JPS63140521A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63140521A
JPS63140521A JP28713686A JP28713686A JPS63140521A JP S63140521 A JPS63140521 A JP S63140521A JP 28713686 A JP28713686 A JP 28713686A JP 28713686 A JP28713686 A JP 28713686A JP S63140521 A JPS63140521 A JP S63140521A
Authority
JP
Japan
Prior art keywords
film
substrate
epitaxial
layer
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28713686A
Other languages
Japanese (ja)
Inventor
Kiyohisa Fujinaga
藤永 清久
Tsuneo Takahashi
庸夫 高橋
Hitoshi Ishii
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28713686A priority Critical patent/JPS63140521A/en
Publication of JPS63140521A publication Critical patent/JPS63140521A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a heat treatment in an extra-high vacuum or a heat treatment in an H2 atmosphere at a high temperature and facilitate forming an Si epitaxial film at a low temperature by a method wherein a Ge epitaxial film is formed on a semiconductor substrate of Si or the like and an epitaxial film of Si or the like is formed on the Ge film surface. CONSTITUTION:At first, a Ge epitaxial film 12 is formed on a semiconductor substrate 13. At that time, an oxide film 14 on the substrate 13 reacts with Ge system gas supplied under a temperature as low as about 400 deg.C and GeO is produced and evaporated from the surface of the substrate 13 so that a clean surface of Si or the like can be obtained easily. As soon as the clean surface is obtained, the epitaxial growth of Ge starts automatically. After a Ge film is formed, a Ge oxide film is formed on the Ge surface and obstructs the epitaxial growth of Si. However, if a heat treatment is performed at a tempera ture as low as about 400 deg.C, the Ge oxide film is volatilized so that the clean surface of Ge can be obtained easily. Therefore, supplied Si or the like can be made to grow on the Ge film by epitaxy easily. With this constitution, the epitaxial growth film 15 of Si or the like can be easily formed at a low tempera ture.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法に関し、特にシリコン基
板上に低温で81のエピタキシャル膜を成長させる半導
体装置の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which an epitaxial film 81 is grown on a silicon substrate at a low temperature.

[従来の技術] 従来、シリコン(Si)基板−ににSiエピタキシャル
膜を形成する方法としては、例えば第6図〜第8図に示
す代表的なものが知られている。
[Prior Art] Conventionally, as a method for forming a Si epitaxial film on a silicon (Si) substrate, typical methods shown in FIGS. 6 to 8, for example, are known.

(1)分子線エピタキシャル法(MBE法)まず、第6
図(a)に示す如く、Si基板1を塩酸と過酸化水素水
の混合液で洗浄し、炭素フリーな薄いSi酸化膜2を形
成して表面を保護する。
(1) Molecular beam epitaxial method (MBE method) First, the 6th
As shown in Figure (a), a Si substrate 1 is cleaned with a mixture of hydrochloric acid and hydrogen peroxide, and a thin carbon-free Si oxide film 2 is formed to protect the surface.

これを超高真空(〜lXl0−9torr)のMBE装
置3中において、1800〜900℃に加熱して蒸発さ
せ、Stの清浄表面を得る(第6図(b)図示)。この
際、ただ加熱するのみではなくて、Ga、Siなどのビ
ームをSi基板1表面に照射して、酸化膜をGa20や
SiOのような揮発性の物質に変換して蒸発させ、St
の清浄表面を得る方法も用いられている。次に、清浄後
のSi基板1にSiビームを入射させ、Siのエピタキ
シャル成長膜4を形成させる(第6図(C)図示)。
This is heated and evaporated at 1800 to 900° C. in the MBE apparatus 3 of ultra-high vacuum (~lXl0-9 torr) to obtain a clean surface of St (as shown in FIG. 6(b)). At this time, instead of just heating, the surface of the Si substrate 1 is irradiated with a beam of Ga, Si, etc. to convert the oxide film into a volatile substance such as Ga20 or SiO and evaporate it.
A method of obtaining a clean surface has also been used. Next, a Si beam is applied to the cleaned Si substrate 1 to form an epitaxially grown Si film 4 (as shown in FIG. 6C).

(2)化学気相成長法(CVD法) まず、第7図(a)に示す如<1100℃でN2を流し
ている拡散炉5にSi基板1を入れた後、Si基板1上
の酸化膜2をN2と反応させ、N20にして蒸発させる
(第7図(b)図示)。
(2) Chemical vapor deposition method (CVD method) First, as shown in FIG. 7(a), after placing the Si substrate 1 in a diffusion furnace 5 flowing N2 at <1100°C, oxidation on the Si substrate 1 is performed. The membrane 2 is reacted with N2, converted to N20, and evaporated (as shown in FIG. 7(b)).

次に、1100℃でN2をキャリアにしてSiH4を流
し、清浄後のSi基板1上にSiのエピタキシャル成長
膜4を形成させる(第7図(c)図示)。
Next, SiH4 is flowed at 1100° C. using N2 as a carrier to form an epitaxial growth film 4 of Si on the cleaned Si substrate 1 (as shown in FIG. 7(c)).

(3)固相エピタキシャル成長法 まず、第8図(a)に示す如<1100℃でN2を流し
ている拡散炉6にSi基板1を入れ、Si基板1−にの
Si酸化膜2をN2と反応させN20にして蒸発させ、
Siの清浄表面を得る(第8図(b)図示)。次に、6
00℃でN2をキャリアにしてSiH4を流し、S k
基板1」二にアモルファス膜6を形成する (第8図(
c)図示)。次いで、N2雰囲気で600℃で長時間熱
処理し、Si基板1から順次アモルファスSiをエピタ
キシャル成長させ、Stの11結晶膜7を得た(第8図
(d)図示)。
(3) Solid phase epitaxial growth method First, as shown in FIG. 8(a), the Si substrate 1 is placed in a diffusion furnace 6 in which N2 is flowing at <1100°C, and the Si oxide film 2 on the Si substrate 1- is grown with N2. React and evaporate with N20,
A clean surface of Si is obtained (as shown in FIG. 8(b)). Next, 6
SiH4 was flowed with N2 as a carrier at 00℃, and S k
An amorphous film 6 is formed on the substrate 1 (see Fig. 8).
c) As shown). Next, heat treatment was carried out at 600° C. for a long time in an N2 atmosphere, and amorphous Si was epitaxially grown one after another from the Si substrate 1, thereby obtaining an 11-crystalline film 7 of St (as shown in FIG. 8(d)).

[発明が解決しようとする問題点] しかしながら、従来技術によれば、Si酸化膜2を除去
してSiでの清浄表面を得るために、1100℃の高嵩
処理(CVD、固相エピタキシャル成長法の場合)、あ
るいは1×10″″9 torrの超高真空ドで800
〜900℃の熱処理を必要としている。従って、以ドに
列挙する問題点ををする。
[Problems to be Solved by the Invention] However, according to the prior art, in order to remove the Si oxide film 2 and obtain a clean Si surface, a high bulk treatment (CVD, solid phase epitaxial growth method) at 1100° C. is used. ) or 1×10''9 torr ultra-high vacuum
Requires heat treatment at ~900°C. Therefore, we will address the problems listed below.

■効果な超高真空装置を必要とする。■Requires effective ultra-high vacuum equipment.

■高温熱処理を必要とするため、プロセスの使用材料が
増加するとともに、処理時間が増大する。
■Since high-temperature heat treatment is required, the amount of materials used in the process increases and the processing time increases.

■高温熱処理によりLSIのプロセスの工程が増加する
とともに、処理時間が増大する。
(2) High-temperature heat treatment increases the number of LSI process steps and increases the processing time.

■高温熱処理によるランニングコストが高くなる。■Running costs increase due to high-temperature heat treatment.

■Siの表面清浄化処理にt′Pう汚染が生じ、素子特
性の劣化や歩留りを悪くさせる。
(2) t'P contamination occurs during the Si surface cleaning process, resulting in deterioration of device characteristics and poor yield.

■高温熱処理によるドーピング元素の再分布などによる
素子特性のばらつきが生じる。
■Differences in device characteristics occur due to redistribution of doping elements due to high-temperature heat treatment.

本発明は上記事情に鑑みてなされたもので、超高真空下
での熱処理N2雰囲気下での高温熱処理を必要とせず、
低温でStのエピタキシャル膜を形成し得る半導体装置
の製造ノj法を提供することをに1的とする。
The present invention was made in view of the above circumstances, and does not require heat treatment under ultra-high vacuum or high temperature heat treatment under N2 atmosphere.
One object of the present invention is to provide a method for manufacturing a semiconductor device that can form an epitaxial film of St at low temperatures.

E問題点を解決するための手段] 本願箱1の発明は、半導体基板」二にゲルマニウム(G
e)層をエピタキシャル成長させる固定と、このGe層
をaする前記基板を真空中又は水素ガス雰囲気中で40
0℃の温度で熱処理し、該Ge層表面のGeの酸化層を
揮散させ、Ge層の表面を正常化する工程と、この正常
化されたGe層上に半導体層をエピタキシャル成長させ
る工程とを具備することを要旨とする。
Means for Solving Problem E] The invention in Box 1 of the present invention is based on the invention of box 1 which uses germanium (G) on a semiconductor substrate.
e) fixation for epitaxial growth of the layer and the substrate on which the Ge layer is grown for 40 minutes in vacuum or hydrogen gas atmosphere;
The method includes a step of performing heat treatment at a temperature of 0° C. to evaporate the Ge oxide layer on the surface of the Ge layer to normalize the surface of the Ge layer, and a step of epitaxially growing a semiconductor layer on the normalized Ge layer. The gist is to do so.

本願箱2の発明は、膜成長室内にGeH4ガスとキャリ
アガスを導入するとともにシリコン基板の温度を300
℃以−にに保持し、前記基板表面のシリコン酸化膜を前
記G e Haガスと反応させて揮散させることにより
前記基板表面をIE’J?l化する工程と、前記基板上
にGe層をエピタキシャル成長させる工程と、このGe
層を有する前記基板を真空中又は水素ガス雰囲気中で4
00℃のlU度で一熱処理し、該Ge層表面のGeの酸
化層を揮散させ、Ge層の表面を正常化する1−程と、
この正常化されたGe層上にシリコン層をエピタキシャ
ル成長させる工程とを具備することを要旨とする。
The invention in Box 2 introduces GeH4 gas and carrier gas into the film growth chamber, and at the same time raises the temperature of the silicon substrate to 300°C.
The silicon oxide film on the surface of the substrate is reacted with the G e Ha gas and volatilized, thereby exposing the surface of the substrate to IE'J? a step of epitaxially growing a Ge layer on the substrate, and a step of epitaxially growing a Ge layer on the substrate;
The substrate having the layer is heated in vacuum or in a hydrogen gas atmosphere for 4 hours.
1- heat treatment at 1U degrees of 00° C. to volatilize the Ge oxide layer on the surface of the Ge layer and normalize the surface of the Ge layer;
The gist is to include a step of epitaxially growing a silicon layer on this normalized Ge layer.

[作用] (1)本発明は、Si等の半導体基板の上に低温でGe
のエビタキサル膜を形成させ、このGe表面でSi等の
エピタキシャル成長膜を形成させることを最も主要な特
徴とする。
[Function] (1) The present invention allows Ge to be deposited on a semiconductor substrate such as Si at a low temperature.
The most important feature is to form an epitaxial film on the Ge surface, and to form an epitaxially grown film of Si or the like on this Ge surface.

(2)従来のSi基板の−LにSiのエピタキシャル膜
を形成させる場合には、下地のStの清浄表面を得るた
めに超高真空下での熱処理やH2雰囲気下での高温熱処
理が必要であったが、本発明ではこれらの処理を全く必
要としない。
(2) When forming an Si epitaxial film on the -L of a conventional Si substrate, heat treatment under ultra-high vacuum or high temperature heat treatment under H2 atmosphere is required to obtain a clean surface of the underlying St. However, the present invention does not require these processes at all.

(3)本発明では、最初に半導体基板の上にGeのエピ
タキシャル膜を形成させる。この際、前記基板上の酸化
膜は400℃程度の低温で飛来してきたGe系ガスと反
応し、GeOとなって基板上から蒸発するので、容易に
Siなどの清浄表面が得られる。そして、清浄表面が得
られるやいなや自動的にGeがエピタキシャル成長する
(H,l5bil、 ctal、  A、  P、  
L、  47 (8) 。
(3) In the present invention, first, a Ge epitaxial film is formed on a semiconductor substrate. At this time, the oxide film on the substrate reacts with the incoming Ge-based gas at a low temperature of about 400° C., becomes GeO, and evaporates from the substrate, so that a clean surface of Si or the like can be easily obtained. Then, as soon as a clean surface is obtained, Ge is automatically grown epitaxially (H, l5bil, ctal, A, P,
L, 47 (8).

863 (1985)。863 (1985).

また、Ge膜形成後のGe表面!−にはGeの酸化膜が
形成され、Siのエピタキシャル成長を阻害する。しか
し、400℃程度の低温で熱処理すれば、Geの酸化膜
は揮散するので、Geの清浄表面が容易に得られる。故
に、飛来してきたSi等は容易にGe膜上でエピタキシ
ャル成長する。
Also, the Ge surface after Ge film formation! A Ge oxide film is formed at -, which inhibits the epitaxial growth of Si. However, if the heat treatment is performed at a low temperature of about 400° C., the Ge oxide film will volatilize, so that a clean Ge surface can be easily obtained. Therefore, the flying Si and the like easily grow epitaxially on the Ge film.

本発明では、このようにGeのエピタキシャル膜を中間
層として用いることにより、低温で容易にSiなどのエ
ピタキシャル成長膜を得ることができる。
In the present invention, by using the Ge epitaxial film as the intermediate layer in this way, an epitaxial growth film of Si or the like can be easily obtained at low temperatures.

(4)本発明では、低温プロセスであるので、ドーピン
グ元素の再分布や界面での相互拡散が生じず、素子特性
を劣化させない。
(4) Since the present invention is a low-temperature process, redistribution of doping elements and interdiffusion at interfaces do not occur, and device characteristics do not deteriorate.

(5)本発明では、基板表面の正常化のために特別な操
作を必要としないので、汚染を生じる機会を少なくでき
る。
(5) Since the present invention does not require any special operation to normalize the substrate surface, chances of contamination can be reduced.

[実施例] 以下、本発明の一実施例を図を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

(実施例1) 第1図を参照する。(Example 1) Please refer to FIG.

まず、熱処理炉11にH2をキャリアガスとして5iH
aを流し、前記熱処理炉11にGeのエピタキシャル層
12を形成したSi基板13を挿入し、基板温度650
°Cて、処理する(第1図(a)図示)。ここで、基板
表面にはGe酸化膜14があるので、Siはエピタキシ
ャル成長しない。しかし、熱処理温度が650℃である
ので、Ge酸化膜14はGeOとなってGe表面から脱
離し、短時間でGe酸化膜14は消滅する。そして、G
eの清浄表面が出現した段階で、熱分解反応5iH4−
+Si+2H2により、G e 72面にStのエピタ
キシャル成長膜15が形成される(第1図(b)図示)
First, 5iH was heated in the heat treatment furnace 11 using H2 as a carrier gas.
A was poured, and the Si substrate 13 on which the Ge epitaxial layer 12 was formed was inserted into the heat treatment furnace 11, and the substrate temperature was set to 650.
°C (as shown in FIG. 1(a)). Here, since there is a Ge oxide film 14 on the substrate surface, Si does not grow epitaxially. However, since the heat treatment temperature is 650° C., the Ge oxide film 14 becomes GeO and desorbs from the Ge surface, and disappears in a short time. And G
At the stage when a clean surface of e appears, the thermal decomposition reaction 5iH4-
+Si+2H2 forms an St epitaxial growth film 15 on the G e 72 plane (as shown in FIG. 1(b)).
.

」1記実施例によれば、自動的にGe表面が洗浄化され
、SiH4を流すtコけでSiのエピタキシャル成長膜
15が形成できるため、従来の高真空・高温プロセスを
必要としない。
According to the first embodiment, the Ge surface is automatically cleaned and the Si epitaxial growth film 15 can be formed by flowing SiH4, so the conventional high vacuum/high temperature process is not required.

(実施例2) 第2図を参照する。(Example 2) See Figure 2.

まず、熱処理炉11のバルブ16を閉にし、真空排気系
17で熱処理炉11を真空にする(第2図(a)図示)
。この結果、Geのエピタキシャル層12表面上のGe
酸化層14がGeOとなって蒸発し、Geの清浄表面が
出現する。次に、バルブ16を開にし、H2のキャリア
ガスでSiH4を流すと、650℃の低温でもStのエ
ピタキシャル成長膜15が形成される(第2図(b)図
示)。なお、Geの清浄表面を得る際、バ・ルブ16を
開にしキャリアガスのH2のみを流し、真空排気系17
を作動させ、熱処理炉11を減圧下におき、約400 
’C以七の熱処理を行なうことでも同様にGeの清浄表
面が得られる。
First, the valve 16 of the heat treatment furnace 11 is closed, and the heat treatment furnace 11 is evacuated using the vacuum exhaust system 17 (as shown in FIG. 2(a)).
. As a result, Ge on the surface of the Ge epitaxial layer 12
The oxide layer 14 becomes GeO and evaporates, leaving a clean surface of Ge. Next, by opening the valve 16 and flowing SiH4 with a carrier gas of H2, an epitaxial growth film 15 of St is formed even at a low temperature of 650° C. (as shown in FIG. 2(b)). Note that when obtaining a clean surface of Ge, the valve 16 is opened to allow only carrier gas H2 to flow, and the vacuum evacuation system 17 is
is operated, the heat treatment furnace 11 is placed under reduced pressure, and about 400
Similarly, a clean surface of Ge can be obtained by performing a heat treatment of C or higher.

(実施例3) 高真空装置を用い、実施例2と同様に高真空下で熱処理
し、Ge表面を清浄化した後に、SiビームによるMB
E蒸着により650℃よりも低温でSiのエピタキシャ
ル成長膜15を形成させることができる。
(Example 3) Using a high vacuum device, heat treatment was performed under high vacuum in the same manner as in Example 2 to clean the Ge surface, and then MB with Si beam was performed.
The epitaxial growth film 15 of Si can be formed at a temperature lower than 650° C. by E vapor deposition.

なお、上記実施例3において、Siビームと同時にAs
、Sb等のビームも流し、Siエピタキシャル成長膜の
抵抗率を制御することかできる。
In addition, in the above-mentioned Example 3, the Si beam and As
, Sb, etc. can also be applied to control the resistivity of the Si epitaxially grown film.

(実施例4) 第1図において、熱処理炉11にSi基板を人れ、真空
排気系17を作動させてバルブ16を開にし、H2をキ
ャリアガスとしてGeH4を流す。
(Example 4) In FIG. 1, a Si substrate is placed in a heat treatment furnace 11, the evacuation system 17 is activated, the valve 16 is opened, and GeH4 is flowed using H2 as a carrier gas.

このとき、基板温度を約300〜500℃にしておくと
、前記Ce酸化層14がGeH4のGeと反応しGeO
となって揮散してSiの清浄表面が出現し、この清浄S
i表面に自動的にGeのエピタキシャル層15が形成さ
れる。次に、GeH4からSiH4にガスを切替えると
、実施例2で説明したように自動的にCeトにSiのエ
ピタキシャル成長膜が形成される。この操作を繰返すと
、容易にS i / G eのエピタキシャル多層膜が
得られる。
At this time, if the substrate temperature is kept at about 300 to 500°C, the Ce oxide layer 14 will react with Ge of GeH4 and become GeO2.
and volatilizes, a clean surface of Si appears, and this clean S
A Ge epitaxial layer 15 is automatically formed on the i surface. Next, when the gas is switched from GeH4 to SiH4, an epitaxial growth film of Si is automatically formed on Ce as explained in Example 2. By repeating this operation, an Si/Ge epitaxial multilayer film can be easily obtained.

しかるに、実施例4によれば、表面清浄化とエピタキシ
ャル膜形成を640℃以ドの温度で連続して進めること
ができ、従来のMBE法によるSiのエピタキシャル成
長では表面処理に90000以」二の熱処理温度を必要
としたのに比べ、本発明の有利性が明らかである。
However, according to Example 4, surface cleaning and epitaxial film formation can be performed continuously at a temperature of 640° C. or higher, and in the conventional MBE method for epitaxial growth of Si, surface treatment requires heat treatment of 90,000 or more degrees. The advantages of the present invention are clear compared to those that require temperature.

なお、1−記実施例4において、GeH4の代わりにG
eC!等のガスを用いて同様のことを行なえる可能性が
ある。また、これらのガスを流すと同時に、AsH3、
PH3,82H6等のドーピングガスを流し、Siエピ
タキシャル成長膜の抵抗率を制御することができる。史
に、Geエピタキシャル層形成の代わりに、5iGeの
混晶層形成でもよい。但し、このときはGe系ガスとS
i系ガスを同時に流す。
In addition, in Example 4 described in 1-1, G was used instead of GeH4.
eC! It is possible to do the same thing using gases such as Also, at the same time as flowing these gases, AsH3,
By flowing a doping gas such as PH3 or 82H6, the resistivity of the Si epitaxially grown film can be controlled. Historically, instead of forming a Ge epitaxial layer, a 5iGe mixed crystal layer may be formed. However, in this case, Ge-based gas and S
Flow i-based gases at the same time.

また、1°、記実施例1,2及び4において、キャリア
ガスとしてはH2、He、N2などのいずれも使用でき
る。
Further, in Examples 1, 2, and 4, any of H2, He, N2, etc. can be used as the carrier gas.

更に、上記実施例1.2及び4において、SiH4の代
わりにS i2 H6、S 1Hcj?3゜5i2H2
Cj?2のいずれも使用できる。また、これらのガスを
流すと同時に、AsH3、PH3。
Furthermore, in Examples 1.2 and 4 above, S i2 H6, S 1Hcj? 3゜5i2H2
Cj? Either of 2 can be used. Also, at the same time as flowing these gases, AsH3 and PH3.

B2 H,などのドーピングガスを流し、Siエピタキ
シャル成長膜の抵抗率を制御することができる。
By flowing a doping gas such as B2H, the resistivity of the Si epitaxially grown film can be controlled.

(実施例5) 第3図を参照する。(Example 5) See Figure 3.

まず、Si基板13上に5i02膜18を形成した後、
周知のりソグラフィ法により前記5i02膜18の所定
の位置に開口部18aを形成する(第3図(a)図示)
。次に、GeH4−H2系のCVD法により開口部18
aの底にGeのエピタキシャル層19を選択的に形成し
た(第3図(b)図示)。次いで、第1図及び第2図で
説明したh゛法により、前記エピタキシャル層19上に
Siのエピタキシャル成長膜20を形成した(第3図(
c)図示)。ここで、5i02膜18上に堆積したシリ
コン成長膜20はアモルファスになる。そこで、N2雰
囲気中で600℃で長時間熱処理すると、二−タキシャ
ルSi層21を種としてアモルファスSiは固相エピタ
キシャル成長し、Siのエピタキシャル基板22が得ら
れた(第3図(d)図示)。ここで、前記5i02膜1
8はプラズマCVD法や高圧酸化法により600〜70
0℃で形成できるので、第3図(c)のエピタキシャル
基板22は、700℃以下の低温プロセスで形成できる
First, after forming the 5i02 film 18 on the Si substrate 13,
An opening 18a is formed at a predetermined position in the 5i02 film 18 by a well-known lamination lithography method (as shown in FIG. 3(a)).
. Next, the opening 18 is formed using a GeH4-H2 based CVD method.
A Ge epitaxial layer 19 was selectively formed on the bottom of the layer a (as shown in FIG. 3(b)). Next, an epitaxial growth film 20 of Si was formed on the epitaxial layer 19 by the h method explained in FIGS. 1 and 2 (see FIG. 3).
c) As shown). Here, the silicon growth film 20 deposited on the 5i02 film 18 becomes amorphous. Therefore, by performing heat treatment at 600 DEG C. for a long time in an N2 atmosphere, amorphous Si was solid-phase epitaxially grown using the bi-taxial Si layer 21 as a seed, and an Si epitaxial substrate 22 was obtained (as shown in FIG. 3(d)). Here, the 5i02 film 1
8 is 600-70 by plasma CVD method or high pressure oxidation method.
Since it can be formed at 0°C, the epitaxial substrate 22 of FIG. 3(c) can be formed by a low temperature process of 700°C or less.

(実施例6) 第4図を参照する。ここで、第4図は第3図で説明した
Stのエピタキシャル基板を応用し、3次元デバイスで
ある。
(Example 6) Refer to FIG. 4. Here, FIG. 4 shows a three-dimensional device by applying the St epitaxial substrate explained in FIG. 3.

本実施例では、まずSiJ、C板13に周知の方法でM
O3FET素子を作製し、電極配線形成後、5t02膜
18をプラズマCVD法等により形成させ、第3図に説
明した方法によりStのエピタキシャル基板22を形成
した。つづいて、周知の技術により、このエピタキシャ
ル基板22上にゲート酸化膜23を介してゲー!・電極
24を形成した。次いで、前記エピタキシャル基板22
の表面にソース、ドリン領t425,26を形成しMO
SFETを作製した。しかるに、このM OS F E
 T ノ作製におイテハ、5i02膜18の開口部18
aのSt基板130表面の5i02膜18を低温で除去
でき、Si基板14の表面に形成したMOSFETのド
ーピング元素の再分布を生じしめることはない。
In this embodiment, first, the SiJ, C plate 13 is
After producing an O3 FET element and forming electrode wiring, a 5t02 film 18 was formed by plasma CVD or the like, and an St epitaxial substrate 22 was formed by the method explained in FIG. Next, a gate oxide film 23 is formed on the epitaxial substrate 22 using a well-known technique. -The electrode 24 was formed. Next, the epitaxial substrate 22
Source and drain regions t425 and 26 are formed on the surface of the MO.
SFET was fabricated. However, this MOS F E
It is necessary to prepare the opening 18 of the 5i02 film 18.
The 5i02 film 18 on the surface of the St substrate 130 of a can be removed at a low temperature without causing redistribution of the doping elements of the MOSFET formed on the surface of the Si substrate 14.

(実施例7) 第5図を参照する。ここで、同図は新しい機能デバイス
への応用例を示すものである。まず、GaAs基板31
に周知のMBE法又はMO−CVD法によりHEMTを
作製し、GaAs基板31の一部にGeH4系のCVD
によりGeのエピタキシャル層19を形成した。つづい
て、第1図及び第2図で説明した方法によりSiのエピ
タキシャル基板22を形成し、この基板22表面にMO
SFET等の素子を形成した。
(Example 7) Refer to FIG. Here, the figure shows an example of application to a new functional device. First, the GaAs substrate 31
A HEMT is manufactured by the well-known MBE method or MO-CVD method, and GeH4-based CVD is applied to a part of the GaAs substrate 31.
A Ge epitaxial layer 19 was formed. Subsequently, an Si epitaxial substrate 22 is formed by the method explained in FIGS. 1 and 2, and an MO layer is formed on the surface of this substrate 22.
Elements such as SFET were formed.

しかるに、実施例7によれば、HE M T作製プロセ
ス及び51−M03FETプロセスとも、プロセス温度
700℃以下で形成することができ、又は化合物系半導
体素子とSi系半導体素子を1つの基板上に共存させて
形成できるので、新しい機能結合デバイスを実現できる
。なお、HEMTの代わりに他の化合物゛1′導体素子
でも同様である。
However, according to Example 7, both the HEMT manufacturing process and the 51-M03FET process can be formed at a process temperature of 700° C. or lower, or a compound semiconductor element and a Si-based semiconductor element can coexist on one substrate. Since it can be formed in a single manner, new functionally combined devices can be realized. Note that the same applies to other compound 1' conductor elements instead of the HEMT.

以上説明したように、本発明ではGe表面の酸化層が低
iRで蒸発し、容易にGeの清浄表面が得られる性質を
利用している。このため、St上にSiをエピタキシャ
ル成長させる代わりに、5t1−にGeのエピタキシャ
ル層を形成させてから、これを中間層としてGe表面に
Siのエピタキシャル成長膜を形成させた方が低温のエ
ピタキシャル温度でSiのエピタキシャル膜を形成でき
る。
As explained above, the present invention utilizes the property that the oxide layer on the Ge surface evaporates at a low iR and that a clean surface of Ge can be easily obtained. Therefore, instead of epitaxially growing Si on St, it is better to form an epitaxial layer of Ge on 5t1- and then use this as an intermediate layer to form an epitaxially grown film of Si on the Ge surface. epitaxial film can be formed.

つまり、本発明では、S i−1:にSiをエピタキシ
ャル成長させる際に必要とされるSi表面の高温熱処理
や超高真空下での熱処理二9の特別なSi表面の清浄化
処理を不要とする利点がある。特に、本発明は、三次元
デバイスのSiエピタキシャルU板の形成、化合物半導
体素子とSt系hat、 LQ体素子を同一基板上で結
合した新機能デバイスの形成。
In other words, the present invention eliminates the need for high-temperature heat treatment of the Si surface or heat treatment under ultra-high vacuum that is required when epitaxially growing Si on Si-1: 29, which is a special cleaning treatment for the Si surface. There are advantages. In particular, the present invention relates to the formation of a Si epitaxial U plate for a three-dimensional device, and the formation of a new functional device in which a compound semiconductor element, an St-based hat, and an LQ element are combined on the same substrate.

St系M4導体素子のSiエピタキシャル膜形成などの
工程に使用すれば、これまでの不0■能であった低温プ
ロセスでのStのエピタキシャル膜を容易に形成できる
If used in a process such as forming a Si epitaxial film for an St-based M4 conductor element, it is possible to easily form an St epitaxial film in a low-temperature process that was previously impossible.

[発明の効果] 以上詳述した如く本発明によれば、特別な基板表面の清
浄化処理を必要とせず、低温でエピタキシャル膜を形成
し得、三次元デバイスのStエピタキシャル基板の形成
等に有効な半導体装置の製造方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, an epitaxial film can be formed at a low temperature without the need for a special cleaning treatment of the substrate surface, and is effective for forming St epitaxial substrates for three-dimensional devices. A method for manufacturing a semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の実施例1に係る半導体
装置の製造方法を工程順に示す図、第2図(a)、(b
)は本発明の実施例2に係る半導体装置の製造方法を工
程順に示す図、第3図(a)〜(d)は本発明の実施例
5に係る半導体装置の製造方法を工程順に示す断面図、
第4図は本発明の実施例6に係る3次元デバイスの断面
図、第5図は本発明の実施例7に係る新機能デバイスの
断面図、第6図(a) 〜(c)はMBE法の説明図、
第7図(a) 〜(C)はCVD法の説明図、第8図は
固相エピタキシャル成長法の説明図である。 11・・・熱処理炉、12.19・・・エピタキシャル
層、13・・・Si基板、14・・・Ge酸化層、15
・・・Stのエピタキシャル成長膜、16・・・バルブ
、17・・・真空排気系、18・・・5i02膜、19
・・・Geのエピタキシャル膜、20・・・アモルファ
スSi層、21・・・エピタキシャルSi層、22・・
・エピタキシャル基板、31・・・GaAs基板。 出願人代理人 弁理士 鈴江武彦 第 173 1’f    M3r!!J 箪4囚 Ii5囚 正立ら−−−lニ ー−→N 2−−−− lay1
1(a) and (b) are diagrams illustrating the manufacturing method of a semiconductor device according to Example 1 of the present invention in the order of steps, and FIGS. 2(a) and (b)
) is a diagram showing a method for manufacturing a semiconductor device according to Example 2 of the present invention in order of steps, and FIGS. 3(a) to 3(d) are cross sections showing a method for manufacturing a semiconductor device according to Example 5 of the present invention in order of steps figure,
FIG. 4 is a cross-sectional view of a three-dimensional device according to Example 6 of the present invention, FIG. 5 is a cross-sectional view of a new functional device according to Example 7 of the present invention, and FIGS. 6(a) to (c) are MBE. illustration of the law,
FIGS. 7(a) to (C) are explanatory diagrams of the CVD method, and FIG. 8 is an explanatory diagram of the solid phase epitaxial growth method. 11... Heat treatment furnace, 12.19... Epitaxial layer, 13... Si substrate, 14... Ge oxide layer, 15
...St epitaxial growth film, 16... Valve, 17... Vacuum exhaust system, 18... 5i02 film, 19
... Ge epitaxial film, 20 ... amorphous Si layer, 21 ... epitaxial Si layer, 22 ...
-Epitaxial substrate, 31...GaAs substrate. Applicant's agent Patent attorney Takehiko Suzue No. 173 1'f M3r! ! J 4th prisoner Ii 5th prisoner standing upright---l knee-→N 2---- lay1

Claims (2)

【特許請求の範囲】[Claims] (1)f導体基板上にゲルマニウム層をエピタキシャル
成長させる工程と、このゲルマニウム層を有する前記基
板を真空中又は水素ガス雰囲気中で400℃の温度で熱
処理し、該ゲルマニウム層表面のゲルマニウムの酸化層
を揮散させ、ゲルマニウム層の表面を清浄化する工程と
、この清浄化されたゲルマニウム層上に半導体層をエピ
タキシャル成長させる工程とを具備することを特徴とす
る半導体装置の製造方法。
(1) A step of epitaxially growing a germanium layer on the f-conductor substrate, and heat treating the substrate having the germanium layer at a temperature of 400°C in vacuum or in a hydrogen gas atmosphere to remove the germanium oxide layer on the surface of the germanium layer. A method for manufacturing a semiconductor device, comprising the steps of: cleaning the surface of a germanium layer by volatilization; and epitaxially growing a semiconductor layer on the cleaned germanium layer.
(2)膜成長質内にGeH_4ガスとキャリアガスを導
入するとともにシリコン基板の温度を300℃以上に保
持し、前記基板表面のシリコン酸化膜を前記GeH_4
ガスと反応させて揮散させることにより前記基板表面を
清浄化する工程と、前記基板上にゲルマニウム層をエピ
タキシャル成長させる工程と、このゲルマニウム層を有
する前記基板を真空中又は水素ガス中で400℃の温度
で熱処理し、該ゲルマニウム層表面のゲルマニウムの酸
化膜を揮散させ、ゲルマニウム層の表面を清浄化する工
程と、この清浄化されたゲルマニウム層上にシリコン層
をエピタキシャル成長させる工程とを具備することを特
徴とする半導体装置の製造方法。
(2) Introducing GeH_4 gas and carrier gas into the film growth material, and maintaining the temperature of the silicon substrate at 300°C or higher, the silicon oxide film on the surface of the substrate is
a step of cleaning the substrate surface by reacting with a gas and volatilizing it; a step of epitaxially growing a germanium layer on the substrate; and a step of growing the substrate having the germanium layer in vacuum or in hydrogen gas at a temperature of 400°C. The method is characterized by comprising a step of heat-treating the surface of the germanium layer to volatilize the germanium oxide film on the surface of the germanium layer to clean the surface of the germanium layer, and a step of epitaxially growing a silicon layer on the cleaned germanium layer. A method for manufacturing a semiconductor device.
JP28713686A 1986-12-02 1986-12-02 Manufacture of semiconductor device Pending JPS63140521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28713686A JPS63140521A (en) 1986-12-02 1986-12-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28713686A JPS63140521A (en) 1986-12-02 1986-12-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63140521A true JPS63140521A (en) 1988-06-13

Family

ID=17713534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28713686A Pending JPS63140521A (en) 1986-12-02 1986-12-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63140521A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259918A (en) * 1991-06-12 1993-11-09 International Business Machines Corporation Heteroepitaxial growth of germanium on silicon by UHV/CVD
US5286334A (en) * 1991-10-21 1994-02-15 International Business Machines Corporation Nonselective germanium deposition by UHV/CVD
US5326721A (en) * 1992-05-01 1994-07-05 Texas Instruments Incorporated Method of fabricating high-dielectric constant oxides on semiconductors using a GE buffer layer
RU2622092C1 (en) * 2016-07-13 2017-06-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Application of vacuum deposit germanium from the german gas medium as a method of removing silicon dioxide from the working surface of the silicon cover and method of manufacturing a germanium monocrystalline film on the silicon support including the used application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259918A (en) * 1991-06-12 1993-11-09 International Business Machines Corporation Heteroepitaxial growth of germanium on silicon by UHV/CVD
US5286334A (en) * 1991-10-21 1994-02-15 International Business Machines Corporation Nonselective germanium deposition by UHV/CVD
US5326721A (en) * 1992-05-01 1994-07-05 Texas Instruments Incorporated Method of fabricating high-dielectric constant oxides on semiconductors using a GE buffer layer
US5825055A (en) * 1992-05-01 1998-10-20 Texas Instruments Incorporated Fabricating high-dielectric constant oxides on semiconductors using a GE buffer layer
RU2622092C1 (en) * 2016-07-13 2017-06-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Application of vacuum deposit germanium from the german gas medium as a method of removing silicon dioxide from the working surface of the silicon cover and method of manufacturing a germanium monocrystalline film on the silicon support including the used application

Similar Documents

Publication Publication Date Title
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
US6815717B2 (en) Thin-film transistor and method of manufacturing the same
JPH07221093A (en) Silicon insulation film formation of semiconductor element
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
JP4394120B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPS63140521A (en) Manufacture of semiconductor device
JP2001168029A (en) Method of forming semiconductor film and method of manufacturing thin film semiconductor device
JP2001110750A5 (en)
US5817559A (en) Production method for a semiconductor device
WO2000001004A1 (en) Method of forming single-crystal silicon layer and method of manufacturing semiconductor device
JP3157280B2 (en) Method for manufacturing semiconductor device
JPH0322527A (en) Manufacture of semiconductor device
JP2961188B2 (en) Method for manufacturing SOI substrate
JPH0963955A (en) Film-forming device, film formation and manufacture of single crystal film
JPH03136320A (en) Manufacture of semiconductor device
JP3461819B2 (en) Manufacturing method of semiconductor crystal film
JPH01290221A (en) Semiconductor vapor growth method
JPH03257818A (en) Manufacture of semiconductor device
JP2592984B2 (en) Manufacturing method of silicon thin film
JPS61203682A (en) Semiconductor device and manufacture thereof
JPS63148616A (en) Manufacture of semiconductor device
KR0139574B1 (en) Channel polysilicone film forming method of thin film transistor
JPH05234887A (en) Manufacture of semiconductor device
JPH023548B2 (en)
JP2934665B2 (en) Method for manufacturing semiconductor device