JPS6314501B2 - - Google Patents

Info

Publication number
JPS6314501B2
JPS6314501B2 JP4888181A JP4888181A JPS6314501B2 JP S6314501 B2 JPS6314501 B2 JP S6314501B2 JP 4888181 A JP4888181 A JP 4888181A JP 4888181 A JP4888181 A JP 4888181A JP S6314501 B2 JPS6314501 B2 JP S6314501B2
Authority
JP
Japan
Prior art keywords
region
gate
conductivity type
impurity density
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4888181A
Other languages
Japanese (ja)
Other versions
JPS57162463A (en
Inventor
Junichi Nishizawa
Kenji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4888181A priority Critical patent/JPS57162463A/en
Publication of JPS57162463A publication Critical patent/JPS57162463A/en
Publication of JPS6314501B2 publication Critical patent/JPS6314501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、大電力でかつ高速な半導体装置、特
に静電誘導サイリスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-power, high-speed semiconductor device, particularly a static induction thyristor.

従来の静電誘導サイリスタは、nチヤンネル型
の例について説明するが、第1図aに示すよう
に、1はアノードのp+領域、2はゲート・アノ
ード間のn-領域、3はゲートのp+領域、4はゲ
ート・カソード間のn-領域、5はカソードのn+
領域、6はアノード金属電極、7はカソード金属
電極、8はゲート・ゲード間、いわゆるチヤンネ
ルにより形成されている。この従来の静電誘導サ
イリスタの製造方法は、簡単に説明すると、まず
ゲート・アノード間のn-領域2をn-基板として、
ゲートのp+領域3を酸化、ホトリソグラフ技術、
選択エツチング、拡散又はイオン注入等により形
成する。このとき、アノードのp+領域1も同時
に形成することが多い。次にゲート・カソード間
のn-領域4をエピタキシヤル成長により形成し、
ゲートのp+領域3を埋め込む。次にカソードの
n+領域5を拡散又はエピタキシヤル成長、もし
くはイオン注入等により形成する。次に酸化、ホ
トリソグラフ技術、選択エツチングにより、カソ
ードのn+領域5及びゲート・カソード間のn-
域4を除去してゲートのp+領域を露出させ、ゲ
ートのコンタクト領域を形成する。次にAl等の
金属を蒸着、ホトリソグラフ技術、選択エツチン
グ等により形成し、カソード、ゲート、アノード
の各金属電極を形成するものである。
A conventional electrostatic induction thyristor will be explained using an n-channel type example, and as shown in Figure 1a, 1 is the p + region of the anode, 2 is the n - region between the gate and anode, and 3 is the gate region. p + region, 4 is n - region between gate and cathode, 5 is n + of cathode
The regions are formed by an anode metal electrode 6, a cathode metal electrode 7, and a so-called channel between gates. Briefly, the conventional method for manufacturing a static induction thyristor is as follows: First, the n - region 2 between the gate and anode is used as an n - substrate.
Oxidize p + region 3 of gate, photolithography technique,
It is formed by selective etching, diffusion, ion implantation, etc. At this time, the p + region 1 of the anode is often formed at the same time. Next, an n - region 4 between the gate and cathode is formed by epitaxial growth,
Fill the p + region 3 of the gate. Next, the cathode
The n + region 5 is formed by diffusion, epitaxial growth, ion implantation, or the like. Next, by oxidation, photolithography, and selective etching, the n + region 5 of the cathode and the n region 4 between the gate and cathode are removed to expose the p + region of the gate, thereby forming a contact region for the gate. Next, a metal such as Al is formed by vapor deposition, photolithography, selective etching, etc. to form each metal electrode of the cathode, gate, and anode.

第1図aに示すような従来の静電誘導サイリス
タは、前述のような製造方法により製作さている
為、次のような欠点を有している。
Since the conventional electrostatic induction thyristor shown in FIG. 1a is manufactured by the manufacturing method described above, it has the following drawbacks.

ゲートのp+領域3を拡散あるいはイオン注入
により形成しているため、ゲート抵抗が大きい。
ゲート・カソード間のn-領域4のエピタキシヤ
ル成長は、ゲートのp+領域からのオートドーピ
ング補償のため比較的に不純物密度が高く(〜
1015〜1016/cm3)、又ゲート・カソードの対向面
積が大きいために、ゲート・カソード間容量が大
きい等の欠点により、素子の特性上、ターンオフ
タイムが大きい等の問題が生じている。
Since the p + region 3 of the gate is formed by diffusion or ion implantation, the gate resistance is large.
The epitaxial growth of n - region 4 between the gate and cathode has a relatively high impurity density (~
10 15 to 10 16 /cm 3 ), and because the facing area of the gate and cathode is large, the capacitance between the gate and cathode is large, which causes problems such as a long turn-off time due to the characteristics of the device. .

これらの欠点を除去したものとして第1図bに
示すような静電誘導サイリスタが提案されてい
る。この静電誘導サイリスタは、最大順方向阻止
電圧Vfnaxが大きく、順方向降下電圧Vfdが小さ
く、電圧利得μが大きく、ゲートターンオフ電流
Iaが大きく、ターンオフタイムTpffが小さく、タ
ーンオフ電流利得Gが大きい等の特性が得られる
ものとして提案されたものである。図中1〜8は
第1図aと同じで、9は酸化膜等の絶縁物、10
はn領域、11はn+領域である。
An electrostatic induction thyristor as shown in FIG. 1b has been proposed to eliminate these drawbacks. This static induction thyristor has a large maximum forward blocking voltage V fnax , a small forward drop voltage V fd , a large voltage gain μ, and a gate turn-off current
This was proposed as a device that provides characteristics such as a large I a , a small turn-off time T pff , and a large turn-off current gain G. In the figure, 1 to 8 are the same as in Figure 1a, 9 is an insulator such as an oxide film, 10
is the n area, and 11 is the n + area.

以下第1図bの静電誘導サイリスタの本発明に
よる製造方法について述べる。
A method of manufacturing the electrostatic induction thyristor shown in FIG. 1b according to the present invention will be described below.

第2図aに示すようにゲート・カソード間とな
るn-基板4の表面上に熱酸化等により酸化膜9
を形成し、ホトリソグラフ技術によりホトレジス
ト13を形成する。次の工程によつては破線部分
まで形成する場合もある。
As shown in FIG. 2a, an oxide film 9 is formed on the surface of the n -substrate 4 between the gate and the cathode by thermal oxidation, etc.
A photoresist 13 is formed by photolithography. Depending on the next step, even the broken line portion may be formed.

次に第2図bに示すように異方性エツチを用い
て深さ5μ程度にn-基板4を除去する。又は第2
図b′に示す様に酸化膜9の開孔部をn-基板4を1μ
程度エツチ除去したのち、ホトリソグラフ技術に
より酸化膜9の開孔部を広げさらにn-基板4を
エツチ除去する工程を繰り返えし行なう事により
任意の傾斜を有するエツチ孔が形成できる。酸化
膜9の部分の寸法は5〜10μ程度、エツチ孔の底
部間は約50μ程度、深さは約5μ程度になる様に形
成する。
Next, as shown in FIG. 2b, the n - substrate 4 is removed to a depth of about 5 μm using anisotropic etching. or second
As shown in Figure b', the opening of the oxide film 9 is
After removing the etch to a certain extent, the opening of the oxide film 9 is enlarged by photolithography and the process of etching the n - substrate 4 is repeated, thereby forming an etch hole having an arbitrary slope. The size of the oxide film 9 is about 5 to 10 microns, the distance between the bottoms of the etched holes is about 50 microns, and the depth is about 5 microns.

次に第2図cに示す様にゲートとなるp+領域
3をエピ成長により形成する。エピ層の厚さは約
5μ程度とする。エピ成長によりp+領域は全体を
高不純物密度とすることができ、ゲート抵抗を小
さくすることができる。
Next, as shown in FIG. 2c, a p + region 3 which will become a gate is formed by epitaxial growth. The epi layer thickness is approx.
It should be about 5μ. By epitaxial growth, the entire p + region can have a high impurity density, and the gate resistance can be reduced.

次に第2図dに示す様に、ケミカル・メカニカ
ルポリツシユ技術により平面に研磨除去したのち
P+領域3からのオートドーピングをおさえる為
にn領域14を約1μ程度エピ成長により形成し
た後、ホトリソグラフ技術によりホトレジスト1
3を形成する。
Next, as shown in Figure 2 d, after polishing it to a flat surface using chemical mechanical polishing technology,
In order to suppress autodoping from the P + region 3, the n region 14 is formed by epitaxial growth of about 1μ, and then the photoresist 1 is formed using photolithography.
form 3.

次に第2図eに示す様にn領域14をエツチ除
去しホトレジスト13を除去したのちゲート・ア
ノード間領域のn-領域2をエピ成長により形成
する。この時p+領域3の表面はn領域14によ
りおおわれているのでp+の不純物の飛び出しは
なく、チヤンネル8がp型の不純物で接続するこ
ともなくかつn-領域2の不純物密度も低くする
ことができる。n-領域2の厚みは約70μ程度であ
る。続いてn領域10をエピ成長により約4μ成
長し次いでアノードとなるp+領域1を1〜2μ程
度エピ成長により形成し、続いて熱酸化等により
酸化膜9を形成しホトリソグラフ技術によりホト
レジスト13を形成する。
Next, as shown in FIG. 2e, after etching the n region 14 and removing the photoresist 13, the n - region 2 in the region between the gate and anode is formed by epitaxial growth. At this time, since the surface of the p + region 3 is covered with the n region 14, no p + impurity jumps out, the channel 8 is not connected with p type impurities, and the impurity density of the n - region 2 is also low. be able to. The thickness of n - region 2 is about 70 μm. Next, an n region 10 is grown by epitaxial growth of about 4 μm, and then a p + region 1, which will become an anode, is formed by epitaxial growth of about 1 to 2 μm. Next, an oxide film 9 is formed by thermal oxidation, etc., and a photoresist 13 is grown by photolithography. form.

次に第2図fに示す様に酸化膜9をエツチ除去
した後ホトレジスト13を除去して拡散又はイオ
ン注入等によりn+領域11を形成する。これは
n領域10と接続する様にする。
Next, as shown in FIG. 2F, after the oxide film 9 is etched away, the photoresist 13 is removed and an n + region 11 is formed by diffusion or ion implantation. This is connected to the n region 10.

次に第2図gに示す様にここから図面の上下が
逆になるがゲート・カソード間領域のn-領域4
をp+領域3が露出するまで研磨除去しn-領域4
の厚みを5μにする。続いて熱酸化膜9を形成す
る。
Next, as shown in Fig. 2g, the drawing is turned upside down from here, but n - region 4 is the region between the gate and cathode.
Polish away until p + area 3 is exposed and n - area 4
Make the thickness 5μ. Subsequently, a thermal oxide film 9 is formed.

次に第2図hに示す様に酸化膜9をホトリソグ
ラフ技術により除去しカソード領域のn+領域5
を拡散又はイオン注入等により形成する。
Next, as shown in FIG. 2h, the oxide film 9 is removed by photolithography, and the
is formed by diffusion or ion implantation.

次に第2図iに示す様にホトリソグラフ技術に
より酸化膜9をカソード領域のn+領域5及びゲ
ート領域のp+領域3のコンタクト孔の部分を除
去し、又アノード領域の酸化膜9を全面除去した
後Al等の金属を両面に亘り蒸着等によりAl電極
6,15を形成する。
Next, as shown in FIG. 2i, the oxide film 9 is removed from the contact hole portions of the n + region 5 of the cathode region and the p + region 3 of the gate region by photolithography, and the oxide film 9 of the anode region is removed. After the entire surface is removed, Al electrodes 6 and 15 are formed by vapor deposition or the like over both surfaces of a metal such as Al.

次に第2図jに示す様にホトリソグラフ技術に
よりAl電極15をカソード電極7とゲート電極
12とにエツチ分離する。
Next, as shown in FIG. 2J, the Al electrode 15 is etched and separated into a cathode electrode 7 and a gate electrode 12 by photolithography.

以上の工程により静電誘導サイリスタが製造で
きる。このサイリスタはゲートとカソードが遠い
ためCGKが小さく、しかもチヤンネル8が狭いた
めμが大きい等の特徴を有し、前述の様なすぐれ
た特性を有するものである。ここではnチヤンネ
ル型について述べるが導電型を変えればpチヤン
ネル型静電誘導サイリスタもできることは明白で
ある。
An electrostatic induction thyristor can be manufactured through the above steps. This thyristor has characteristics such as a small C GK because the gate and the cathode are far apart, and a large μ because the channel 8 is narrow, and has the excellent characteristics described above. Although an n-channel type will be described here, it is clear that a p-channel type electrostatic induction thyristor can also be produced by changing the conductivity type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の静電誘導サイリスタの断面
図、第1図bは本発明により製造された静電誘導
サイリスタの断面図、第2図a乃至jは本発明の
工程を示す工程断面図である。 1……アノード、2……ゲート・アノード間領
域、3……ゲート、4……ゲート・カソード間領
域、5……カソード、6……アノードの金属電
極、7……カソード金属電極、8……ゲート・ゲ
ート間いわゆるチヤンネルを示す。
FIG. 1a is a sectional view of a conventional electrostatic induction thyristor, FIG. 1b is a sectional view of an electrostatic induction thyristor manufactured according to the present invention, and FIGS. 2a to 2j are process sectional views showing the steps of the present invention. It is. DESCRIPTION OF SYMBOLS 1... Anode, 2... Gate-anode region, 3... Gate, 4... Gate-cathode region, 5... Cathode, 6... Anode metal electrode, 7... Cathode metal electrode, 8... ...Indicates a so-called channel between gates.

Claims (1)

【特許請求の範囲】[Claims] 1 ゲート・カソード領域として第1導電型の低
不純物密度基板を用いて、主表面より壁面が傾斜
を有する孔を形成する工程と、前記孔にゲートと
して第2導電型の高不純物密度領域を充填する工
程と、前記第1導電型の主表面上に第1導電型の
低不純物密度領域をエピ成長により形成し第2導
電型の高不純物密度領域を埋め込む工程と、前記
第1導電型の低不純物密度基板の主表面の対向面
より第2導電型の高不純物領域を露出させる工程
と、カソード領域として前記露出された第1導電
型の低不純物密度基板の主表面の対向面の一部に
第1導電型の高不純物領域を形成する工程と、ア
ノード領域として前記第1導電型の低不純物密度
領域のエピ成長面に第2導電型の高不純物密度領
域を形成する工程と、カソード、アノード、ゲー
トに金属電極を形成する工程を含むことを特徴と
する半導体装置の製造方法。
1. Forming a hole whose wall surface is inclined from the main surface using a low impurity density substrate of the first conductivity type as a gate/cathode region, and filling the hole with a high impurity density region of the second conductivity type as a gate. forming a low impurity density region of a first conductivity type on the main surface of the first conductivity type by epitaxial growth and embedding a high impurity density region of a second conductivity type; exposing a second conductivity type high impurity region from the opposite surface of the main surface of the impurity density substrate; and exposing a part of the exposed main surface of the first conductivity type low impurity density substrate as a cathode region. forming a high impurity density region of a second conductivity type on the epitaxial growth surface of the low impurity density region of the first conductivity type as an anode region; and forming a high impurity density region of a second conductivity type as an anode region. A method of manufacturing a semiconductor device, comprising the step of forming a metal electrode on a gate.
JP4888181A 1981-03-31 1981-03-31 Manufacture of semiconductor device Granted JPS57162463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4888181A JPS57162463A (en) 1981-03-31 1981-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4888181A JPS57162463A (en) 1981-03-31 1981-03-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57162463A JPS57162463A (en) 1982-10-06
JPS6314501B2 true JPS6314501B2 (en) 1988-03-31

Family

ID=12815619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4888181A Granted JPS57162463A (en) 1981-03-31 1981-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57162463A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782028A (en) * 1987-08-27 1988-11-01 Santa Barbara Research Center Process methodology for two-sided fabrication of devices on thinned silicon

Also Published As

Publication number Publication date
JPS57162463A (en) 1982-10-06

Similar Documents

Publication Publication Date Title
US4845046A (en) Process for producing semiconductor devices by self-alignment technology
US4794445A (en) Semiconductor device
JPS6118147A (en) Method of forming semiconductor device
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
US4037307A (en) Methods for making transistor structures
JPH08195433A (en) Semiconductor device and its manufacture
JP2500630B2 (en) Semiconductor device
JPS6314501B2 (en)
JPH06163905A (en) Fabrication of insulated gate semiconductor
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
JPS60250645A (en) Semiconductor device
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JPS62229880A (en) Semiconductor device and manufacture thereof
JPS5834943A (en) Semiconductor device and manufacture thereof
JP2956635B2 (en) Semiconductor device and manufacturing method thereof
JPH05129335A (en) Manufacture of vertical-type transistor
JP2531688B2 (en) Method for manufacturing semiconductor device
JPS6210027B2 (en)
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP2001237438A (en) Semiconductor device and its manufacturing method
JPS62120040A (en) Manufacture of semiconductor device
JPH0682675B2 (en) Method for manufacturing semiconductor device
JPS6129171A (en) Manufacture of semiconductor device
JPH0527995B2 (en)
JPS59165435A (en) Manufacture of semiconductor device