cu-Mg-based high-strength aluminum alloy for VII construction used in the fields of vehicles, ships, and land machinery, and a method for producing the same.

[従来の技術] 一般にf)造品とK 7j4品とでは、礪械的性質につ
いて鍛造品が優れていることは周知の如くである。
[Prior Art] It is generally known that forged products are superior in terms of mechanical properties between f) forged products and K7J4 products.

黙しながら、鋳造でなければ!F!!造できない形状の
部品もあり、近年車両、船舶、陸上機械分野においては
疲労強度に優れ、耐熱性を有する!8Tl川高力アルミ
ニウム合金が求められている。
Silently, if it's not a casting! F! ! There are some parts with shapes that cannot be manufactured, and in recent years, it has excellent fatigue strength and heat resistance in the fields of vehicles, ships, and land machinery! 8Tl high strength aluminum alloy is desired.

従来、鋳造用高力アルミニウム合金としては、例えばジ
ュラルミンに代表される。ll−Cu−Mo系アルミニ
ウム合金がある。このAf−Cu−Mg系を基本組成と
した合金としては、スミカOイH−13(日本) 、X
  149(米国) 、KO−1(米国)等の合金が開
発されている。なかでも、スミカロイl−1−13(特
公昭52−21448号)は重量百分率でCII : 
 4.2〜5.2%、Mg:  0,2〜0.4%。
Conventionally, a high-strength aluminum alloy for casting is typified by, for example, duralumin. There is an ll-Cu-Mo aluminum alloy. As alloys whose basic composition is this Af-Cu-Mg system, Sumika Oi H-13 (Japan), X
Alloys such as 149 (USA) and KO-1 (USA) have been developed. Among them, Sumikaloy 1-1-13 (Special Publication No. 52-21448) has a weight percentage of CII:
4.2-5.2%, Mg: 0.2-0.4%.

St  :  0,15〜0.3%、  Fe  : 
 0,1以下、Mn:0.1〜0.5%、7i:0,1
〜0.3%、3:0,01〜0.1%から成るアルミニ
ウム合金であり、その機械的性質は引張強さ48kg/
a+m2のとき0.2%耐力43kg/mm2 、伸び
6%を示す優れた合金である。
St: 0.15~0.3%, Fe:
0.1 or less, Mn: 0.1 to 0.5%, 7i: 0.1
It is an aluminum alloy consisting of ~0.3% and 3:0.01~0.1%, and its mechanical properties are tensile strength of 48 kg/
It is an excellent alloy that exhibits a 0.2% yield strength of 43 kg/mm2 and an elongation of 6% at a+m2.

[発明が解決しようとする問題点] ところで、このスミ力ロイト1−13にあっては次のご
とき問題点があった。
[Problems to be Solved by the Invention] By the way, this Sumiyuki Reuto 1-13 had the following problems.

107 サイクルにおける疲労強度は9に!;l /1
1112であり、この値は他の一般的鋳造用合金、例え
ばA356等と比較して劣っているという問題があった
Fatigue strength in 107 cycles is 9! ;l/1
1112, and there was a problem in that this value was inferior to that of other general casting alloys, such as A356.

またt!rTi割れが発生し易< 、u 31性の面に
おいても劣っているという問題があった。
T again! There were problems in that rTi cracking was likely to occur and the U31 properties were also poor.

上述のごとき問題点に鑑みて本発明は疲労強度及び鋳造
性を向上させると共に、耐熱性を向上させて鍛造品に匹
敵する鋳造用Aj!−Cu−Mg系高力アルミニウム合
金を1に供することを目的とするものである。
In view of the above-mentioned problems, the present invention improves fatigue strength and castability, as well as improves heat resistance, making it comparable to forged products. -Cu-Mg based high-strength aluminum alloy.

[問題点を解決するための手段] 従来技術における問題点を解決するために第1の発明の
鋳造用A ll−Cu−Mg系高力アルミニウム合金は
Aj!−Cu−Mg系アルミニウム合金に少量のVと少
量のWとを添加したものである。
[Means for Solving the Problems] In order to solve the problems in the prior art, an All-Cu-Mg based high-strength aluminum alloy for casting according to the first invention is developed. -Cu-Mg-based aluminum alloy with a small amount of V and a small amount of W added.

また、第2の発明の鋳造用AIl−Cu−Mg系高力ア
ルミニウム合金の製造方法は少量のVと少δのWとを添
加したAf−Cu−M(l系ア□ルミニウム合金を真空
雰囲気中で221製してwI造し、520℃付近で溶体
化処理した後、焼゛入れし、160℃付近で焼もどして
人工時効処理するものである。
In addition, the method for producing the Al-Cu-Mg-based high-strength aluminum alloy for casting according to the second invention involves producing an Af-Cu-M (l-based aluminum alloy with a small amount of V and a small amount of W) in a vacuum atmosphere. It is made by manufacturing 221 in a wafer, solution-treated at around 520°C, quenched, tempered at around 160°C, and subjected to artificial aging treatment.

[作 用] 第゛1の発明の如く構成され、上記へβ−Cu −Mo
系アルミニウム合金に上記少量のVを添加したことによ
り、Af−Cu−Mo系アルミニウム合金の結晶粒が微
細化されて疲労強度が増大されると共に、B温じん性が
高められ、焼?1れが防止されてH’;a FJれが防
止されるものである。且つ、上記少量のW@添加したこ
とにより、耐熱性が向上されるものである。
[Function] Constructed as in the first invention, β-Cu-Mo
By adding the above-mentioned small amount of V to the Af-Cu-Mo-based aluminum alloy, the grains of the Af-Cu-Mo-based aluminum alloy are made finer and the fatigue strength is increased. 1 is prevented, and H';a FJ is prevented. Moreover, by adding the above-mentioned small amount of W@, heat resistance is improved.

また、第2の発明の如くなされ、上記少量の■と上記少
量のWとが添加されて真空雰囲気中で溶製され、大気中
または真空雰囲気中で鋳造されたAf−Cu−Mg系ア
ルミニウム合金に520℃付近で溶体化ff1l!I!
が施された後、焼入れされ、160℃付近で焼もどして
人工時効処理すると、ガス成分、フrtL属介在物がき
わめて少量なために固溶したCLIAj!zが結晶粒内
及び粒界に均一に析出する過程で機械的性質が向上し、
疲労強度が増大するものである。
Further, an Af-Cu-Mg-based aluminum alloy made as in the second invention, which is melted in a vacuum atmosphere with the addition of the above small amount (1) and the above small amount W, and is cast in the air or a vacuum atmosphere Solution solution ff1l at around 520℃! I!
After being quenched and then tempered at around 160°C and subjected to artificial aging treatment, CLIAj! gas components and inclusions of the rtL group were dissolved in solid solution due to extremely small amounts. The mechanical properties are improved through the process of uniformly precipitating z within the grains and at the grain boundaries.
This increases fatigue strength.

[実施例] 以下に本発明の!8造用Ai’−GO−Mo系高力アル
ミニウム合金及びその製造方法の実施例及びその特性を
添付図面に従って詳述する。
[Example] Below are examples of the present invention! Examples of Ai'-GO-Mo-based high-strength aluminum alloys for 8-car construction and methods for producing the same and their characteristics will be described in detail with reference to the accompanying drawings.

ここで、以下に示す第1〜第4の実施例における鋳造用
へで−Cu−Mg系高力アルミニウム合金は525℃x
 14hrの溶体化処理を行な9た箋、90℃以上の温
水中にて焼入れ、165℃X 20hrの焼もどしをし
て人工時効処理を施すというffJ n方法を採用した
Here, the -Cu-Mg-based high-strength aluminum alloy for casting in the first to fourth examples shown below was heated at 525°C x
The ffJn method was adopted, in which solution treatment was performed for 14 hours, quenched in hot water at 90°C or higher, tempered at 165°C for 20 hours, and artificial aging treatment was performed.

第1の実施例の鋳造用AIl−Cu−M!]系^力アル
ミニウム合金は11百分率でCu :  4.7%。
First example of casting AIl-Cu-M! ] series aluminum alloy is 11% Cu: 4.7%.

Mg :  0,35%を含有したAl1−CIl−M
g系アルミニウム合金にi!重量百分率でV:0,18
%、W:0.17%を含有させたものである。第1の実
施例にあっては大気中でアルゴンガスを吹き込む方法に
より脱ガス、なしながら溶製し、大気中で鋳造を行なっ
た。そして、この第1の実施例の鋳造用Ai’−Cu−
Mg系高力アルミニウム合金における疲労強度を確認す
べく上記■及びWを添加しない八で−CLITMg系ア
ルミニウニアルミニウム合金転曲げ試験を常温にて行な
った。
Mg: Al1-CIl-M containing 0.35%
i! for g-based aluminum alloys! V in weight percentage: 0,18
%, W: 0.17%. In the first example, the melt was produced while degassing by blowing argon gas in the atmosphere, and casting was performed in the atmosphere. Then, Ai'-Cu- for casting of this first embodiment
In order to confirm the fatigue strength of Mg-based high-strength aluminum alloys, rolling bending tests were conducted on the above-mentioned (1) and -CLIT Mg-based aluminum sea urchin aluminum alloys at room temperature.

第1図は試験結果により1!7られた疲労特性を示すも
のである。図中、■はff重量百分率でV:0.18%
、 W:  0.17%を含有させた場合の疲労特性を
示ずものであり、■は■及びWを含有しない場合の疲労
特性を示すものである。図示するように、第1の実施例
のvi造用Al−Cu−Mg系高力アルミニウム合金は
V及びWの添加により疲労強度が増大していることがK
l vtされた。この疲労強度の増加率は106サイク
ル強さで15%、107サイクル強さで1G%を示して
いるが、この値は八で−Cu−Mg系アルミニウム合金
に添加するV及びWの添加mによって変化するものであ
る。
FIG. 1 shows the fatigue properties that were evaluated by 1!7 based on the test results. In the figure, ■ is ff weight percentage, V: 0.18%
, W: 0.17% is not shown, and ■ indicates the fatigue properties when neither ■ nor W is contained. As shown in the figure, the fatigue strength of the Al-Cu-Mg-based high-strength aluminum alloy for VI construction of the first example is increased by the addition of V and W.
l vt was done. The rate of increase in fatigue strength is 15% at the 106th cycle strength and 1G% at the 107th cycle strength, but this value is changed by the addition of V and W added to the -Cu-Mg-based aluminum alloy at 8. It changes.

次に第2の実施例の鋳造用AN−CI−Mg系高力アル
ミニウム合金は重量百分率でCIl :  4.6%、
Mg:  0,37%を含有した/l!−Cu−Mc+
系アルミニウム合金に重量百分率でV:0.15%。
Next, the AN-CI-Mg-based high-strength aluminum alloy for casting of the second example has a weight percentage of CIl: 4.6%,
Mg: Contains 0.37%/l! -Cu-Mc+
V: 0.15% by weight percentage in the aluminum alloy.

W:0,25%を含有させたものである。It contains W: 0.25%.

溶製中の溶湯の脱ガス法は第1の実fII!!例と同様
に大気中でアルゴンガスを吹き込む方法により行なった
。そして、第2の実施例の鋳造用Al−CIJ−Mg系
高力アルミニウム合全高力アルミニウム合金すべく上記
V及びWを添加しないへ2−Cu−MrJ系アルミニウ
ム合金と比較してクリープ試験を200℃にて行なった
The degassing method of molten metal during melting is the first practical fII! ! This was carried out by blowing argon gas into the atmosphere in the same manner as in the example. In order to obtain a total high-strength aluminum alloy for casting using Al-CIJ-Mg-based high-strength aluminum of the second embodiment, a creep test of 200 It was carried out at ℃.

第2図は試験結果により得られたクリープ破断特性を示
すものである。図中■は重量百分率でV:0.15%、
W:0.25%を含有させた場合のクリープ破断特性を
示すものであり、OはV及びWを含有しない場合のクリ
ープ破断特性を示すものである。図示するように、第2
の実施例の鋳j′li用AN−CO−Mg系高力アルミ
ニウム合金はV及びWの添加によりクリープ破断強さが
増大していることが確認された。このクリープ破断強度
の増加は0.6kg/ mm2程度と小さいが、町らか
に増加傾向を示している。
FIG. 2 shows the creep rupture properties obtained from the test results. ■ in the figure is the weight percentage, V: 0.15%,
This shows the creep rupture properties when 0.25% of W is contained, and O shows the creep rupture properties when neither V nor W is contained. As shown, the second
It was confirmed that the creep rupture strength of the AN-CO-Mg-based high-strength aluminum alloy for casting according to Example 1 was increased by the addition of V and W. Although this increase in creep rupture strength is small at about 0.6 kg/mm2, it shows a gradual increasing trend.

また、第2の実施例のt2f造用AクーCl1−M0系
高力アルミニウム合金の200℃におけるクリ−プ破断
強さはfI造用アルミニウム合金の中でも浸れた耐熱性
を示す2618合金のクリープ破断強さに匹敵する。更
に、第2の実施例の18造用Al−CLI−Mg系高力
アルミニウム合金に重量百分率で0.05〜0.2%ま
でのAQを添加すると、耐熱性がより増大することがr
11認された。
In addition, the creep rupture strength at 200°C of the Aku Cl1-M0 series high-strength aluminum alloy for T2F construction in the second example is comparable to the creep rupture strength of the 2618 alloy, which exhibits the highest heat resistance among the aluminum alloys for fI construction. comparable in strength. Furthermore, when AQ is added in an amount of 0.05 to 0.2% by weight to the 18-frame Al-CLI-Mg high-strength aluminum alloy of the second example, the heat resistance is further increased.
11 approved.

また、第3の実施例の鋳造用△6−Cu −Mg系高力
アルミニウム合金は重量百分率でCu :5.3%、 
Mg :  0,32%を含有したAl−Cu−Mg系
アルミニウム合金に重り百分率でV:0.19%、W:
0.09%を含有させたものである。
Further, the △6-Cu-Mg-based high-strength aluminum alloy for casting of the third embodiment has a weight percentage of Cu: 5.3%,
Al-Cu-Mg based aluminum alloy containing Mg: 0.32%, V: 0.19%, W:
It contains 0.09%.

特に第3の実施例にあっては710℃で30分間ロータ
リポンプにて排気して真空脱ガス処理を施しながら溶製
し、大気中で鋳造したものである。そして、この第3の
実施例の鋳造用AJ2−Cu −Mg系高力アルミニウ
ム合金における疲労強度をW1認すべく上記■及びWを
添加せず、旦つ大気中でアルゴンガス吹き込み脱ガスを
行なったΔR−Cu−Mg系アルミニウム含アルミニウ
ム合金にて回転曲げ試験を行なった。
In particular, in the third embodiment, the melt was produced at 710° C. for 30 minutes using a rotary pump to perform vacuum degassing treatment, and then cast in the atmosphere. In order to confirm the fatigue strength of the AJ2-Cu-Mg-based high-strength aluminum alloy for casting of this third example as W1, the above-mentioned (2) and W were not added, and degassing was performed by blowing argon gas in the atmosphere. A rotating bending test was conducted on the ΔR-Cu-Mg-based aluminum-containing alloy.

第3図は試験結果により得られた疲労特性を示すもので
ある。図中、[相]は凱厨百分率でV:0.19%、W
:0.09%を含有させ真空脱ガス処理した場合の疲労
特性を示すものであり、[相]はV及びWを含有せず大
気中でアルゴンガス吹き込み脱ガスを行なった場合の疲
労特性を示すものである。図示するように、第3の実施
例の鋳造用Al7Cu−Mg系高力アルミニウム合金は
真空脱ガス処理を施すことにより■及びWの添加の効果
は著しく増大しているのが確認された。
FIG. 3 shows the fatigue properties obtained from the test results. In the figure, [phase] is expressed as a percentage of V: 0.19%, W
:0.09% and vacuum degassing treatment, [phase] shows the fatigue characteristics when degassing is performed by blowing argon gas in the atmosphere without containing V or W. It shows. As shown in the figure, it was confirmed that the effect of addition of (1) and W was significantly increased by vacuum degassing treatment of the Al7Cu-Mg high-strength aluminum alloy for casting of the third example.

この疲労強度の増加率は10  サイクル強さで13k
g、、’mn+2以上であり、これはV及びWを含有せ
ず大気中でアルゴンガス吹き込み脱ガスを行なった合金
と比較して40%以上もの著しい増加を示した。
The rate of increase in fatigue strength is 13k at 10 cycle strength.
g,,'mn+2 or more, which was a remarkable increase of more than 40% compared to an alloy that did not contain V or W and was degassed by blowing argon gas in the atmosphere.

これは真空脱ガス処理を施すことにより112等のガス
成分の著しい低減、Jt合金1ri介在物生成防止およ
び脱ガスに伴なう非金属介在物の浮上分離ににって合金
の清浄化、析出相の均一化が実現されろためである。
This is achieved by performing vacuum degassing treatment, which significantly reduces gas components such as 112, prevents the formation of Jt alloy 1ri inclusions, and cleans the alloy by floating and separating nonmetallic inclusions due to degassing. This is because the phase should be made uniform.

上記第3の実施例の鋳造用へり−CIl−M(l系高力
アルミニウム合金の常温における疲労強度は7075鍛
造材の疲労強度よりも若干劣るが、本発明の合金は第2
の実施例に示した如(耐熱性にも優れていることから、
100℃以上の温度で使用する場合には鍛造材の代苔と
充分なり(りる。
The fatigue strength of the casting edge of the third embodiment -CIl-M (I-based high-strength aluminum alloy at room temperature is slightly inferior to that of 7075 forged material, but the alloy of the present invention is second
As shown in the example (because of its excellent heat resistance,
When used at temperatures above 100°C, it is sufficient as a substitute for forged materials.

更に第4の実施例の鋳造用Al−へIl−Mg系高力ア
ルミニウム合金は1mm分率でCLI :  4,79
6、 Mg :  0.29%を含有したAl−CIl
 −Ml)系アルミニウム合金に重量百分率でV:0.
19%、W:0,18%を含有させたものである。第4
の実施例にあっては大気中でアルゴンガスを吹き込む方
法により脱ガスをしながら溶興し、大気中で最小羽根厚
0.6mmのターボチャージャーインペラとしてvI造
した。そして、この第4の実施例の鋳造用Af−Cu−
Mg系高力アルミニウム合金製のターボチャージャーイ
ンペラの性能をll認すべく上記V及びWを添加しない
AIl−Cu−Mg系アルミニウム合金製インペラを製
造して比較を行なった。
Furthermore, the Al-Il-Mg based high-strength aluminum alloy for casting in the fourth embodiment has a CLI of 4,79 at a 1 mm fraction.
6. Mg: Al-CIl containing 0.29%
-Ml) based aluminum alloy in terms of weight percentage of V: 0.
19% and W: 0.18%. Fourth
In this example, the material was melted while degassing by blowing argon gas in the atmosphere, and was manufactured as a turbocharger impeller with a minimum blade thickness of 0.6 mm in the atmosphere. Then, the casting Af-Cu-
In order to confirm the performance of a turbocharger impeller made of a Mg-based high-strength aluminum alloy, an impeller made of an Al-Cu-Mg-based aluminum alloy without the addition of V and W was manufactured and compared.

その結果、■及びWを添加しないAIl−Cu−Mg系
アルミニウム合金にあっては、その約90%のインペラ
で羽根先端部にクラックの発生が確認された。しかし、
第4の実施例の鋳造用Al−C1l−Mg系高力アルミ
ニウム合金にあってはV及びWの添加によりクラックは
全く発生しなかった、これにより△f−Cu−fvlc
+系アルミニウム合金にV及びWを添加することによっ
て鋳造割れが防止され、vIfI性が向上したのがM1
=された。
As a result, it was confirmed that cracks were observed at the blade tips of approximately 90% of the impellers of AIl-Cu-Mg-based aluminum alloys without the addition of ■ and W. but,
In the Al-C1l-Mg-based high-strength aluminum alloy for casting of the fourth example, no cracks occurred due to the addition of V and W.
By adding V and W to + series aluminum alloy, casting cracks were prevented and vIfI properties were improved.
= was done.

これは1)に■が焼割れを防止する性質を有するためで
ある。
This is because (1) (1) has the property of preventing quench cracking.

尚、以上の第1〜第4の実施例に示した本発明の$8T
l用Al−Cu−Mg系高力アルミニウム合金の侵れた
特性はへJ2−Cu−Mg系アルミニウム合金に重量百
分率でV:0.10%以上、W:0.05%以上含有さ
せたとぎにV&認され、■=0.30%、l/l/:0
.35%を越えるとそれ以上■及びWを添加しても変化
しない。
Incidentally, the $8T of the present invention shown in the above first to fourth embodiments
The eroded properties of the Al-Cu-Mg-based high-strength aluminum alloy for use in J2-Cu-Mg-based aluminum alloys are shown when V: 0.10% or more and W: 0.05% or more are contained in the weight percentage V& approved, ■=0.30%, l/l/:0
.. When it exceeds 35%, no change occurs even if 2 and W are added further.

[発明の効果゛1 以上型するに本発明によれば次のごとき優れた効果を発
揮する。
[Effects of the Invention (1) In summary, the present invention provides the following excellent effects.

+n  All−Cu−Mg系アルミニウム合金に少量
のVと少量のWとを添加することににす、耐熱性及び耐
疲労特性を向上させることができる。
+n By adding a small amount of V and a small amount of W to an All-Cu-Mg-based aluminum alloy, heat resistance and fatigue resistance can be improved.

(2)  上記少量のVを添加したことにより、鋳造性
を向上させることができるため、薄肉の回転体に適した
!8通用Ai’−Cu−My系高力アルミニウム合金を
提供することができる。
(2) By adding the above small amount of V, castability can be improved, making it suitable for thin-walled rotating bodies! It is possible to provide a high-strength Ai'-Cu-My system aluminum alloy for general use.

+31  少量のVと少量のWとを添加し、溶製及びv
r造したAl−Cu−Mg系アルミニウム合金を520
℃付近で溶体化処理後、焼入れし、160℃付近で人工
時効処理することにより、耐疲労特性を向上させること
ができる。特に真空雰囲気中で上記合金の溶製を施した
場合には耐疲労特性を著しく向上させることができる。
+31 Add a small amount of V and a small amount of W, melt and v
The manufactured Al-Cu-Mg aluminum alloy is 520
Fatigue resistance properties can be improved by solution treatment at around 160°C, quenching, and artificial aging treatment at around 160°C. In particular, when the above alloy is melted in a vacuum atmosphere, the fatigue resistance can be significantly improved.

(4)  そのため鍛造材に匹敵する儂れたa減的性質
を有する鋳造用へβ−Cu−Mg系アルミニウム合金を
得ることができる。
(4) Therefore, it is possible to obtain a β-Cu-Mg-based aluminum alloy for casting that has an a-reducing property comparable to that of a forged material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋳造用Af−Cu−Mg系高力アルミ
ニウム合金を大気中でのアルゴンガス吹き込み脱ガス処
理を施しながら溶製した場合の疲労特性を示すグラフ、
第2図は本発明の鋳造用Al−Cu−M+系高力アルミ
ニウム合金を大気中でアルゴンガス吹き込み脱がス処理
を施しながら溶製した場合のクリープ破断特性を示すグ
ラフ、第3図は本発明の13ij’D Al−CIl 
−M9系高力アルミニウム合金を真空脱ガス’2!lF
[!を施しながら溶製した場合の疲労特性を示すグラフ
である。 特許出願人  石川島播磨重工業株式会社代理人弁理士
  絹  谷  信  雄第1図 第2図
FIG. 1 is a graph showing fatigue characteristics when the Af-Cu-Mg high-strength aluminum alloy for casting of the present invention is melted while being subjected to degassing treatment by blowing argon gas in the atmosphere.
Fig. 2 is a graph showing the creep rupture characteristics of the Al-Cu-M+ based high-strength aluminum alloy for casting according to the present invention, which is melted in the atmosphere while being degassed by blowing argon gas. 13ij'D Al-CIl
-Vacuum degassing of M9 series high strength aluminum alloy '2! lF
[! 2 is a graph showing fatigue characteristics when melting is performed while Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative patent attorney: Nobuo Kinutani Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)Al−Cu−Mg系アルミニウム合金に少量のV
と少量のWとを添加したことを特徴とする鋳造用Al−
Cu−Mg系高力アルミニウム合金。 (2)上記Vが上記Al−Cu−Mg系アルミニウム合
金に対して重量百分率で0.10〜 0.30%、上記Wが上記Al−Cu−Mg系アルミニ
ウム合金に対して重量百分率で 0.05〜0.35%添加された上記特許請求の範囲第
1項記載の鋳造用Al−Cu−Mg系高力アルミニウム
合金。 (3)少量のVと少量のWとを添加したAl−Cu−M
g系アルミニウム合金を溶製して鋳造し、520℃付近
で溶体化処理した後、焼入れし、160℃付近で焼もど
して人工時効処理することを特徴とする鋳造用Al−C
u− Mg系高力アルミニウム合金の製造方法。 (4)上記少量のVと少量のWとを添加したAl−Cu
−Mg系アルミニウム合金の溶製が真空雰囲気中で施さ
れる上記特許請求の範囲第3項記載の鋳造用Al−Cu
−Mg系高力アルミニウム合金の製造方法。
[Claims] (1) A small amount of V in an Al-Cu-Mg aluminum alloy
Casting Al-
Cu-Mg based high strength aluminum alloy. (2) The above-mentioned V is 0.10 to 0.30% by weight with respect to the above-mentioned Al-Cu-Mg-based aluminum alloy, and the above-mentioned W is 0.10-0.30% by weight with respect to the above-mentioned Al-Cu-Mg-based aluminum alloy. The Al-Cu-Mg based high-strength aluminum alloy for casting according to claim 1, wherein the Al-Cu-Mg based high strength aluminum alloy is added in an amount of 0.05 to 0.35%. (3) Al-Cu-M added with a small amount of V and a small amount of W
Al-C for casting, which is characterized by melting and casting g-based aluminum alloy, solution treatment at around 520°C, quenching, and artificial aging treatment by tempering at around 160°C.
u- Method for producing Mg-based high strength aluminum alloy. (4) Al-Cu added with the above small amount of V and small amount of W
- Al-Cu for casting according to claim 3, wherein the Mg-based aluminum alloy is melted in a vacuum atmosphere.
- A method for producing a Mg-based high-strength aluminum alloy.
JP61292614A 1986-12-10 1986-12-10 Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same Expired - Lifetime JPH0759731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292614A JPH0759731B2 (en) 1986-12-10 1986-12-10 Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292614A JPH0759731B2 (en) 1986-12-10 1986-12-10 Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63145741A true JPS63145741A (en) 1988-06-17
JPH0759731B2 JPH0759731B2 (en) 1995-06-28

Family

ID=17784077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292614A Expired - Lifetime JPH0759731B2 (en) 1986-12-10 1986-12-10 Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0759731B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122208A (en) * 1991-07-22 1992-06-16 General Motors Corporation Hypo-eutectic aluminum-silicon alloy having tin and bismuth additions
US5122207A (en) * 1991-07-22 1992-06-16 General Motors Corporation Hypo-eutectic aluminum-silicon-copper alloy having bismuth additions
JP2013515169A (en) * 2009-12-22 2013-05-02 リオ ティント アルカン インターナショナル リミテッド Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
CN108080548A (en) * 2017-12-20 2018-05-29 西南铝业(集团)有限责任公司 A kind of processing method of 2024 aluminium alloy open die forgings
CN108127344A (en) * 2017-12-20 2018-06-08 西南铝业(集团)有限责任公司 A kind of processing method of 6082 aluminium alloy open die forgings
CN114959387A (en) * 2022-05-13 2022-08-30 内蒙古工业大学 High-strength heat-resistant cast aluminum alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514864A (en) * 1978-07-19 1980-02-01 Nittetsu Mining Co Ltd Selecting method for graphite, iron from waste mixture of iron mill containing graphite and iron
JPS6152345A (en) * 1984-08-22 1986-03-15 Mitsubishi Alum Co Ltd Superplastic al alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514864A (en) * 1978-07-19 1980-02-01 Nittetsu Mining Co Ltd Selecting method for graphite, iron from waste mixture of iron mill containing graphite and iron
JPS6152345A (en) * 1984-08-22 1986-03-15 Mitsubishi Alum Co Ltd Superplastic al alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122208A (en) * 1991-07-22 1992-06-16 General Motors Corporation Hypo-eutectic aluminum-silicon alloy having tin and bismuth additions
US5122207A (en) * 1991-07-22 1992-06-16 General Motors Corporation Hypo-eutectic aluminum-silicon-copper alloy having bismuth additions
JP2013515169A (en) * 2009-12-22 2013-05-02 リオ ティント アルカン インターナショナル リミテッド Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
CN108080548A (en) * 2017-12-20 2018-05-29 西南铝业(集团)有限责任公司 A kind of processing method of 2024 aluminium alloy open die forgings
CN108127344A (en) * 2017-12-20 2018-06-08 西南铝业(集团)有限责任公司 A kind of processing method of 6082 aluminium alloy open die forgings
CN114959387A (en) * 2022-05-13 2022-08-30 内蒙古工业大学 High-strength heat-resistant cast aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0759731B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
EP0181713A1 (en) Method for heat treating cast titanium articles
WO2007097817A2 (en) High strength, high toughness, weldable, ballistic quality, castable aluminum alloy, heat treatment for same and articles produced from same
JPH0457417B2 (en)
JPH111737A (en) Heat treated type 7000 series aluminum alloy with excellent corrosion resistance and high strength, and its production
EP1061149B1 (en) Ti-Al-(Mo,V,Si,Fe) alloys and method of their manufacture
JP2003531731A (en) Brazing method and products manufactured therefrom
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
JP2002508446A (en) 2000 series aluminum alloy
JP3485577B2 (en) Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same
CN111424200A (en) High-strength high-heat-resistance low-scandium-silver-added Al-Cu-Mg alloy and heat treatment process thereof
JPH1112674A (en) Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JPS63145741A (en) Al-cu-mg high tensile aluminum alloy for casting and its production
JP2002348631A (en) Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor
CN111763812B (en) Heat treatment method for improving impact toughness of titanium alloy linear friction welding joint
JPH09170016A (en) Production of high-temperature-stable object made of in706 type iron/nickel super alloy
EP1366206A2 (en) Aluminum alloys and methods of making the same
JPS58167757A (en) Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JP3846149B2 (en) Heat treatment method for casting aluminum alloy
JPH11246925A (en) Aluminum alloy casting with high toughness, and its manufacture
JPS6326188B2 (en)
CN114737072A (en) K417G nickel-based high-temperature alloy refining preparation and forming method
JPS6362582B2 (en)
JP2001226731A (en) Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JP3590430B2 (en) Ti alloy disc with excellent heat resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term