JPS6314112A - Projection optical system for fine pattern - Google Patents

Projection optical system for fine pattern

Info

Publication number
JPS6314112A
JPS6314112A JP61159050A JP15905086A JPS6314112A JP S6314112 A JPS6314112 A JP S6314112A JP 61159050 A JP61159050 A JP 61159050A JP 15905086 A JP15905086 A JP 15905086A JP S6314112 A JPS6314112 A JP S6314112A
Authority
JP
Japan
Prior art keywords
optical system
aperture
center
phase correction
mirror member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61159050A
Other languages
Japanese (ja)
Inventor
Takeo Sato
佐藤 健夫
Nobuhiro Araki
信博 荒木
Koichi Kawada
耕一 河田
Noboru Nomura
登 野村
Atsushi Ueno
上野 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61159050A priority Critical patent/JPS6314112A/en
Priority to US07/043,620 priority patent/US4757354A/en
Priority to EP87106243A priority patent/EP0243950B1/en
Priority to DE8787106243T priority patent/DE3784963T2/en
Publication of JPS6314112A publication Critical patent/JPS6314112A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Projection-Type Copiers In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain high resolving power by providing a refraction optical system and a catadioptric optical system coaxially and also providing an illumination light source which lights a body to be projected so that illumination luminous flux is converged on the center of curvature of a phase correcting member. CONSTITUTION:The refraction optical system I on an object point side consists of a convex lens 1 made of synthetic quartz, a concave lens 2, and a convex lens 3 and a convex lens 4 and the catadioptric optical system II consists of the phase correcting plate 5, a concave surface mirror 6 which has an aperture O1 in the center, and a convex surface mirror 7 which has an aperture O2 in the center. Then, the refraction optical system I and catadioptric optical system II are coaxial and the position of the aperture AP of the system coincides with the center of curvature of the phase correction plate 5. The body 9 to be projected which is lighted by lighting 20 generate 0-order diffracted light D0, + or --order diffracted light beams D+1 and D-1, and further high-order diffracted light, which are incident on a projection lens (I+II) to make the angle of incidence determined by the image-side numerical aperture of the projection lens coincident with the angle theta1 of primary diffraction from the body 9 to be projected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体、LSIなどの微細なパターンを露光
するために用いる微細パターン投影光学系に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fine pattern projection optical system used for exposing fine patterns of semiconductors, LSIs, etc.

従来の技術 従来の精密複写用投影光学系としては、例えば、特公昭
55−10883号公報に記載されているようにレンズ
のみによる屈析系から成るものが知られている。一方、
例えば特公昭28−5735号公報に記載されているよ
うに反射系から成る反射顕微鏡用対物鏡が知られている
2. Description of the Related Art As a conventional projection optical system for precision copying, there is known a system consisting of a refracting system using only lenses, as described in, for example, Japanese Patent Publication No. 10883/1983. on the other hand,
For example, as described in Japanese Patent Publication No. Sho 28-5735, an objective mirror for a reflection microscope comprising a reflection system is known.

以下、図面を参照しながら従来の投影光学系について説
明する。
A conventional projection optical system will be described below with reference to the drawings.

第4図は従来の屈析系を用いた投影光学系の断面図であ
る。第4図に示すように多数枚のレンズGが用いられ、
被投影パターン101はコヒーレントな準単色光による
平行光束ILにより照明されている。本光学系は再回析
光学系(被投影物体の回析光が瞳面で一旦、回折次数毎
の輝点、S、。
FIG. 4 is a sectional view of a projection optical system using a conventional refracting system. As shown in FIG. 4, a large number of lenses G are used,
The projected pattern 101 is illuminated by a parallel light flux IL of coherent quasi-monochromatic light. This optical system is a re-diffraction optical system (the diffracted light of the object to be projected is once on the pupil plane, a bright spot, S, for each diffraction order).

So、S、スペクトルとなり、再度、広がりを持つ光束
となり、レンズGより出射し、像面にて0次回析光及び
±1次回折先の重なりとして像形成を行う光学系)とな
っており、垂直斜線を施した光束がO次回析光、右上り
の斜線を施した光束が+1次回析光、左上りの斜線を施
した光束が一1次回析光である。回折角θは被投影物体
の空間周波数をU(パターンピッチの逆数)とし、光源
の波長をλとすると、 ス Sinθニー という関係となる。
It becomes a So, S spectrum, becomes a spread light beam again, exits from the lens G, and forms an image at the image plane as an overlap of the 0th-order diffraction light and the ±1st-order diffraction points). The vertically shaded light beam is the O-th order diffraction light, the light beam with the upper-right diagonal line is the +1st-order diffraction light, and the light flux with the upper-left diagonal line is the 11th-order diffraction light. The diffraction angle θ has the following relationship, where U is the spatial frequency of the object to be projected (the reciprocal of the pattern pitch) and λ is the wavelength of the light source.

被投影物体101から出た各回析光は絞りsp上で輝点
スペクトルに分離し、後側のレンズ系を通過後、再び平
行光束となり像面102上で重なり、干渉縞により投影
パターンの形成を行う。
Each diffracted light emitted from the projection object 101 is separated into a bright spot spectrum on the aperture sp, and after passing through the rear lens system, it becomes a parallel light beam again and overlaps on the image plane 102, forming a projection pattern by interference fringes. conduct.

第5図は従来の反射系を用いた反射顕微鏡用対物鏡の断
面図である。第5図に示すように被投影物体101から
出た光束が副鏡105、主鏡106の順に反射され、被
投影物体101と反対側の平面102上に縮小された像
lを形成するようになっている。
FIG. 5 is a sectional view of an objective mirror for a reflection microscope using a conventional reflection system. As shown in FIG. 5, the light flux emitted from the projection object 101 is reflected by the secondary mirror 105 and the primary mirror 106 in this order, and forms a reduced image l on the plane 102 on the opposite side of the projection object 101. It has become.

発明が解決しようとする問題点 投影光学系の解像限界りは、レーリーの式を用いて表現
すると、 λ D=0.61− NA 但し、NA:光学系の像側の開口数、λ:使用波長で与
えられ、解像力向上のためには、使用波長λを小さくす
るか、光学系の開口数NAを太きくすれば良いが、開口
数NAの向上は、レンズの光学設計を著しく困難とする
ため、使用波長スを小さくする方向での対応が主流とな
りつつある。
Problem to be Solved by the Invention The resolution limit of the projection optical system is expressed using Rayleigh's equation as follows: λ D = 0.61- NA where NA: numerical aperture on the image side of the optical system, λ: In order to improve the resolution, it is possible to reduce the wavelength λ used or increase the numerical aperture NA of the optical system, but improving the numerical aperture NA makes optical design of the lens extremely difficult. Therefore, the mainstream approach is to reduce the wavelength used.

第4図に示した従来の屈析光学系においては、使用波長
大を紫外域まで短くすると、透過率が極端に低下する。
In the conventional dioptric optical system shown in FIG. 4, when the wavelength used is shortened to the ultraviolet region, the transmittance is extremely reduced.

例えば、レンズGにショット社製のUBK7のように特
に紫外域の波長用に調質されたガラスを用いても、波長
が280 nmでは透過率が23%(ガラス厚5mmの
場合)となる。
For example, even if lens G is made of glass specially tempered for wavelengths in the ultraviolet region, such as UBK7 manufactured by Schott, the transmittance is 23% at a wavelength of 280 nm (when the glass thickness is 5 mm).

一方、光学結晶材の内、T i F   Ca F 2
、Kc1合成δ晶のように200 nm付近の波長にお
いても、約80%の透過率が得られるものがあるが、一
般的に大型の結晶材の入手が困難であり、加工性が非常
に悪く、高精度の加工が難しい。また種類が限られるた
め、設計の自由度が小さくなり、紫外域、あるいは遠紫
外域の波長において、限られた枚数で透過率を確保しな
がら開口数NAの大きな再回析光学系を実現しようとす
ると、十分な収差補正を行うことができず、屈析材料の
みにより光学系を構成するのは困難である。
On the other hand, among optical crystal materials, T i F Ca F 2
, Kc1 synthetic δ crystals have a transmittance of about 80% even at wavelengths around 200 nm, but it is generally difficult to obtain large crystal materials, and processability is very poor. , difficult to process with high precision. In addition, since the types are limited, the degree of freedom in design is reduced, and it is necessary to realize a re-diffraction optical system with a large numerical aperture NA while ensuring transmittance with a limited number of lenses at wavelengths in the ultraviolet or deep ultraviolet range. If so, sufficient aberration correction cannot be performed, and it is difficult to construct an optical system using only refractive materials.

一方、第5図に示した従来の反射光学系においては、反
射鏡のみで構成されているため、使用波長に対する制約
はない。しかし、本光学系を再回析光学系として見た場
合、副鏡105によってO次回析光が遮蔽されるため、
投影平面102上では±1次回析光のみの重なりとなり
、光学技術]ンタクトVoj’123、A3 C198
5)i(オイて明記されているように、本来、再生すべ
き空間周波数の2倍の周波数の干渉縞を形成してしまい
、コヒーレント照明下においては微細パターンの投影が
不可能であった。
On the other hand, in the conventional reflective optical system shown in FIG. 5, there is no restriction on the wavelength used since it is composed of only a reflective mirror. However, when this optical system is viewed as a re-diffraction optical system, since the O-order diffraction light is blocked by the secondary mirror 105,
On the projection plane 102, only the ±1st-order diffraction light overlaps, and optical technology] Contact Voj'123, A3 C198
5) i (As clearly stated, interference fringes with a frequency twice the spatial frequency to be reproduced were formed, making it impossible to project fine patterns under coherent illumination.

そこで、本発明は、上記従来の問題点を解決するもので
、反射光学系を主としたレンズ構成としてレンズ枚数を
低減し、光の吸収量を極力小さく抑え、紫外域、あるい
は遠紫外域への適用を可能とし、高解像を得ることがで
き、またコヒーレント照明下においても反射鏡による喰
をなくし、0次及び±1次回析光の重なりを得て像形成
を行うことができ、従って微細パターンの投影を行うこ
とができるようにした微細パターン投影光学系を提供し
ようとするものである。
Therefore, the present invention solves the above-mentioned conventional problems by reducing the number of lenses by using a lens configuration mainly using a reflective optical system, suppressing the amount of light absorption as much as possible, and extending the light absorption to the ultraviolet region or deep ultraviolet region. can be applied, high resolution can be obtained, and even under coherent illumination, it is possible to eliminate the interference caused by the reflecting mirror and form an image by obtaining the overlap of the zero-order and ±1st-order diffracted light. It is an object of the present invention to provide a fine pattern projection optical system capable of projecting fine patterns.

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、物点側の屈析光学系及び像点側のカタジオプトリ
ック光学系から成り、上記屈析光学系は複数の屈析部材
が組合わされ、上記カタジオプトリック光学系は基準軸
を中心に回転対称な位相補正部材の曲率の中心に対し、
中心にそれぞれ開口を有する凸面鏡部材及び凹面鏡部材
が同心に配され、上記屈析光学系及びカタジオプトリッ
ク光学系が共軸上で、上記位相補正部材の像点側の面が
絞り位置となるようにこの位相補正部材を境界として結
合され、物点から出た光束が上記屈析光学系を屈析され
ながら通過し、上記カタジオプトリック光学系の位相補
正部材を通過後、一部の光束が凸面鏡部材の開口及び凹
面鏡部材の開口を通過して像点へ到達し、残りの光束が
凹面鏡部材により位相補正部材側に反射され、さらに凸
面鏡部材により位相補正部材とは反対側に反射され、凹
面鏡部材の開口を通過して像点へ到達し、基準軸とは直
角面内で、かつ凹面鏡部材の後方に像形成を行う投影レ
ンズと、上記屈析光学系の物点側焦点面に置かれ、パタ
ーンの空間周波数が高く、コヒーレント光による照明に
より回析光を生じる被投影物体と、照明光束が上記位相
補正部材の曲率中心に集光する如く被投影物体に対して
収れん照明を行う照明光源とを備えたものである。
Means for solving the problems and technical means of the present invention for solving the above problems consist of a refractive optical system on the object point side and a catadioptric optical system on the image point side. The analytical optical system is a combination of a plurality of refractive members, and the catadioptric optical system has a rotational symmetry with respect to the center of curvature of the phase correction member, which is rotationally symmetrical about the reference axis.
A convex mirror member and a concave mirror member each having an aperture at the center are arranged concentrically, the refractive optical system and the catadioptric optical system are coaxial, and the image point side surface of the phase correction member is the aperture position. The light flux emitted from the object point passes through the refracting optical system while being refracted, and after passing through the phase correcting member of the catadioptric optical system, some The light flux passes through the aperture of the convex mirror member and the aperture of the concave mirror member to reach the image point, and the remaining light flux is reflected by the concave mirror member toward the phase correction member, and further reflected by the convex mirror member to the side opposite to the phase correction member. , a projection lens that passes through the aperture of the concave mirror member and forms an image in a plane perpendicular to the reference axis and behind the concave mirror member, and a focal plane on the object point side of the refractive optical system. convergent illumination is performed on the projected object such that the illumination light flux is focused on the center of curvature of the phase correction member. It is equipped with an illumination light source.

作  用 上記技術的手段による作用は次のようになる。For production The effects of the above technical means are as follows.

投影光学系の位相補正部材の曲率中心、すなわち絞り面
中心に集光するようにコヒーレント光により被投影物体
を収れん照明し、0次回行光、±1次回折先の輝点スペ
クトルを絞り面上に得る。
The object to be projected is convergently illuminated with coherent light so that the light is focused on the center of curvature of the phase correction member of the projection optical system, that is, the center of the aperture surface, and the bright spot spectrum of the 0th-order running light and the ±1st-order diffracted points is focused on the aperture surface. get to.

しかる後、±1次回折先は凹面鏡部材、凸面鏡部材の順
に反射させ、凹面鏡部材の開口より像面へ到達させる。
Thereafter, the ±1st-order diffraction points are reflected by the concave mirror member and the convex mirror member in this order, and are made to reach the image plane through the aperture of the concave mirror member.

一方、0次回行光は凸面鏡部材、凹面鏡部材の開口より
像面へ到達させる。ここで、凹面鏡部材及び凸面鏡部材
の曲率中心は絞り面中心に対して同心に配置しであるた
め、凹面鏡部材、凸面鏡部材で反射されて像面へ到達し
た場合と金く同様の光学収差性能が得られ、かつ像面で
の0次回行光、±1次回折先の重なりを得ることができ
、微細パターンの投影が可能となる。また主たる屈析力
を反射系で得ているため、屈析レンズ枚数が低減でき、
紫外域、遠紫外域の短波長での透過率を確保することが
でき、高解像力の投影光学系を得ることができる。
On the other hand, the 0th order light reaches the image plane through the apertures of the convex mirror member and the concave mirror member. Here, since the centers of curvature of the concave mirror member and the convex mirror member are arranged concentrically with respect to the center of the diaphragm surface, the optical aberration performance is the same as that when it is reflected by the concave mirror member and the convex mirror member and reaches the image plane. In addition, it is possible to obtain an overlap of the 0th-order traveling light and the ±1st-order diffraction destinations on the image plane, making it possible to project a fine pattern. In addition, since the main refractive power is obtained from the reflective system, the number of refractive lenses can be reduced.
Transmittance at short wavelengths in the ultraviolet region and deep ultraviolet region can be ensured, and a projection optical system with high resolution can be obtained.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における微細パターン投影光
学系を示す全体断面図、第2図は投影レンズ部の拡大図
である。第1図及び第2図に示すように合成石英から成
る凸レンズ1、凹レンズ2、凸レンズ3及び凸レンズ4
により物点側の屈析光学系Iが構成されており、被投影
物体9は屈析光学系■の焦平面F上に置かれる。
FIG. 1 is an overall sectional view showing a fine pattern projection optical system according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a projection lens section. As shown in FIGS. 1 and 2, a convex lens 1, a concave lens 2, a convex lens 3, and a convex lens 4 made of synthetic quartz
A refractive optical system I on the object point side is constructed, and the object 9 to be projected is placed on the focal plane F of the refractive optical system (2).

一方、位相補正板5、中心に開口0.を有する凹面鏡6
及び中心に開口02を有する凸面鏡7により像点側のカ
タジオプトリック光学系■が構成されている。このカタ
ジオプトリック光学系■は被投影物体9に対し、位相補
正板5、凸面鏡6、凹面鏡5の順で配置されている。こ
れら屈析光学系Iとカタジオプトリック光学系■は共軸
上で、系としての絞りAP位置が位相補正板5の曲率中
心Cに一致するよう互いに相対して結合されている。
On the other hand, the phase correction plate 5 has an opening at the center. concave mirror 6 having
A catadioptric optical system (2) on the image point side is constituted by a convex mirror 7 having an aperture 02 at the center. This catadioptric optical system (2) has a phase correction plate 5, a convex mirror 6, and a concave mirror 5 arranged in this order with respect to the object 9 to be projected. The refractive optical system I and the catadioptric optical system (2) are coaxially connected to each other so that the aperture AP position of the system coincides with the center of curvature C of the phase correction plate 5.

位相補正板5は基準軸を中心に回転対称となっており、
凸面鏡7及び凹面鏡6はそれぞれ位相補正板5の曲率中
心Cに対して同心配置となっている。
The phase correction plate 5 is rotationally symmetrical about the reference axis,
The convex mirror 7 and the concave mirror 6 are each arranged concentrically with respect to the center of curvature C of the phase correction plate 5.

本実施例における物点側の開口数は0.076、像側の
開口数は0.38、倍率は115である。照明20はコ
ヒーレント光であり、被投影物体9全体を照らし、屈析
光学系Iを通過した後、位相補正板5の曲率中心Cに集
光するよう収れん的に照明する。
In this example, the numerical aperture on the object side is 0.076, the numerical aperture on the image side is 0.38, and the magnification is 115. The illumination 20 is coherent light that illuminates the entire projection object 9 and, after passing through the refractive optical system I, is convergently illuminated so that the light is focused on the center of curvature C of the phase correction plate 5.

而してコヒーレントで、かつ収れん的な照明20により
照明された被投影物体9からは、0次回析光D0、±1
次回析光D+4、D、、さらには高次の回析光が生じ、
投影レンズ(I+II)へ入射する。本実施例では、投
影レンズの像側の開口数(NA=SinOo)で決定さ
れる入射角度と被投影物体9からの一次回析光角θ1と
が一致するよう設計しである。そのため、2次回析光以
上の高次の回析光は投影レンズ(I+II )へは入射
しない。
Therefore, from the projected object 9 illuminated by the coherent and convergent illumination 20, the 0th order diffraction light D0, ±1
The next diffraction light D+4, D, and even higher-order diffraction light are generated,
The light enters the projection lens (I+II). This embodiment is designed so that the angle of incidence determined by the image-side numerical aperture (NA=SinOo) of the projection lens matches the angle of primary diffraction light θ1 from the object 9 to be projected. Therefore, higher-order diffraction light higher than second-order diffraction light does not enter the projection lens (I+II).

投影物体9からの+1次回析光D+1、−1次回行光D
o次回析光り。はそれぞれ屈析しなから凸レンズ1、凹
レンズ2、凸レンズ3、凸レンズ4、位相補正板5を通
過した後、絞りAP上で各輝点スペクトルS十1、S−
1、Soに集光し、分離する。その後、±1次回析光D
+4、Dlは凹面鏡6により被投影物体9側へ反射され
、さらに凸面鏡7により再度、被投影物体9とは反射側
に反射され、凹面鏡6の開口0.を通過し、投影光学系
(I+II)の右方へ出射する。一方、0次回析光り。
+1st-order analytical light D+1, -1st-order running light D from the projection object 9
o-order analysis light. After passing through convex lens 1, concave lens 2, convex lens 3, convex lens 4, and phase correction plate 5, each bright spot spectrum S11, S-
1. Focus the light on So and separate it. After that, ±1st order diffraction light D
+4, Dl is reflected by the concave mirror 6 toward the projection object 9 side, and further reflected again by the convex mirror 7 toward the reflection side away from the projection object 9, and the aperture 0. and exits to the right of the projection optical system (I+II). On the other hand, 0th order analysis light.

は凸面鏡7の開口02を通過し、さらに凹面鏡6の開口
01を通過し、同様に投影光学系(I十〇 )の右方へ
出射していく。0次回析光D0については凹面鏡6、凸
面鏡7の反射を経ていないが、凹面鏡6及び凸面鏡7は
0次回行光D1の集光点C(すなわら、絞りAP上の0
点)に対して同心となっているため、第3図に示すよう
に反射した場合と同様の光路を経ることとなるため、光
学収差においては何らの変化もない。
passes through the aperture 02 of the convex mirror 7, further passes through the aperture 01 of the concave mirror 6, and similarly exits to the right of the projection optical system (I10). The 0th-order diffracted light D0 has not been reflected by the concave mirror 6 and the convex mirror 7, but the concave mirror 6 and the convex mirror 7
Since the light beam is concentric with respect to the point ), it follows the same optical path as in the case of reflection as shown in FIG. 3, so there is no change in optical aberration.

投影像は0次回行光p0、±1次回析光D+4、D、 
 が同じ大きさで重なる像平面1M上において、干渉縞
として形成される。
The projected image is 0th order line light p0, ±1st order analytical light D+4, D,
are formed as interference fringes on the image plane 1M where they overlap and have the same size.

また高NA部を反射系で負担させ、低NA部を屈析部で
分担することにより、レンズである屈析材料が合成石英
のみであり、枚数も5枚であるため、λ=200nmの
波長においても、30%以上の透過率が得られる。
In addition, by sharing the high NA part with the reflective system and the low NA part with the refracting part, the refractive material of the lens is only synthetic quartz, and the number of lenses is 5, so the wavelength of λ = 200 nm Even in this case, a transmittance of 30% or more can be obtained.

発明の効果 以上述べたように本発明によれば、複数の屈析部材から
成る屈析光学系と、位相補正部材、中心に開口を有する
凸面鏡部材及び凹面鏡部材から成るカタジオプトリック
光学系を位相補正部材の像点側の曲率中心が絞りの位置
となるよう共軸上で結合し、被投影物体を絞りの中心に
集光するようにコヒーレント照明することにより、反射
鏡による喰を排し、像形成に0次回析光、±1次回析光
の重なりを得る再回析光学系を実現することができ、微
細パターンの投影が可能となる。また主たる屈析力を反
射系で得ているため、屈析レンズ枚数を低減でき、紫外
域、遠紫外域の短波長での透過率を確保することができ
、高解像力の投影光学系を得ることができる。
Effects of the Invention As described above, according to the present invention, a refractive optical system comprising a plurality of refractive members, a phase correction member, a catadioptric optical system comprising a convex mirror member having an aperture in the center, and a concave mirror member are provided. The center of curvature on the image point side of the phase correction member is connected coaxially to the aperture position, and coherent illumination is performed so that the projected object is focused on the center of the aperture, thereby eliminating the interference caused by the reflecting mirror. , it is possible to realize a re-diffraction optical system that obtains the overlap of 0th-order diffraction light and ±1st-order diffraction light for image formation, and it becomes possible to project fine patterns. In addition, since the main refractive power is obtained from the reflective system, the number of refractive lenses can be reduced and transmittance at short wavelengths in the ultraviolet and deep ultraviolet regions can be ensured, making it possible to obtain a projection optical system with high resolution. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の一実施例における微細パタ
ーン投影光学系を示し、第1図は全体断面図、第2図は
投影光学系の拡大図、第3図は0次回析光の通過状態を
示す説明図、第4図は従来の屈析系を用いた投影光学系
の全体断面図、第5図は従来の反射系を用いた反射顕微
鏡用対物鏡の断面図である。 1 ・・凸レンズ、2・・・・・・凹レンズ、a・・・
・・・凸レンズ1.4・・・・・・凸レンズ、5・・・
・・位相補正板、6・・・・・・凹面鏡、7・・・・・
・凸面鏡、8・・・・・・投影像、9・・・・・・被投
影物体、20・・・・・・照明、AP・・・・・・絞り
、■・・・・・・屈析光学系、■・・・・・・カタジオ
プトリック光学系。
1 to 3 show a fine pattern projection optical system according to an embodiment of the present invention, FIG. 1 is an overall cross-sectional view, FIG. 2 is an enlarged view of the projection optical system, and FIG. 3 is a 0th-order analyzed light beam. FIG. 4 is an overall sectional view of a projection optical system using a conventional refracting system, and FIG. 5 is a sectional view of an objective mirror for a reflection microscope using a conventional reflecting system. 1... Convex lens, 2... Concave lens, a...
... Convex lens 1.4 ... Convex lens, 5 ...
... Phase correction plate, 6 ... Concave mirror, 7 ...
・Convex mirror, 8...Projected image, 9...Projected object, 20...Illumination, AP...Aperture, ■...Deflection Analytical optical system, ■... Catadioptric optical system.

Claims (2)

【特許請求の範囲】[Claims] (1)物点側の屈析光学系及び像点側のカタジオプトリ
ック光学系から成り、上記屈析光学系は複数の屈析部材
が組合わされ、上記カタジオプトリック光学系は基準軸
を中心に回転対称な位相補正部材の曲率の中心に対し、
中心にそれぞれ開口を有する凸面鏡部材及び凹面鏡部材
が同心に配され、上記屈析光学系及びカタジオプトリッ
ク光学系が共軸上で、上記位相補正部材の像点側の面が
絞り位置となるようにこの位相補正部材を境界として結
合され、物点から出た光束が上記屈析光学系を屈析され
ながら通過し、上記カタジオプトリック光学系の位相補
正部材を通過後、一部の光束が凸面鏡部材の開口及び凹
面鏡部材の開口を通過して像点へ到達し、残りの光束が
凹面鏡部材により位相補正部材側に反射され、さらに凸
面鏡部材により位相補正部材とは反対側に反射され、凹
面鏡部材の開口を通過して像点へ到達し、基準軸とは直
角面内で、かつ凹面鏡部材の後方に像形成を行う投影レ
ンズと、上記屈析光学系の物点側焦点面に置かれ、パタ
ーンの空間周波数が高く、コヒーレント光による照明に
より回析光を生じる被投影物体と、照明光束が上記位相
補正部材の曲率中心に集光する如く被投影物体に対して
収れん照明を行う照明光源とを備えたことを特徴とする
微細パターン投影光学系。
(1) Consists of a refractive optical system on the object point side and a catadioptric optical system on the image point side. With respect to the center of curvature of the phase correction member that is rotationally symmetrical about ,
A convex mirror member and a concave mirror member each having an aperture at the center are arranged concentrically, the refractive optical system and the catadioptric optical system are coaxial, and the image point side surface of the phase correction member is the aperture position. The light flux emitted from the object point passes through the refracting optical system while being refracted, and after passing through the phase correcting member of the catadioptric optical system, some The light flux passes through the aperture of the convex mirror member and the aperture of the concave mirror member to reach the image point, and the remaining light flux is reflected by the concave mirror member toward the phase correction member, and further reflected by the convex mirror member to the side opposite to the phase correction member. , a projection lens that passes through the aperture of the concave mirror member and forms an image in a plane perpendicular to the reference axis and behind the concave mirror member, and a focal plane on the object point side of the refractive optical system. convergent illumination is performed on the projected object such that the illumination light flux is focused on the center of curvature of the phase correction member. A fine pattern projection optical system characterized by comprising an illumination light source.
(2)屈析光学系の開口数よりカタジオプトリック光学
系の開口数が大きい特許請求の範囲第1項記載の微細パ
ターン投影光学系。
(2) The fine pattern projection optical system according to claim 1, wherein the numerical aperture of the catadioptric optical system is larger than the numerical aperture of the refractive optical system.
JP61159050A 1986-05-02 1986-07-07 Projection optical system for fine pattern Pending JPS6314112A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61159050A JPS6314112A (en) 1986-07-07 1986-07-07 Projection optical system for fine pattern
US07/043,620 US4757354A (en) 1986-05-02 1987-04-28 Projection optical system
EP87106243A EP0243950B1 (en) 1986-05-02 1987-04-29 Optical projection system
DE8787106243T DE3784963T2 (en) 1986-05-02 1987-04-29 OPTICAL PROJECTION SYSTEM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159050A JPS6314112A (en) 1986-07-07 1986-07-07 Projection optical system for fine pattern

Publications (1)

Publication Number Publication Date
JPS6314112A true JPS6314112A (en) 1988-01-21

Family

ID=15685133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159050A Pending JPS6314112A (en) 1986-05-02 1986-07-07 Projection optical system for fine pattern

Country Status (1)

Country Link
JP (1) JPS6314112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056114A3 (en) * 2001-01-09 2003-12-11 Zeiss Carl Smt Ag Projection system for euv lithography
US7151592B2 (en) 1999-02-15 2006-12-19 Carl Zeiss Smt Ag Projection system for EUV lithography
JP2009044143A (en) * 2007-07-18 2009-02-26 Asml Holding Nv Catadioptric optical system for scatterometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151592B2 (en) 1999-02-15 2006-12-19 Carl Zeiss Smt Ag Projection system for EUV lithography
WO2002056114A3 (en) * 2001-01-09 2003-12-11 Zeiss Carl Smt Ag Projection system for euv lithography
JP2009044143A (en) * 2007-07-18 2009-02-26 Asml Holding Nv Catadioptric optical system for scatterometry
US8107173B2 (en) 2007-07-18 2012-01-31 Asml Holding N.V. Catadioptric optical system for scatterometry

Similar Documents

Publication Publication Date Title
US4861148A (en) Projection optical system for use in precise copy
US4757354A (en) Projection optical system
US4619508A (en) Illumination optical arrangement
JP3608580B2 (en) Illumination optical apparatus, exposure apparatus, exposure method, and fly-eye lens
JP3293882B2 (en) Projection exposure equipment
JP3784136B2 (en) Projection exposure apparatus and projection exposure method
JPS61198012A (en) Surface inspecting device
JPH08179202A (en) Ultraviolet image forming optical system
JPH0314325B2 (en)
JPS6314112A (en) Projection optical system for fine pattern
US7474468B2 (en) Off-axis projection optics and extreme ultraviolet lithography apparatus employing the same
KR20090053694A (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JPH0611609A (en) Exposure device
JPH04180612A (en) Projection aligner
JPH04361201A (en) Optical system using fresnel zone plate
JPS6314113A (en) Projection optical system for fine pattern
JPH09146007A (en) Optical system
JPH05217851A (en) Projection aligner
JP2000150374A (en) Projective aligner and method, and manufacture of element
JPH06267822A (en) Fine pattern formation
JP3360319B2 (en) Projection exposure apparatus and method of forming semiconductor element
JPH05249379A (en) Wide-field exposure optical system
JP3438730B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JP3316695B2 (en) Scanning exposure method and device manufacturing method using the same, and scanning exposure apparatus and device manufacturing method using the same
JPH08330223A (en) Exposure method