JPS63140839A - Electronic control fuel injection device for internal combustion engine - Google Patents

Electronic control fuel injection device for internal combustion engine

Info

Publication number
JPS63140839A
JPS63140839A JP28601886A JP28601886A JPS63140839A JP S63140839 A JPS63140839 A JP S63140839A JP 28601886 A JP28601886 A JP 28601886A JP 28601886 A JP28601886 A JP 28601886A JP S63140839 A JPS63140839 A JP S63140839A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel injection
fuel
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28601886A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP28601886A priority Critical patent/JPS63140839A/en
Publication of JPS63140839A publication Critical patent/JPS63140839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve responsiveness as well as to aim at improvements in fuel consumption and drivability, by selecting a feedforward correction factor as long as the specified period at a time when a load variation is more than the specified one and afterward a feedback correction factor, respectively, in case of a device performing control over a lean side air-fuel ratio. CONSTITUTION:A feedback correction factor setting device F sets a feedback correction factor on the basis of a deviation between a detection value out of an air-fuel ratio detecting device A and a desired air-fuel ratio at the lean side, and a feedforward correction factor setting device E sets such a feedforward correction factor as becoming a desired air-fuel ratio on the basis of engine speed and fundamental fuel injection quantity. When a load variation judging device D has judged that a load variation is more than the specified one on the basis of variations in the fundamental fuel injection quantity, a first selecting device G selects the feedforward correction factor as long as the specified period, selecting the feedback correction factor. When the load variation is less than the specified one, a second selecting device H selects the feedback correction factor from the outset.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection system for an internal combustion engine.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置の従来例として以下の
ようなもあがある(実願昭60−066558号)。
<Prior Art> There is also the following conventional example of an electronically controlled fuel injection device for an internal combustion engine (Utility Application No. 60-066558).

すなわち、エアフローメータ等により検出された吸入空
気流量Qと機関回転速度Nとから基本噴耐量Tp−Kx
Q/N (Kは定数)を演算すると共に、主として水温
に応じた各種補正係数C0EFと実際の空燃比が理論空
燃比になるように設定された空燃比フィードバック補正
係数αとバフテリ電圧による補正係数Tsとを演算した
後、定常運転時における燃料噴射量T i = T p
 X COE F×α+Tsを演算する。
That is, the basic injection tolerance Tp-Kx is determined from the intake air flow rate Q detected by an air flow meter etc. and the engine rotational speed N.
In addition to calculating Q/N (K is a constant), various correction coefficients C0EF mainly depending on the water temperature, an air-fuel ratio feedback correction coefficient α set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, and a correction coefficient based on the buff battery voltage are calculated. After calculating Ts, the fuel injection amount during steady operation T i = T p
Calculate X COE F×α+Ts.

そして、例えばシングルポイントインジェクシ町ンシス
テム(以下SP1方式)では、機関の2回転毎に点火信
号等に同期して燃料噴射弁に対し前記燃料噴射量Ttに
対応するパルス巾の噴射パルス信号を出力し機関に燃料
を供給する。
For example, in a single point injection system (hereinafter referred to as SP1 system), an injection pulse signal with a pulse width corresponding to the fuel injection amount Tt is sent to the fuel injection valve in synchronization with an ignition signal etc. every two revolutions of the engine. output and supply fuel to the engine.

ところで、近年燃費の向上や排気の浄化等を目的として
、機関の低速低負荷運転域において、実際の空燃比が理
論空燃比よりも薄くなるように空燃比制御するようにし
たものがある。
Incidentally, in recent years, for the purpose of improving fuel efficiency and purifying exhaust gas, some engines have been designed to control the air-fuel ratio so that the actual air-fuel ratio becomes thinner than the stoichiometric air-fuel ratio in the low-speed, low-load operating range of the engine.

即ち、高出力を必要とせず希薄燃焼させても良い所定の
低速定負荷運転領域であることが判定されると、実際の
空燃比が略理論空燃比となるように設定される燃料噴射
it(以下、理論空燃比制御と呼ぶ)を、目標空燃比を
切り換えて実際の空燃比が所定の希薄空燃比となるよう
に減量設定して燃料噴射制御(以下、希薄空燃比制御と
呼ぶ)するものであり、これにより燃料消費量を少なく
すると共に、排気中の有害成分を低減しようとするもの
である。
In other words, when it is determined that the operation is in a predetermined low-speed constant-load operation region that does not require high output and may allow lean combustion, the fuel injection it ( A system that controls fuel injection by switching the target air-fuel ratio (hereinafter referred to as stoichiometric air-fuel ratio control) and setting a reduction so that the actual air-fuel ratio becomes a predetermined lean air-fuel ratio (hereinafter referred to as lean air-fuel ratio control). This aims to reduce fuel consumption and reduce harmful components in exhaust gas.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の電子制御燃料噴射装置
においては、定常運転状態で理論空燃比制御から希薄空
燃比制御に急激に切り換えると、急激に機関出力が低下
して運転フィーリングが悪化するという不具合がある。
<Problems to be Solved by the Invention> However, in such conventional electronically controlled fuel injection systems, when switching suddenly from stoichiometric air-fuel ratio control to lean air-fuel ratio control during steady operation, the engine output suddenly decreases. The problem is that the driving feeling deteriorates.

また、加速運転あるいは減速運転時から希薄空燃比運転
可能な運転領域である定常運転に移行した直後には急激
に希薄空燃比制御に切り換えないと、燃費或いはNOx
の低減化が図れないという不具合がある。又は大きな負
荷変動を伴う上記移行時はその時発生するトルク変動を
希薄空燃比制御に急激に切換えることにより抑制し運転
フィーリングの悪化を抑制できる。しかしフィードバッ
ク制御によりこれを行うと実際の空燃比を検出する酸素
センサの検出応答遅れによって実際の空燃比を急激に希
薄空燃比にすることができない。
In addition, immediately after transitioning from acceleration or deceleration to steady operation, which is the operating range in which lean air-fuel ratio operation is possible, it is necessary to suddenly switch to lean air-fuel ratio control, which will reduce fuel consumption or NOx.
There is a problem in that it is not possible to reduce the Alternatively, at the time of the above-mentioned transition accompanied by large load fluctuations, the torque fluctuations occurring at that time can be suppressed by abruptly switching to lean air-fuel ratio control, thereby suppressing deterioration of driving feeling. However, if this is done using feedback control, the actual air-fuel ratio cannot be made to be a lean air-fuel ratio rapidly due to a delay in the detection response of the oxygen sensor that detects the actual air-fuel ratio.

本発明は、このような実状に鑑みてなされたもので、希
薄空燃比制御を行っても加速運転直後の燃費及びNOx
の低減化を図りつつ運転フィーリングを向上できる電子
側m燃料噴射装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and even if lean air-fuel ratio control is performed, the fuel consumption and NOx levels immediately after acceleration are reduced.
An object of the present invention is to provide an electronic side m-fuel injection device that can improve the driving feeling while reducing the amount of noise.

〈問題点を解決するための手段〉 このため、本発明第1図に示すように機関の実際の空燃
比を検出する空燃比検出手段Aと、機関の負荷を検出す
る負荷検出手段Bと、検出された負荷に基づいて負荷変
化率を演算する負荷変化率演算手段Cと、演算された負
荷変化率が所定値以上か否かを判定する負荷変化率判定
手段りと、理論空燃比より希薄な略一定の希薄空燃比と
なるようにフィードフォワード補正係数を設定するフィ
ードフォワード補正係数設定手段Eと、検出された実際
の空燃比に基づいて実際の空燃比が目標希薄空燃比にな
るようにフィードバック補正係数を設定するフィードバ
ック補正係数設定手段Fと、負荷変化率が所定値以上と
判定されたときに希薄空燃比制御初期のを選択しその後
フィードバック補正係数を選択しその後フィードバック
補正係数を選択する第1選択手段Gと、負荷変化率が所
定値未満と判定されたときに希薄空燃比制御開始時から
前記フィードバック補正係数を選択する第2選択手段H
と、第1若しくは第2選択手段G、Hにより選択された
補正係数に基づいて燃料噴射量を設定する燃料噴射量設
定手段■と、設定された燃料噴射量に応じて燃料噴射弁
Jを駆動する駆動手段にと、を備えるようにした。
<Means for solving the problem> For this reason, as shown in FIG. 1 of the present invention, air-fuel ratio detection means A for detecting the actual air-fuel ratio of the engine, load detection means B for detecting the load of the engine, Load change rate calculation means C calculates a load change rate based on the detected load; load change rate determination means C determines whether the calculated load change rate is equal to or greater than a predetermined value; a feedforward correction coefficient setting means E for setting a feedforward correction coefficient so that the lean air-fuel ratio becomes a substantially constant lean air-fuel ratio; Feedback correction coefficient setting means F for setting a feedback correction coefficient, and when it is determined that the load change rate is equal to or higher than a predetermined value, selects an initial lean air-fuel ratio control, then selects a feedback correction coefficient, and then selects a feedback correction coefficient. a first selection means G; and a second selection means H for selecting the feedback correction coefficient from the start of lean air-fuel ratio control when the load change rate is determined to be less than a predetermined value.
, fuel injection amount setting means (2) for setting the fuel injection amount based on the correction coefficient selected by the first or second selection means G, H, and driving the fuel injection valve J according to the set fuel injection amount. The driving means for the purpose of the present invention includes and.

く作用) このようにして、負荷変化率が所定値以上すなわち所定
値以上の加・減速運転から希薄空燃比制御に移行すると
きにその初期にフィードフォワード制御により実際の空
燃比を急激に希1空燃比にした後、フィードバック制御
により目標希薄空燃比に近づけるようにする。一方、負
荷変化率が所定値未満のときには希薄空燃比制御開始時
からフイードバック制御により実際の空燃比を目標空燃
比に近づけるようにする。
In this way, when transitioning from acceleration/deceleration operation where the load change rate is above a predetermined value, that is, above the predetermined value, to lean air-fuel ratio control, the actual air-fuel ratio is rapidly reduced to lean air-fuel ratio by feedforward control at the initial stage. After setting the air-fuel ratio to the target lean air-fuel ratio, feedback control is performed to bring it closer to the target lean air-fuel ratio. On the other hand, when the load change rate is less than the predetermined value, the actual air-fuel ratio is brought closer to the target air-fuel ratio by feedback control from the start of the lean air-fuel ratio control.

〈実施例〉 以下に、本発明の一実施例を第2図〜第5図に基づいて
説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 5.

第2図において、例えばマイクロコンピュータからなる
制御装置1には、点火コイル2から出力される点火信号
(回転速度信号)、エアフローメータ3から出力される
吸入空気流量信号、水温センサ4から出力される冷却水
温度信号、車速センサ5から出力される車速信号、アイ
ドルスイッチ6からの0N−OFF信号、空燃比検出手
段としての酸素センサ7 (排気中の酸素濃度によって
理論空燃比を含む広範囲の空燃比を検出できるセンサ)
からの空燃比検出信号、とが入力されている。
In FIG. 2, a control device 1 consisting of a microcomputer, for example, receives an ignition signal (rotational speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and a water temperature sensor 4. A cooling water temperature signal, a vehicle speed signal output from the vehicle speed sensor 5, an 0N-OFF signal from the idle switch 6, an oxygen sensor 7 as an air-fuel ratio detection means (a wide range of air-fuel ratios including the stoichiometric air-fuel ratio depending on the oxygen concentration in the exhaust gas) (sensor that can detect)
The air-fuel ratio detection signal from

制御装置1は、第3図〜第5図に示すフローチャートに
従って作動し、燃料噴射弁8に駆動回路9を介して駆動
パルス信号を出力するようになっている。
The control device 1 operates according to the flowcharts shown in FIGS. 3 to 5, and outputs a drive pulse signal to the fuel injection valve 8 via the drive circuit 9.

ここでは、制御装置1が負荷変化率演算手段と負荷変化
率判定手段とフィードフォワード補正係数設定手段とフ
ィードバック補正係数設定手段と第1及び第2選択手段
と燃料噴射量設定手段とを構成する。また、制御装置1
と駆動回路9とにより、駆動手段が構成される。また、
機関1回転当りの吸入空気流量から演算される基本噴射
量の変化率を負荷変化率と使用するためエアフローメー
タ3が負荷検出手段を構成する。
Here, the control device 1 constitutes a load change rate calculation means, a load change rate determination means, a feedforward correction coefficient setting means, a feedback correction coefficient setting means, first and second selection means, and a fuel injection amount setting means. In addition, the control device 1
and the drive circuit 9 constitute a drive means. Also,
Since the rate of change in the basic injection amount calculated from the flow rate of intake air per engine revolution is used as the rate of change in load, the air flow meter 3 constitutes a load detection means.

次に作用を第3図〜第5図のフローチャートに従って説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 5.

まず、燃料噴射量演算ルーチンを第3図に基づいて説明
すると、Slでは、点火信号、吸入空気流量信号等の各
種信号を読み込む。
First, the fuel injection amount calculation routine will be explained based on FIG. 3. At Sl, various signals such as an ignition signal and an intake air flow rate signal are read.

S2では、点火信号から得られた機関回転速度Nと吸入
空気流量Qとから基本噴射量Tp (=KN−には定数
)を演算する。
In S2, a basic injection amount Tp (=KN- is a constant) is calculated from the engine rotational speed N obtained from the ignition signal and the intake air flow rate Q.

33〜S7では、希薄空燃比制御条件を判定する。In 33 to S7, lean air-fuel ratio control conditions are determined.

すなわち、S3では、演算された基本噴射量Tpが設定
値TplからT p tまでの範囲に入っている否かを
判定し、YESのときには、S4に進みNoのときには
S22に進む。
That is, in S3, it is determined whether or not the calculated basic injection amount Tp is within the range from the set value Tpl to T p t. If YES, the process proceeds to S4, and if NO, the process proceeds to S22.

S4では、機関回転速度Nが設定値N1からN。In S4, the engine rotational speed N changes from the set value N1 to N.

までの範囲に入っているか否かを判定し、YESのとき
にはS5に進み、NoのときにはS22に進む。
It is determined whether or not it is within the range up to, and if YES, the process proceeds to S5, and if NO, the process proceeds to S22.

S5では、検出された冷却水温度Twが所定値(例えば
80℃)以上か否かを判定し、YESのときにはS6に
進み、NoのときにはS22に進む。
In S5, it is determined whether or not the detected cooling water temperature Tw is equal to or higher than a predetermined value (for example, 80° C.). If YES, the process proceeds to S6; if NO, the process proceeds to S22.

S6では、アイドルスイッチ6がON(吸気絞弁全閉時
)かOFFかを判定し、OFFのときには、S7に進み
ONのときにはS22に進む。
In S6, it is determined whether the idle switch 6 is ON (when the intake throttle valve is fully closed) or OFF, and if it is OFF, the process proceeds to S7, and if it is ON, the process proceeds to S22.

S7では、検出された車速か所定値(例えば8km/h
)以上か否かを判定し、YESのときには、S8に進み
Noのときには322に進む。
In S7, the detected vehicle speed is set to a predetermined value (for example, 8 km/h).
) or more, and if YES, proceed to S8; if NO, proceed to 322.

このようにして希薄空燃比制御条件(第6図参照)と判
定されたときには、S8において前回と今回演算された
基本噴射tTpの差ΔTpを、演算する。
When the lean air-fuel ratio control condition (see FIG. 6) is thus determined, the difference ΔTp between the basic injection tTp calculated last time and this time is calculated in S8.

S9では、演算された差の絶対値1ΔTplが所定値Δ
TpLを越えているか否かを判定し、YESのときには
310に進みNoのときにはS15に進む。
In S9, the absolute value 1ΔTpl of the calculated difference is set to a predetermined value Δ
It is determined whether or not TpL has been exceeded. If YES, the process proceeds to 310; if No, the process proceeds to S15.

310では、タイマの°カウント値をリセットし新たに
カウントを開始させ、Sllに進む。
At 310, the timer's count value is reset to start a new count, and the process proceeds to Sll.

Sllでは、タイマのカウント値が希薄空燃比制御条件
と判定された時から第1設定時間T1 (例えば1.、
cで第7図参照)を経過したか否かを判定し、YESの
ときにはS12に進みNOのときには、S22に進む。
In Sll, the first set time T1 (for example, 1.
At step c, it is determined whether or not the period (see FIG. 7) has elapsed, and if YES, the process advances to S12, and if NO, the process advances to S22.

512ではタイマのカウント値が希薄空燃比制御条件と
判定された時から、第2設定時間Tt(例えば1.2s
ecで第7図参照)を経過したか否かを判定し、YES
のときにはS17に進みNoのときにはS13に進む。
At step 512, the second set time Tt (for example, 1.2 s
ec (see Figure 7) has elapsed, and select YES.
If so, the process advances to S17, and if No, the process advances to S13.

S13では、三次元マツプからフィードフォワード補正
係数としてのリーンバーン補正係数LBCを機関回転速
度Nと基本噴射量Tpとに基づいて検索する。
In S13, a lean burn correction coefficient LBC as a feedforward correction coefficient is searched from the three-dimensional map based on the engine rotational speed N and the basic injection amount Tp.

ここで、前記リーンバーン補正係数はロード走行時に空
燃比が最も希薄化され負荷の増大に伴って空燃比が理論
空燃比に近づくように三次元マツプに記憶されている。
Here, the lean burn correction coefficient is stored in a three-dimensional map so that the air-fuel ratio becomes the leanest during road running, and as the load increases, the air-fuel ratio approaches the stoichiometric air-fuel ratio.

一方、315では、タイマのカウント値に+1を加算し
て新たなカウント値を得て、S16に進む。
On the other hand, in step 315, +1 is added to the count value of the timer to obtain a new count value, and the process proceeds to S16.

S16では、タイマのカウント値が前記第1設定時間T
1を経過したか否かを判定し、YESのときにはS17
に進み、NoのときにはS22に進む。
In S16, the count value of the timer is equal to the first set time T.
1 has elapsed, and if YES, S17
If the answer is No, the process advances to S22.

S17では、酸素センサ7の検出信号を読み込んで、3
18では酸素センサ7の検出信号に基づいて空燃比マツ
プから実際の空燃比を検索してS19に進む。
In S17, the detection signal of the oxygen sensor 7 is read, and 3
At step 18, the actual air-fuel ratio is searched from the air-fuel ratio map based on the detection signal of the oxygen sensor 7, and the process proceeds to step S19.

S19では、検索された空燃比すなわち実際の空燃比と
目標希薄空燃比とを比較し、実際の空燃比がリンチのと
きには320に進みリーンのときにはS21に進む。
In S19, the searched air-fuel ratio, that is, the actual air-fuel ratio, is compared with the target lean air-fuel ratio, and if the actual air-fuel ratio is lean, the process proceeds to 320, and if it is lean, the process proceeds to S21.

320では、前回設定されたフィードバック補正係数と
してのリーンバーン補正係数LBCから所定値ΔLを減
算して実際の空燃比が目標希薄空燃比に近づくように新
たなリーンバーン補正係数LBCを設定する。尚、実際
の空燃比が口約希薄空燃比のときには前回のリーンバー
ン補正係数を使用する。
At 320, a predetermined value ΔL is subtracted from the previously set lean burn correction coefficient LBC as the feedback correction coefficient to set a new lean burn correction coefficient LBC so that the actual air-fuel ratio approaches the target lean air-fuel ratio. Note that when the actual air-fuel ratio is approximately a lean air-fuel ratio, the previous lean burn correction coefficient is used.

一方、S21では前回設定されたリーンバーン補正係数
LBCに所定値ΔLを加算して、実際の空燃比が目標希
薄空燃比に近づくように新たなリーンバーン補正係数L
BCを設定する。
On the other hand, in S21, a predetermined value ΔL is added to the previously set lean burn correction coefficient LBC, and a new lean burn correction coefficient L is added so that the actual air-fuel ratio approaches the target lean air-fuel ratio.
Set BC.

そして、314では、S13で検索されたリーンバーン
補正係数LBCまたはS20若しくはS21にて設定さ
れたリーンバーン補正係数LBCに基づいて燃料噴射量
Tiを次式により演算する。
Then, in 314, the fuel injection amount Ti is calculated based on the lean burn correction coefficient LBC retrieved in S13 or the lean burn correction coefficient LBC set in S20 or S21 using the following equation.

Ti=TpXLBCXCOEFXKBLRC+COEF
は水温等を含む各種補正係数、Tsはバフテリ電圧によ
る補正係数、KBLRCは理論空燃比制御時に燃料噴射
弁8の経時変化率を補正する学習係数である。
Ti=TpXLBCXCOEFXKBLRC+COEF
are various correction coefficients including water temperature, etc., Ts is a correction coefficient based on buffer voltage, and KBLRC is a learning coefficient that corrects the rate of change over time of the fuel injection valve 8 during stoichiometric air-fuel ratio control.

一方、希薄空燃比制御条件と判定されず或いは判定され
ても第1設定時間T、の間はS22において実際の空燃
比が略理論空燃比になるように燃料噴射NTiを次式に
より演算する。
On the other hand, during the first set time T, even if the lean air-fuel ratio control condition is not determined or determined, the fuel injection NTi is calculated by the following equation in S22 so that the actual air-fuel ratio becomes approximately the stoichiometric air-fuel ratio.

Ti−TpXαXC0EFXKBLRC+Tsαは従来
例と同様に実際の空燃比が理論空燃比になるように設定
された空燃比フィードバック補正係数である。
Ti-TpXαXC0EFXKBLRC+Tsα is an air-fuel ratio feedback correction coefficient set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, as in the conventional example.

このようにして、S14若しくはS22にて演算された
燃料噴射量Tiは第4図に示すフローチャートに従って
例えば点火コイル2からのリファレンス信号(回転数)
に同期して駆動回路9を介して燃料噴射弁8に出力し燃
料噴射を行う。
In this way, the fuel injection amount Ti calculated in S14 or S22 is determined by the reference signal (rotational speed) from the ignition coil 2, for example, according to the flowchart shown in FIG.
In synchronization with this, the signal is output to the fuel injection valve 8 via the drive circuit 9 to perform fuel injection.

また、前記目標希薄空燃比は第5図のフローチャートに
従って設定される。すなわち、S41では、空燃比マツ
プから機関回転速度Nと基本噴射量Tpとに基づいて目
標希薄空燃比を検索し、S42では検索された目標希薄
空燃比をRAM等に記憶させ、その値を第3図のフロー
チャートにおいて使用する。
Further, the target lean air-fuel ratio is set according to the flowchart shown in FIG. That is, in S41, a target lean air-fuel ratio is searched from the air-fuel ratio map based on the engine rotational speed N and the basic injection amount Tp, and in S42, the searched target lean air-fuel ratio is stored in a RAM or the like, and the value is stored in the RAM or the like. It is used in the flowchart in Figure 3.

このようにすると、希薄空燃比制御条件と判定された時
から第1設定時間TIを経過するまでは差の絶対値1Δ
Tplの大小に拘わらず判定直前と同様に実際の空燃比
が例えば理論空燃比になるようにフィードバック制御さ
れる。これにより、第6図に示すように希薄空燃比制御
領域外のA点からB点までの加速運転時に、希薄空燃比
制御領域を一時的に通過し希薄空燃比制御条件が判定さ
れても前記第1設定時間T、の間、希薄空燃比制御がな
されないため、実際の空燃比の希薄化を防止でき加速性
能を良好に維持できる。
In this way, the absolute value of the difference is 1Δ from the time when it is determined that the lean air-fuel ratio control condition is reached until the first set time TI has elapsed.
Regardless of the magnitude of Tpl, feedback control is performed so that the actual air-fuel ratio becomes, for example, the stoichiometric air-fuel ratio in the same way as immediately before the determination. As a result, as shown in FIG. 6, during acceleration operation from point A to point B outside the lean air-fuel ratio control region, even if the lean air-fuel ratio control region is temporarily passed and the lean air-fuel ratio control condition is determined. Since the lean air-fuel ratio control is not performed during the first set time T, it is possible to prevent the actual air-fuel ratio from becoming leaner and maintain good acceleration performance.

また、第1設定時間T、経過後においては前記差の絶対
値1ΔTplが所定値ΔTpLを超えているときには第
2設定時間T2が経過するまでは、三次元マツプにより
検索されたリーンバーン補正係数LBCに基づいて燃料
噴射量Tiが演算されるため、第7図に示すように、第
1設定時間T1経過後第2設定時間T2経過するまでは
実際の空燃比が理論空燃比より希薄化された一定の希薄
空燃比に維持される。これにより、加速運転直後に希薄
空燃比制御がなされるときには、第1設定時間TI経過
後に実際の空燃比が理論空燃比から希薄空燃比に急激に
低下するので、希薄空燃比制御への移行時に排気中のN
Ox排出量を低減しつつ希薄空燃比制御により燃費の向
上を図ることができる。
Furthermore, if the absolute value 1ΔTpl of the difference exceeds the predetermined value ΔTpL after the first set time T has elapsed, the lean burn correction coefficient LBC searched by the three-dimensional map is Since the fuel injection amount Ti is calculated based on A constant lean air/fuel ratio is maintained. As a result, when lean air-fuel ratio control is performed immediately after acceleration driving, the actual air-fuel ratio rapidly decreases from the stoichiometric air-fuel ratio to the lean air-fuel ratio after the first set time TI has elapsed, so when transitioning to lean air-fuel ratio control, N in exhaust
Fuel efficiency can be improved by lean air-fuel ratio control while reducing Ox emissions.

一方、差の絶対値1ΔTplが所定値以下すなわち超緩
加速運転成いは定常運転から希薄空燃比制御に移行する
ときには、前記第1設定時間T1経過後に酸素センサ7
により検出された実際の空燃比が目標希薄空燃比になる
ようにフィードバック制御するようにしたので、第7図
中破線で示すように、フィードバック制御初期に実際の
空燃比は、目標希薄空燃比に経時と共に徐々に近づいた
後、目標希薄空燃比付近においてフィードバック制御さ
れる。これにより、希薄空燃比制御への移行時に機関出
力が経時と共に徐々に低下するので、運転フィーリング
の悪化を抑制できる。
On the other hand, when the absolute value 1ΔTpl of the difference is less than the predetermined value, that is, when transitioning from ultra-slow acceleration operation or steady operation to lean air-fuel ratio control, the oxygen sensor 7
Feedback control is performed so that the actual air-fuel ratio detected by is equal to the target lean air-fuel ratio, so as shown by the broken line in Figure 7, the actual air-fuel ratio does not reach the target lean air-fuel ratio at the beginning of the feedback control. After gradually approaching the target lean air-fuel ratio over time, feedback control is performed near the target lean air-fuel ratio. Thereby, since the engine output gradually decreases over time when shifting to lean air-fuel ratio control, it is possible to suppress deterioration of driving feeling.

尚、本実施例では、基本噴射量の単位時間当りの変化率
すなわち前回と今回との差の絶対値1ΔTplから希薄
空燃比制御開始直前の機関運転状態を判定するようにし
たが、吸入負圧、スロットル弁開度、トルク、スロット
ル弁の開口面積等の変化率から判定するようにしてもよ
い。
In this embodiment, the engine operating state immediately before the start of lean air-fuel ratio control is determined from the rate of change of the basic injection amount per unit time, that is, the absolute value 1ΔTpl of the difference between the previous and current times. The determination may be made from the rate of change of the throttle valve opening, torque, opening area of the throttle valve, etc.

〈発明の効果〉 本発明は、以上説明したように、負荷変化率が所定値以
上のときに希薄空燃比制御をフィードフォワード制御に
より急激に希薄化空燃比に近づけた後フィードバック制
御により行う一方、負荷変化率が所定値未満のときにフ
ィードバック制御により希薄空燃比制御を行うようにし
たので、例えば加速運転直後からの希薄空燃比制御時に
はNOx排出量の低減化を図りつつ、燃費の向上を図れ
る一方、例えば定常運転時の希薄空燃比制御時には、空
燃比を徐々に希薄空燃比に近づけることにより機関出力
を徐々に低下させるため、運転フィーリングの向上を図
れる。
<Effects of the Invention> As explained above, the present invention performs lean air-fuel ratio control by rapidly approaching the lean air-fuel ratio by feedforward control and then by feedback control when the load change rate is equal to or higher than a predetermined value. Since lean air-fuel ratio control is performed by feedback control when the load change rate is less than a predetermined value, for example, when controlling the lean air-fuel ratio immediately after acceleration, it is possible to reduce NOx emissions and improve fuel efficiency. On the other hand, for example, during lean air-fuel ratio control during steady operation, the engine output is gradually reduced by gradually bringing the air-fuel ratio closer to the lean air-fuel ratio, thereby improving the driving feeling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第5図は同上のフローチ
ャート、第6図及び第7図は同上の作用を説明するため
の図である。 1・・・制御装置  2・・・点火コイル  3・・・
工゛アフロ−メータ  4・・・水温センサ  5・・
・車速センサ  6・・・アイドルスイッチ  7・・
・酸素センサ  8・・・燃料噴射弁  9・・・駆動
回路特許出願人   日本電子機器株式会社代理人 弁
理士 笹 島  冨二雄 第3図その2 第4図 第5図 機関回転VL度 第7図
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Figs. 3 to 5 are flowcharts of the same, and Figs. It is a figure for explaining. 1... Control device 2... Ignition coil 3...
Work flow meter 4...Water temperature sensor 5...
・Vehicle speed sensor 6...Idle switch 7...
・Oxygen sensor 8... Fuel injection valve 9... Drive circuit patent applicant Japan Electronics Co., Ltd. agent Patent attorney Fujio Sasashima Figure 3, Part 2 Figure 4 Figure 5 Engine rotation VL degree No. 7 figure

Claims (1)

【特許請求の範囲】[Claims] 所定の運転領域で所定の希薄空燃比制御条件が検出され
たときに実際の空燃比が理論空燃比より希薄化されるよ
うに希薄空燃比制御を行う内燃機関の電子制御燃料噴射
装置において、機関の実際の空燃比を検出する空燃比検
出手段と、機関の負荷を検出する負荷検出手段と、検出
された負荷に基づいて負荷変化率を演算する負荷変化率
演算手段と、演算さた負荷変化率が所定値以上か否かを
判定する負荷変化率判定手段と、理論空燃比より希薄な
略一定の希薄空燃比となるようにフィードフォワード補
正係数を設定するフィードフォワード補正係数設定手段
と、検出された実際の空燃比に基づいて実際の空燃比が
目標希薄空燃比になるようにフィードバック補正係数を
設定するフィードバック補正係数設定手段と、負荷変化
率が所定値以上と判定されたときに希薄空燃比制御初期
のを選択しその後フィードバック補正係数を選択する第
1選択手段と、負荷変化率が所定値未満と判定されたと
きに希薄空燃比制御開始時から前記フィードバック補正
係数を選択する第2選択手段と、第1若しくは第2選択
手段により選択された補正係数に基づいて燃料噴射量を
設定する燃料噴射量設定手段と、設定された燃料噴射量
に応じて燃料噴射弁を駆動する駆動手段と、を備えたこ
とを特徴とする内燃機関の電子制御燃料噴射装置。
In an electronically controlled fuel injection system for an internal combustion engine that performs lean air-fuel ratio control such that when a predetermined lean air-fuel ratio control condition is detected in a predetermined operating region, the actual air-fuel ratio is leaner than the stoichiometric air-fuel ratio. air-fuel ratio detection means for detecting the actual air-fuel ratio of the engine; load detection means for detecting the engine load; load change rate calculation means for calculating the load change rate based on the detected load; and load change rate calculation means for calculating the load change rate based on the detected load. load change rate determining means for determining whether or not the ratio is equal to or higher than a predetermined value; a feedback correction coefficient setting means for setting a feedback correction coefficient so that the actual air-fuel ratio becomes the target lean air-fuel ratio based on the actual air-fuel ratio that has been determined; a first selection means for selecting an initial stage of the fuel ratio control and then selecting a feedback correction coefficient; and a second selection means for selecting the feedback correction coefficient from the start of the lean air-fuel ratio control when the load change rate is determined to be less than a predetermined value. means, a fuel injection amount setting means for setting the fuel injection amount based on the correction coefficient selected by the first or second selection means, and a driving means for driving the fuel injection valve according to the set fuel injection amount. An electronically controlled fuel injection device for an internal combustion engine, comprising:
JP28601886A 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine Pending JPS63140839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28601886A JPS63140839A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28601886A JPS63140839A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63140839A true JPS63140839A (en) 1988-06-13

Family

ID=17698915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28601886A Pending JPS63140839A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63140839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017592A1 (en) * 1993-12-21 1995-06-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Combustion state judgement method of internal combustion engine, and method and apparatus for controlling combustion state of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813131A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS58124040A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS60212653A (en) * 1984-04-06 1985-10-24 Nissan Motor Co Ltd Fuel supply controlling apparatus for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813131A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS58124040A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS60212653A (en) * 1984-04-06 1985-10-24 Nissan Motor Co Ltd Fuel supply controlling apparatus for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017592A1 (en) * 1993-12-21 1995-06-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Combustion state judgement method of internal combustion engine, and method and apparatus for controlling combustion state of internal combustion engine
US5687692A (en) * 1993-12-21 1997-11-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Combustion state determination method of internal combustion engine, as well as combustion state control method and combustion state control system for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH03271544A (en) Control device of internal combustion engine
JPS62162746A (en) Air-fuel ratio control device
JPH08189396A (en) Air fuel ratio feedback control device for internal combustion engine
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS59539A (en) Air-fuel ratio control of air-fuel mixture for internal- combustion engine of vehicle
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPH0224550A (en) Controlling device of heater power of oxygen concentration sensor with heater
JPH04124439A (en) Air fuel ratio control method for internal combustion engine
JP2947065B2 (en) Lean burn control device for internal combustion engine
JPH051368B2 (en)
JPS63140839A (en) Electronic control fuel injection device for internal combustion engine
JP2521039B2 (en) Engine air-fuel ratio control device
JPH0419377B2 (en)
JPH08177576A (en) Air-fuel ratio control device for engine
JP2870286B2 (en) Air-fuel ratio control device for lean burn engine
JP3528193B2 (en) Air-fuel ratio control device for lean burn engine
JPS63140840A (en) Electronic control fuel injection device for internal combustion engine
JP3397085B2 (en) Engine combustion fluctuation control device
JPS63140838A (en) Electronic control fuel injection device for internal combustion engine
JPH04311640A (en) Air-fuel ratio control device for internal combustion engine
JPH06264801A (en) Fail-safe device for auxiliary air control device
JPH0791298A (en) Air-fuel ratio controller of internal combustion engine
JPS62203947A (en) Air-fuel ratio control device
JPS62186039A (en) Engine combustion control device
JPS6394047A (en) Deceleration fuel decrement controller for electronic control fuel injection internal combustion engine