JPS63139930A - Production of microporous membrane - Google Patents

Production of microporous membrane

Info

Publication number
JPS63139930A
JPS63139930A JP61285996A JP28599686A JPS63139930A JP S63139930 A JPS63139930 A JP S63139930A JP 61285996 A JP61285996 A JP 61285996A JP 28599686 A JP28599686 A JP 28599686A JP S63139930 A JPS63139930 A JP S63139930A
Authority
JP
Japan
Prior art keywords
membrane
solvent
air
solution
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61285996A
Other languages
Japanese (ja)
Other versions
JPH06862B2 (en
Inventor
Jun Sasaki
純 佐々木
Atsushi Adachi
敦 足立
Kyoichi Naruo
成尾 匡一
Yukio Shinagawa
幸雄 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP61285996A priority Critical patent/JPH06862B2/en
Priority to US07/127,304 priority patent/US4840733A/en
Priority to DE19873740871 priority patent/DE3740871A1/en
Publication of JPS63139930A publication Critical patent/JPS63139930A/en
Publication of JPH06862B2 publication Critical patent/JPH06862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/16Swelling agents

Abstract

PURPOSE:To produce a microporous membrane of a low filtration resistance and a high flow rate of filtrate, by casting a membrane-forming stock solution containing a polymer, a swelling agent, a nonsolvent and a solvent on a support, coacervating the cast solution by applying air of specified conditions thereto and coagulating the coacervated solution. CONSTITUTION:5-35wt% polymer (e.g., polysulfone), 1-60wt% swelling agent (e.g., NaCl), 5-50wt% nonsolvent (e.g., water) and a solvent (e.g., dioxane) are fed to a jacketed dissolution kettle 1 and dissolved to obtain a membrane-forming stock solution. This stock solution is degassed and sent to a solution injector 3 through a pump 2 and cast on a casting support 4 to form a liquid membrane 5, and this liquid membrane is coacervated by controlling the evaporation of the solvent and the absorption of moisture from air by blowing air conditioned with an air conditioner 6 to 15-60 deg.C and a relative humidity of 10-80% and air velocity of 0.2-4m/sec to the surface of the liquid membrane 5 for 2-17sec from an injection port 7. This liquid membrane 5 is immersed in a coagulant tank 8 and subjected to phase separation and coagulation to form a microporous membrane 9, which is peeled from the support 4, passed through a water-washing tank 11 and a dryer 12 and wound around a winder 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微孔性濾過膜に関するものであり、特に製薬工
業における薬剤1食品工業におけるアルコール飲料、前
記製造工業及び半導体製造工業を初めとする微細な加工
を行う電子工業分野、さらに諸工業の実験室等において
使用される超純水。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microporous filtration membrane, particularly for use in the pharmaceutical industry, alcoholic beverages in the food industry, the aforementioned manufacturing industry, and the semiconductor manufacturing industry. Ultrapure water is used in the electronics industry, which performs fine processing, and in laboratories of various industries.

製造のための精製水、純水等の濾過、その他の精密濾過
に用いられ、10μm以下特に1μm以下サブミクロン
オーダーの微粒子や微生物を効率よく濾過する精密濾過
用微孔性腺に関するものである。
The present invention relates to a microporous gland for precision filtration, which is used for filtration of purified water, pure water, etc. for manufacturing purposes, and other precision filtration, and efficiently filters fine particles and microorganisms of 10 μm or less, particularly 1 μm or less, on the submicron order.

〔従来の技術〕[Conventional technology]

従来製薬工業3食品工業、電子工業分野において用いら
れる精密濾過用微孔性膜に関してはセルロースエステル
、脂肪族ポリアミド、ポリフルオロカーボン、ポリスル
ホン、ポリプロピレン等を原料とするものが開示されて
いる(例えば特公昭48−40050号、特開昭58−
37842号。
Regarding microporous membranes for precision filtration conventionally used in the fields of pharmaceutical industry, food industry, and electronic industry, membranes made from cellulose ester, aliphatic polyamide, polyfluorocarbon, polysulfone, polypropylene, etc. have been disclosed (for example, No. 48-40050, Japanese Unexamined Patent Publication No. 1983-
No. 37842.

特開昭58−91732号、特開昭56−154051
号各公報参照)。
JP-A-58-91732, JP-A-56-154051
(Refer to each publication).

このような微孔性腺は、その内部に存在する微孔の孔径
が膜厚方向に実質的に変化せず、膜の両表面の孔径が実
質的に変わらない所謂対称膜と、膜厚方向に孔径が連続
的または不連続的に変化し、膜の一方の表面の孔径と他
方の表面の孔径とが異なっている所謂非対称膜と呼ばれ
る構造を有するものとに分類される。
Such microporous glands are divided into so-called symmetric membranes in which the pore diameters of the micropores existing inside the gland do not substantially change in the thickness direction, and symmetric membranes in which the pore diameters on both surfaces of the membrane do not substantially change in the thickness direction. It is classified as having a structure called an asymmetric membrane, in which the pore size changes continuously or discontinuously, and the pore size on one surface of the membrane is different from the pore size on the other surface.

これらのうち対称膜は、特開昭58−98015号に記
述されているが、濾過にあたって膜全体が流体の流れに
対して大きな抵抗を示し、小さな流速しか得られない(
即ち、単位面積当たり、単位時間当たり単位差圧当たり
小さな流量しか得られない)上、目詰まりがしやす(濾
過寿命が短い、耐ブロッキング性がない等の欠点があっ
た。
Among these, symmetrical membranes are described in Japanese Patent Application Laid-Open No. 58-98015, but the entire membrane exhibits a large resistance to the flow of fluid during filtration, and only a small flow rate can be obtained (
That is, only a small flow rate can be obtained per unit area, per unit time, and per unit differential pressure), and it also has drawbacks such as easy clogging (short filtration life and lack of blocking resistance).

一方非対称膜は特公昭55−6406号、特開昭56−
154051号に記載されている如く緻密層と呼ばれる
孔径の小さい層を膜の片方の表面にもち、比較的大きい
穴をもう一方の表面にもったものである。実質的には濾
過除去されうる最小の微粒子はこの緻密層で捕捉される
というように、膜の厚みをすべて有効に濾材として活用
することができるので、注意深く使用する場合には、濾
過流量を増加せしめることも膜の寿命を延ばすことも可
能であり、この意味で優れた微孔性膜である。
On the other hand, asymmetric membranes are disclosed in Japanese Patent Publication No. 55-6406 and Japanese Patent Application Laid-open No. 56-
As described in No. 154051, the membrane has a layer with a small pore size called a compact layer on one surface of the membrane, and relatively large pores on the other surface. Virtually the smallest particulates that can be filtered out are captured in this dense layer, allowing the entire membrane thickness to be effectively utilized as a filter medium, increasing the filtration flow rate if used carefully. In this sense, it is an excellent microporous membrane.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この場合には緻密層が極めて重要である
にもかかわらず従来、この緻密層が表面にあるために擦
過その他で傷がつきやすく、微粒子の漏洩をきたし易い
という欠点があった。
However, although the dense layer is extremely important in this case, conventionally there has been a drawback that because the dense layer is on the surface, it is easily scratched by scratches or other causes, and it is easy to cause leakage of fine particles.

かかる欠点を補うために、緻密層即ち孔径の小さな層が
濾過膜内部に存在する構造が望まれ、特開昭58−15
0402号には非対称膜を2枚緻密層同士を密着し重ね
合わせる不連続な構造が提案されている。しかしながら
、このように2枚の非対称膜を重ねる濾過系では、ひだ
折りにしてカートリッジに収めた場合には、カートリッ
ジ内の濾過面積が小さくなり、モジュールとしてのti
流量が小さくなるという欠点がある。このような理由で
当業界では単一の膜内に緻密層を有する構造を実現する
ことが強く望まれていた。
In order to compensate for this drawback, a structure in which a dense layer, that is, a layer with a small pore size exists inside the filtration membrane is desired, and Japanese Patent Application Laid-Open No. 58-15
No. 0402 proposes a discontinuous structure in which two asymmetric membranes are stacked in close contact with each other with their dense layers. However, in a filtration system in which two asymmetric membranes are stacked like this, when folded and housed in a cartridge, the filtration area in the cartridge becomes small, and the ti
The disadvantage is that the flow rate is small. For these reasons, there has been a strong desire in the art to realize a structure having a dense layer within a single film.

本発明者等は上記の欠点を解決すべく、従来微孔性膜製
造における1つの方法とされていた、ポリマー原液を流
延後室気中に一定時間放置することによりミクロ相分離
を起こさせ、微孔の孔径を制御するドライウェット法と
いう技術について詳細に検討した結果、溶媒を十分に蒸
発させる方法(例えば特開昭55−102416号)、
及び溶媒を殆ど蒸発させることなく凝固浴にe、漬する
方法(例えば特開昭55−8887号及び同56−15
4051号)の何れとも異なり、適度に溶媒の蒸発と非
溶媒蒸気の吸収量を制御した場合には、驚くべきことに
、微孔性膜の膜面垂直方向の内部に最小孔径層を形成し
得る事を見い出した。
In order to solve the above-mentioned drawbacks, the present inventors have attempted to cause microphase separation by leaving the polymer stock solution in room air for a certain period of time after casting, which was one of the conventional methods for manufacturing microporous membranes. As a result of detailed studies on the dry-wet method for controlling the diameter of micropores, we found a method for sufficiently evaporating the solvent (e.g., JP-A-55-102416);
and a method of immersion in a coagulation bath without evaporating the solvent (e.g., JP-A-55-8887 and JP-A-56-15).
4051), when the evaporation of the solvent and the absorption amount of non-solvent vapor are controlled appropriately, surprisingly, a minimum pore size layer is formed inside the microporous membrane in the direction perpendicular to the membrane surface. I found something to gain.

また本発明者等は、濾過と目づまりの機構および比表面
積と濾過寿命との関係を解析し、■ 膜の構造を極度に
非対称にすると膜の比表面積が小さくなり、最小孔径層
より上流のインレット側の部分がプレフィルタ−として
有効に働かない事、および■ 捕捉される粒子は必ずし
も粒子径より小さな孔径部分で捕捉されるわけではなく
、その多くは膜の内部の壁面に付着して捕捉されている
という事の2点が、濾過寿命に関係した重要な因子とな
る事、従って、極度な非対称膜を作らず、膜の比表面積
を大きくすることにより濾過寿命を延ばすことが合理的
であることを見い出し、さらに鋭意研究した結果、製膜
原液を流延してから凝固液に浸漬するまでの間で、溶媒
の蒸発と、雰囲気から吸収する非溶媒の量を制御するこ
とにより、8rd/g以上の比表面積を実現することが
でき、これによって微孔性腺の寿命を延ばすことができ
ることを見い出し、か−る微孔性膜について先に出願を
行った(特願昭61−148192号)。
The present inventors also analyzed the mechanism of filtration and clogging, and the relationship between specific surface area and filtration life. The side part does not work effectively as a pre-filter, and ■ Particles to be captured are not necessarily captured in the pore diameter part smaller than the particle diameter, and many of them adhere to the inner wall of the membrane and are captured. These two points are important factors related to filtration life, and therefore, it is rational to extend filtration life by increasing the specific surface area of the membrane without creating an extremely asymmetric membrane. As a result of further intensive research, we found that by controlling the evaporation of the solvent and the amount of non-solvent absorbed from the atmosphere during the period from casting the film-forming stock solution to immersing it in the coagulation solution, we were able to It was discovered that it was possible to achieve a specific surface area of more than g, thereby extending the lifespan of the microporous gonads, and filed an application for such a microporous membrane (Japanese Patent Application No. 148192/1982). .

本発明は、先に出願した微孔性膜について改良した製造
方法を提供することを目的とするものである。
An object of the present invention is to provide an improved manufacturing method for the microporous membrane previously applied for.

従って本発明の第1の目的は、濾過抵抗が小さく濾過流
量の大きい微孔性膜の製造方法を提供することである。
Therefore, a first object of the present invention is to provide a method for producing a microporous membrane with low filtration resistance and high filtration flow rate.

本発明の第2の目的は、表面の欠損によっても濾過性能
が劣化しにくい微孔性膜の製造方法を提供することにあ
る。
A second object of the present invention is to provide a method for producing a microporous membrane whose filtration performance is less likely to deteriorate due to surface defects.

又、本発明の第3の目的は、微粒子ならびに細菌等を効
率良く捕捉することができる、濾過ガ命の艮い微孔性膜
の製造方法を提供することにある。
A third object of the present invention is to provide a method for producing a microporous membrane that can efficiently trap fine particles, bacteria, etc. and has excellent filtration performance.

〔問題点を解決するための手段および作用〕本発明の上
記の目的は、ポリマーに膨潤剤と非溶媒を加えて溶媒に
溶解してなる製膜原液を溶液状態で流延用支持体上に流
延し、流延された液膜の表面に温度15〜60℃、相対
湿度lO〜80%、風速0.2〜4m/secの範囲で
調節した空気を2〜17秒間当てることによって該液膜
に溶媒の蒸発と空気中水分の吸収の制御を行いコアセル
ベーションを起こさせた後、該液膜を凝固浴に浸漬させ
、相分離及び凝固を行わしめ微孔性膜を形成し、しかる
後前記流延用支持体上より剥離することを特徴とする微
孔性膜の製造方法によって達成された。
[Means and effects for solving the problems] The above-mentioned object of the present invention is to apply a membrane-forming stock solution prepared by adding a swelling agent and a non-solvent to a polymer and dissolving it in a solvent onto a casting support in a solution state. The liquid is cast by applying air regulated at a temperature of 15 to 60°C, a relative humidity of 10 to 80%, and a wind speed of 0.2 to 4 m/sec for 2 to 17 seconds to the surface of the cast liquid film. After controlling the evaporation of the solvent and the absorption of moisture in the air in the membrane to cause coacervation, the liquid membrane is immersed in a coagulation bath to undergo phase separation and coagulation to form a microporous membrane. This was achieved by a method for producing a microporous membrane, which is characterized in that it is then peeled off from the casting support.

本発明の微孔性膜の製造方法の実施態様を第1図を用い
て説明する。
An embodiment of the method for manufacturing a microporous membrane of the present invention will be described with reference to FIG.

第1図において、ポリマーをジャケット付溶解釜lで溶
解する。その時微細孔形成に必要な非溶媒、膨潤剤等が
添加混合される。この溶液は脱泡後、送液ポンプ2によ
り流延用の注液器3に送られ、注液器3より流延用支持
体4としてのポリエステルフィルム上に安定した溶液状
態の溶液を液膜5として流延する。流延された液膜5の
表面に空気調節装置6で温度15〜60℃、相対湿度l
O〜80%、風速0.2〜4m/secの範囲内で調節
した空気を吹出ロアより2〜17秒間当てた後、ポリマ
ーに対し非溶媒でありポリマーの溶媒に相溶性を有する
液を収容する凝固液槽8に浸漬させる。
In FIG. 1, a polymer is melted in a jacketed melting kettle 1. At that time, non-solvents, swelling agents, etc. necessary for forming micropores are added and mixed. After defoaming, this solution is sent to a casting injector 3 by a liquid feed pump 2, and the solution in a stable solution state is poured onto a polyester film as a casting support 4 from the injector 3 into a liquid film. Cast as 5. The surface of the cast liquid film 5 is heated with an air conditioning device 6 at a temperature of 15 to 60°C and a relative humidity of l.
After applying air adjusted within the range of 0 to 80% and a wind speed of 0.2 to 4 m/sec from the blowing lower for 2 to 17 seconds, a liquid that is a non-solvent for the polymer and compatible with the polymer's solvent is contained. It is immersed in a coagulating liquid tank 8.

液膜5は流延後調節した空気に吹かれることによって液
膜の表面から内部に向ってコアセルベーションを起こし
、微細なコアセルベーション相を液膜5の表面から内部
に形成し、凝固液槽8の中でそのコアセルベーション相
を微細孔として[させると同時に液膜5の相分離によっ
て、微細孔以外の細孔を形成し、微孔性膜9を形成する
。しかる後、微孔性膜9を流延用支持体4より剥離させ
る。
After casting, the liquid film 5 is blown by regulated air to cause coacervation from the surface of the liquid film to the inside, forming a fine coacervation phase from the surface of the liquid film 5 to the inside, and solidifying the liquid. The coacervation phase is turned into micropores in the tank 8, and at the same time, pores other than the micropores are formed by phase separation of the liquid film 5, thereby forming a microporous membrane 9. Thereafter, the microporous membrane 9 is peeled off from the casting support 4.

流延用支持体4は流延用支持体巻取機10へ、剥離した
微孔性膜9は水洗槽11.乾燥機12を経て巻取機13
に巻取られる。
The casting support 4 is transferred to a casting support winding machine 10, and the peeled microporous membrane 9 is transferred to a washing tank 11. Winder 13 via dryer 12
It is wound up.

本発明において用いられる膜形成用ポリマーは特に限定
されることな(、多孔質膜の用途や他の目的に合わせて
選択することができる。このようなポリマーとしては、
例えばセルロースアセテート、ニトロセルロース、ポリ
スルホン、スルホン化ポリスルホン、ポリエーテルスル
ホン、ポリアクリロニトリル、スチレン−アクリロニト
リルコポリマー、スチレン−ブタジェンコポリマー、エ
チレン−酢酸ビニルコポリマーのケン化物、ポリビニル
アルコール、ポリカーボネート、オルガノシロキサン−
ポリカーボネートコポリマー、ポリエステルカーボネー
ト、オルガノポリシロキサン、ポリフェニレンオキシド
、ポリアミド、ポリイミド、ポリアミドイミド、ポリベ
ンズイミダゾール等を挙げることができる。
The membrane-forming polymer used in the present invention is not particularly limited (and can be selected depending on the use of the porous membrane or other purposes. Such polymers include:
For example, cellulose acetate, nitrocellulose, polysulfone, sulfonated polysulfone, polyethersulfone, polyacrylonitrile, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, saponified product of ethylene-vinyl acetate copolymer, polyvinyl alcohol, polycarbonate, organosiloxane.
Examples include polycarbonate copolymers, polyester carbonates, organopolysiloxanes, polyphenylene oxides, polyamides, polyimides, polyamideimides, polybenzimidazoles, and the like.

本発明においては、これらの中でも特にポリスルホン及
び/又はポリエステルスホンを膜形成用ポリマーとする
ことが好ましく、 の繰り返し単位で表されるポリマーが好ましい。
In the present invention, it is particularly preferable to use polysulfone and/or polyester sulfone as the membrane-forming polymer, and a polymer represented by the following repeating units is preferable.

本発明の微孔性膜の製造は、上記ポリマーを■良溶媒、
■ 良溶媒と非溶媒の混合溶媒または■ポリマーに対す
る溶解性の程度が異なる複数種の溶媒の混合したものに
溶解して製膜原液を作製し、これを流延用支持体上に流
延し、凝固液に浸漬し凝固せしめて製膜した後、洗浄、
乾燥して行う。
The production of the microporous membrane of the present invention involves using the above polymer as a good solvent,
■ Prepare a membrane-forming stock solution by dissolving it in a mixed solvent of a good solvent and a non-solvent or ■ a mixture of multiple types of solvents with different degrees of solubility for the polymer, and then cast this onto a casting support. After forming a film by immersing it in a coagulating solution and coagulating it, washing,
Do it dry.

この場合の膜形成用ポリマーの溶媒は、膜形成用ポリマ
ーの種類等により異なるが、通常膜形成用ポリマーの溶
媒であり、かつ凝固浴に浸漬した場合に速やかに凝固液
と置換されるものが使用される。多くの場合、凝固液と
しては水及び/又は水に相溶する有機溶媒が使用される
ので、凝固液と相溶性のある極性溶媒を使用することが
好ましい。例えば、膜形成用ポリマーがポリスルホンの
場合、ジオキサン、テトラヒドロフラン、ジメチルホル
ムアミド、ジメチルアセトアミド、N−メチル−2−ピ
ロリドンあるいはこれらの混合溶媒が適当である。又、
ポリアクリロニトリルの場合には、ジオキサン、N−メ
チル−2−ピロリドン、ジメチルホルムアミド、ジメチ
ル7セトアミド、ジメチルスルホキシド等が、ポリアミ
ドの場合にはジメチルホルムアミドやジメチルアセトア
ミド等が、セルロースアセテートの場合は、アセトン、
ジオキサン、テトラヒドロフラン、N−メチル−2−ピ
ロリドン等が適当である。
The solvent for the film-forming polymer in this case varies depending on the type of film-forming polymer, etc., but it is usually a solvent for the film-forming polymer that is quickly replaced by the coagulating liquid when immersed in the coagulating bath. used. In many cases, water and/or an organic solvent that is compatible with water is used as the coagulating liquid, so it is preferable to use a polar solvent that is compatible with the coagulating liquid. For example, when the membrane-forming polymer is polysulfone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, or a mixed solvent thereof is suitable. or,
In the case of polyacrylonitrile, dioxane, N-methyl-2-pyrrolidone, dimethylformamide, dimethyl 7cetamide, dimethyl sulfoxide, etc. are used, in the case of polyamide, dimethylformamide, dimethylacetamide, etc. are used, and in the case of cellulose acetate, acetone,
Dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone and the like are suitable.

非溶媒を混合する場合の非溶媒としては、水。Water is used as a non-solvent when mixing non-solvents.

セルソルフ類、メタノール、エタノール、プロパツール
、アセトン、テトラヒドロフラン、ポリエチレングリコ
ール、グリセリン等があげられる。
Examples include cellolphs, methanol, ethanol, propatool, acetone, tetrahydrofuran, polyethylene glycol, and glycerin.

非溶媒の良溶媒に対する割合は、混合液が均一状態を保
てる範囲ならば如何なる範囲でもよいが、重量%で5〜
50%が好ましい。
The ratio of the non-solvent to the good solvent may be in any range as long as the mixed liquid can maintain a homogeneous state, but it is 5 to 5% by weight.
50% is preferred.

また、多孔質構造を制御するものとして膨潤剤と称され
る無機電解質、有機電解質または高分子又はその電解質
をポリマー溶液に加える。
In addition, an inorganic electrolyte, an organic electrolyte, or a polymer or an electrolyte thereof called a swelling agent is added to the polymer solution to control the porous structure.

膨潤剤としては、食塩、塩化リチウム、硝酸ナトリウム
、硝酸カリウム、硫酸ナトリウム、塩化亜鉛等の無機酸
の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の有機酸
の金属塩、ポリエチレングリコール、ポリビニルピロリ
ドン等の高分子、ポリスチレンスルホン酸ナトリウム、
ポリビニルベンジルトリメチルアンモニウムクロライド
等の高分子電解質、ジオクチルスルホコハク酸ナトリウ
ム、アルキルメチルタウリン酸ナトリウム等のイオン系
界面活性剤等が用いられる。これらの膨潤剤は、単独で
溶液に加えてもある程度の効果を示すが、これら膨潤剤
を水溶液として添加する時に、特に顕著な効果を示すも
のである。膨潤剤水溶液の添加量は添加によって溶液の
均一性が失われることがない限り、特に制限はないが、
通常、溶媒に対して0.5容量%〜10容量%である。
Swelling agents include salt, metal salts of inorganic acids such as lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate, and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, and polymers such as polyethylene glycol and polyvinylpyrrolidone. , sodium polystyrene sulfonate,
Polymer electrolytes such as polyvinylbenzyltrimethylammonium chloride, ionic surfactants such as sodium dioctyl sulfosuccinate, sodium alkylmethyl taurate, etc. are used. Although these swelling agents exhibit some effects even when added alone to a solution, they exhibit particularly remarkable effects when added as an aqueous solution. The amount of the swelling agent aqueous solution to be added is not particularly limited as long as the addition does not cause loss of uniformity of the solution.
Usually, it is 0.5% to 10% by volume relative to the solvent.

また膨潤剤水溶液の濃度についても特に制限はなく、濃
度の大きい方が効果が大きいが、通常用いられる濃度と
しては1重量%〜60重量%である。
Further, there is no particular restriction on the concentration of the swelling agent aqueous solution, and the higher the concentration, the greater the effect, but the concentration usually used is 1% by weight to 60% by weight.

製膜原液としてのポリマー溶液の1度は5〜35重量%
、好ましくは10〜30重量%である。
The concentration of polymer solution as membrane forming stock solution is 5 to 35% by weight.
, preferably 10 to 30% by weight.

35重量%を超えると、得られる微孔性膜の透水性が実
用的な意味を持たない程小さくなり、また5重量%より
低い濃度では十分な分離能を持った微孔性膜は得られな
い。
If the concentration exceeds 35% by weight, the water permeability of the resulting microporous membrane becomes so low that it has no practical meaning, and if the concentration is lower than 5% by weight, a microporous membrane with sufficient separation ability cannot be obtained. do not have.

本発明の微孔性膜の製造方法は、上記の如くして得られ
た製膜原液を流延支持体上に流延し、流延した液膜の表
面に温度15〜60℃、相対湿度10〜80%、風速0
.2〜4m/secの範囲で調節した空気を2〜17秒
間当てることにより、溶媒蒸気の蒸発量と雰囲気からの
非溶媒蒸気吸収量(湿分の吸収)を適宜調節することに
重要な技術がある。このような調整は、例えば製膜原液
を流延支持体上に流延し、25℃、 絶対湿度2gHO
/ kg A ir以上の空気を0.2m/sec以上
の風速で流延面に当てることによって、液膜の最表面層
から1μm以上、好ましくは1〜30μmの深さにコア
セルベーション相を形成させることが出来る。その後直
ちに凝固浴槽に浸漬し多孔性膜を形成させる。このよう
にして得られた膜は、コアセルベーションを起こさせた
部分の最深部が最小孔径層となる。
In the method for producing a microporous membrane of the present invention, the membrane forming stock solution obtained as described above is cast onto a casting support, and the surface of the cast liquid membrane is coated at a temperature of 15 to 60°C and a relative humidity of 15 to 60°C. 10-80%, wind speed 0
.. An important technique is to appropriately adjust the amount of solvent vapor evaporated and the amount of non-solvent vapor absorbed (moisture absorption) from the atmosphere by applying air regulated in the range of 2 to 4 m/sec for 2 to 17 seconds. be. Such adjustment can be carried out, for example, by casting the membrane-forming stock solution onto a casting support and maintaining the temperature at 25° C. and an absolute humidity of 2 g HO.
/ kg Air or more is applied to the casting surface at a wind speed of 0.2 m/sec or more to form a coacervation phase at a depth of 1 μm or more, preferably 1 to 30 μm from the outermost layer of the liquid film. I can do it. Thereafter, it is immediately immersed in a coagulation bath to form a porous membrane. In the membrane thus obtained, the deepest part of the part where coacervation has occurred becomes the layer with the smallest pore size.

本発明の膜の表面の孔径に対して裏面の孔径はlO〜1
000倍程度、またBET法で測定したその比表面積は
8n(/g以上である0本発明においては、さらに比表
面積は8〜80rrr/gが得られるが、特に好ましく
は20〜b 比表面積を8On?/g以上にすると膜の機械的強度が
実用の限界を越えるほど低下して来る欠点がある。
The pore size on the back side of the membrane of the present invention is 1O~1 compared to the pore size on the front side.
In the present invention, a specific surface area of 8 to 80 rrr/g is obtained, and particularly preferably a specific surface area of 20 to 80 b If it exceeds 8 On?/g, there is a drawback that the mechanical strength of the film decreases beyond the practical limit.

この理由は必ずしも明確ではないが次のように推定する
ことができる。即ち、最小孔径層は溶媒の蒸発と非溶媒
の進入によりミクロ相分離が起こった層と起こらない屓
の境界に生じると考えられるが、この最小孔径層の孔径
が成長して太き(なる前に凝固液に浸漬した場合には、
この最小孔径層を固定することができる0次に、凝固液
が上記最小孔径層を通して流L!−膜内部に浸透する速
度は緩慢であり、最小孔径層より内部(裏面側へ向って
)においては裏面への非溶媒の進入によるミクロ相分離
が進行した結果、最小孔径層の孔径より大きな孔径を有
する微孔が生ずる。
Although the reason for this is not necessarily clear, it can be estimated as follows. In other words, the minimum pore size layer is thought to occur at the boundary between the layer where microphase separation has occurred and the layer where microphase separation has not occurred due to the evaporation of the solvent and the intrusion of the nonsolvent, but the pore size of this minimum pore size layer grows and becomes thicker (before it becomes larger). When immersed in a coagulating solution,
This minimum pore size layer can be fixed. Then, the coagulating liquid flows through the minimum pore size layer L! - The rate of penetration into the membrane is slow, and as a result of microphase separation progressing inside the minimum pore size layer (toward the back side) due to the intrusion of the nonsolvent into the back side, the pore size is larger than the pore size of the minimum pore size layer. Micropores with .

精密濾過の領域に供される膜の表面を開孔させるため、
従来は、製膜する原液をわずかに相分離させた状態で支
持体上へ流延し、凝固液に浸漬する方法が用いられてい
た(例えば、特開昭56−154051号及び特開昭5
8−145740号公報)。
In order to open the surface of the membrane that will be subjected to the area of microfiltration,
Conventionally, a method has been used in which a stock solution for film formation is slightly phase-separated, cast onto a support, and immersed in a coagulating solution (for example, Japanese Patent Application Laid-Open Nos. 56-154051 and 1973).
8-145740).

しかしながら、これらの最大の欠点は相分離状態での製
膜原液の安定性が捲めて悪く、調整後短時間で流延製膜
を行わなければ、原液中に沈澱が起こり、特開昭58−
145740号公報に開示されているように、更に濾過
工程を必要とする事態を生ずる点にある。一方、原液の
安定性を保つために相分離を押さえてしまうと、表面に
スキン層が生じ精密濾過膜として通さない。これに対し
本発明の方法は、製膜原液を全く均一な系として調整し
、流延してから凝固液に浸漬するまでの間で、例えば空
気中から非溶媒蒸気(例えば水分)を吸収せしめる一方
で溶媒を蒸発させ、表面近傍にのみ相分離状態を作り出
し、凝固浴に浸漬するものであるので上記の欠点がない
However, the biggest drawback of these is that the stability of the membrane forming stock solution in a phase-separated state is poor, and if casting membrane formation is not carried out within a short period of time after adjustment, precipitation will occur in the stock solution, and as described in JP-A-58 −
As disclosed in Japanese Patent No. 145740, a situation arises in which a further filtration step is required. On the other hand, if phase separation is suppressed to maintain the stability of the stock solution, a skin layer will form on the surface and will not pass through the microfiltration membrane. In contrast, in the method of the present invention, the membrane forming stock solution is prepared as a completely homogeneous system, and non-solvent vapor (e.g. moisture) is absorbed from the air between the time of casting and the time of immersion in the coagulation solution. On the other hand, since the solvent is evaporated to create a phase-separated state only near the surface and immersed in a coagulation bath, the above-mentioned drawbacks are not present.

即ち、本発明は、表面に接している空気の温度空気中の
非溶媒蒸気量(水の場合は相対湿度)および流延膜表面
に当てる空気の風速を制御することにより、従来得られ
たことのない内部緻密層膜を製造することができる。こ
の場合、風を当てた表面層付近にのみ相分離をおこさせ
るために、極めて短時間に、均一な非溶媒蒸気の吸収を
おこさせ直ちに凝固させる必要がある。この非溶媒蒸気
の吸収を関節することにより、緻密層の深さおよびその
孔径を調節することができる。
That is, the present invention solves the problems previously obtained by controlling the temperature of the air in contact with the surface, the amount of non-solvent vapor in the air (relative humidity in the case of water), and the wind speed of the air applied to the surface of the cast membrane. It is possible to produce internal dense layer membranes without In this case, in order to cause phase separation only in the vicinity of the surface layer exposed to the wind, it is necessary to uniformly absorb the non-solvent vapor in a very short period of time and solidify it immediately. By controlling the absorption of this non-solvent vapor, the depth of the compact layer and its pore size can be adjusted.

また本発明を効果的にするためには特に製膜原液中にポ
リマーの良溶媒だけではなく、非溶媒や膨潤剤をあらか
じめ加えておくことが必要である。
Further, in order to make the present invention effective, it is particularly necessary to add not only a good solvent for the polymer but also a non-solvent and a swelling agent to the film-forming stock solution in advance.

これらの非溶媒や膨潤剤としては、例えば、前述の水、
ポリエチレングリコール、そしてポリビニルピロリドン
、等をあげることができる。
Examples of these non-solvents and swelling agents include the aforementioned water,
Examples include polyethylene glycol and polyvinylpyrrolidone.

上記の製造条件は、ポリマ一種、溶媒種、非溶媒種、膨
渭剤種ポリマー濃度および流延時の雰囲気等により異な
るので、ミクロ相分離の時間と、膜の構造を検討し、最
適の条件を見い出す必要がある。見い出された条件は、
流延膜からの溶媒の蒸発量と非溶媒蒸気の吸収量を種々
の方法により調節することによって制御することができ
る。
The above manufacturing conditions vary depending on the type of polymer, solvent type, non-solvent type, swelling agent type, polymer concentration, atmosphere during casting, etc., so consider the microphase separation time and membrane structure to determine the optimal conditions. I need to find out. The conditions found are
The amount of solvent evaporated and the amount of non-solvent vapor absorbed from the cast membrane can be controlled by adjusting in various ways.

流延膜から一定量の溶媒が蒸発し、一定量の非溶媒蒸気
を吸収するように関節する方法としては、流延部から凝
固液までのポリマー溶液の経路に覆いをかけて、流延後
凝固浴に浸漬するまでの時間を調節したり、この雰囲気
の溶媒蒸気圧、非溶媒蒸気圧、温度並びに送風、排風速
度等を関節するなどの方法を取ることができる。
A method for evaporating a certain amount of solvent from the casting membrane and absorbing a certain amount of non-solvent vapor is to cover the path of the polymer solution from the casting part to the coagulation liquid, and then Methods such as adjusting the time until immersion in the coagulation bath, adjusting the solvent vapor pressure, non-solvent vapor pressure, temperature, air blowing speed, air exhaust speed, etc. of this atmosphere can be taken.

凝固液から離脱したポリマー溶液は自己支持性をもつに
至り、補強のため密着していた支持体から剥離されて水
洗浴に浸漬される。水洗後は乾燥し、撞き取るか、また
は親水化などの後処理が行われる。この様にして膜の内
部に微細孔を有し、表面側に比較的大きな細孔の濾過膜
を製造することが出来る。
The polymer solution separated from the coagulation solution becomes self-supporting, and is peeled off from the support to which it was adhered for reinforcement and immersed in a water washing bath. After washing with water, it is dried and then subjected to post-treatments such as wiping it off or making it hydrophilic. In this way, it is possible to produce a filtration membrane that has micropores inside the membrane and relatively large pores on the surface side.

〔実 施 例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれに躍定さ
れるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to these.

実施例−1〜4 比較例1. 2 ポリスルホン(UCC社製 P−3500)15部、N
−メチル−2−ピロリドン 70部。
Examples-1 to 4 Comparative example 1. 2 Polysulfone (UCC P-3500) 15 parts, N
-Methyl-2-pyrrolidone 70 parts.

ポリビニルピロリドン 15部、塩化リチウム2部、水
1.6部を均一に溶解して!!!膜原液を得た。これを
安定した溶液状態において製品厚さ180μmになるよ
うガラス仮に流延し温度25℃。
Uniformly dissolve 15 parts of polyvinylpyrrolidone, 2 parts of lithium chloride, and 1.6 parts of water! ! ! A membrane stock solution was obtained. This was temporarily cast into glass in a stable solution state to a product thickness of 180 μm at a temperature of 25°C.

相対湿度50%、風速1.0m/secの空気を23e
c〜30sec間流延した液膜表面に当て直ちに25℃
の水を満たした凝固浴中へ浸漬し微孔製膜を得た。夫々
の膜の緻密層の深さを電子顕@鏡によって観察した結果
を第1表に示す。なお、平均孔径の測定はASTM−3
16−80法による。
Air with a relative humidity of 50% and a wind speed of 1.0 m/sec at 23e
Immediately apply it to the surface of the cast liquid film for ~30 seconds at 25°C.
A microporous membrane was obtained by immersing it in a coagulation bath filled with water. Table 1 shows the results of observing the depth of the dense layer of each film using an electron microscope. The average pore diameter was measured using ASTM-3.
Based on the 16-80 method.

第   1   表 上記に明らかなように風(調温湿風)を当てる時間によ
って平均孔径を変えることが出来る。また緻密層の深さ
が変わってくる。風を当てる時間が18秒以上は粗大孔
となった。
As is clear from Table 1 above, the average pore diameter can be changed by changing the time of application of wind (temperature-controlled moist air). The depth of the compact layer also changes. When the wind was applied for 18 seconds or more, the hole became coarse.

実施例−5〜8 比較例3.4 ポリフッ化ビニリデン(米国ペンウォルト社製品名カイ
ナー)を20部、ジメチルアセトアミド60部、メタノ
ール5部およびポリビニルピロリドン10部、水0.2
部を溶解し均一な溶液とした。この溶液を、安定した溶
液状態においてドクターブレードを用いて製品膜厚18
0μmになるようガラス板上に流延し、60℃相対湿度
40%の空気を流延された液膜表面へ風速1.2m/s
eeで0秒、4秒、8秒、10秒、20秒それぞれ当て
た後メタノール/水−1/lの20℃の凝固浴へ浸漬し
て、微孔性膜を得た。それぞれの膜の緻密層の深さを、
電子顕微鏡によって観察した結果を第2表に示す。
Examples 5 to 8 Comparative Example 3.4 20 parts of polyvinylidene fluoride (product name: Kynar, Pennwalt, USA), 60 parts of dimethylacetamide, 5 parts of methanol, 10 parts of polyvinylpyrrolidone, 0.2 parts of water.
A homogeneous solution was obtained by dissolving the following parts. In a stable solution state, apply this solution to a product film thickness of 18 cm using a doctor blade.
It was cast onto a glass plate to a thickness of 0 μm, and air at 60°C and relative humidity of 40% was applied to the surface of the cast film at a wind speed of 1.2 m/s.
After applying ee for 0 seconds, 4 seconds, 8 seconds, 10 seconds, and 20 seconds, the membrane was immersed in a coagulation bath of 1/l methanol/water at 20°C to obtain a microporous membrane. The depth of the dense layer of each membrane is
Table 2 shows the results observed using an electron microscope.

第   2   表 上記から明らかなように風(調温湿風)を当てる時間が
0秒の場合は緻密層の深さが浅く、表面の摩擦に対する
保護も出来ないので好ましくない、また風を当てる時間
20秒の時は平均孔径が粗大孔になり精密濾過膜として
没に立たないことを示している。
Table 2 As is clear from the above, when the time for applying wind (temperature-controlled moist air) is 0 seconds, the depth of the dense layer is shallow and there is no protection against surface friction, which is undesirable. When the time is 20 seconds, the average pore diameter becomes coarse, indicating that it will not stand up as a precision filtration membrane.

〔発明の効果〕〔Effect of the invention〕

本発明の微孔性膜の製造方法によって出来た膜は、模の
内部に微細孔を有し膜厚方向に孔径分布を有するため、
膜全体が源側として有効に活用される。従って、濾過流
量を上げられるなみならず、源側としての寿命も長いも
のである。さらに最小径層が膜の表面ではなく、膜内部
に存在するために、外傷等により損傷される危険性が緩
和され、取り扱い上極めてを利であるのみならず、通常
の一枚の微孔性膜の場合と全く同様にカートリッジ型フ
ィルターに使用することもできるので、極めて有利であ
る。
The membrane produced by the method for producing a microporous membrane of the present invention has micropores inside the pattern and has a pore size distribution in the thickness direction.
The entire membrane is effectively utilized as the source side. Therefore, not only can the filtration flow rate be increased, but the life of the source side is also long. Furthermore, since the smallest diameter layer exists inside the membrane rather than on the surface of the membrane, the risk of damage due to external injuries is alleviated, and it is not only extremely convenient for handling, but also It is of great advantage that it can also be used in cartridge-type filters just as in the case of membranes.

この様な膜を能率よく安定して製造出来るようになり濾
ii!I膜性箭の向上による産業界に対する貢献は大で
ある。
It has become possible to efficiently and stably manufacture such membranes, and filtration ii! The contribution to industry by improving I-membrane properties is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微孔性膜の製造方法による製造工程の
l″XX施例明図である。 l・・・溶解釜  2・・・送液ポンプ3・・・注液器 4・・・流延用支持体  5・・・液膜6・・・空気調
節装置  7・・・吹出口8・・・凝固液槽    9
・・・微孔性膜10・・・流延用支持体巻取機 11・・・水洗槽    12・・・乾燥機13・・・
巻取磯
FIG. 1 is a diagram showing an example of the manufacturing process according to the method for manufacturing a microporous membrane of the present invention. ...Support for casting 5...Liquid film 6...Air conditioning device 7...Blower outlet 8...Coagulation liquid tank 9
... Microporous membrane 10 ... Casting support winder 11 ... Washing tank 12 ... Dryer 13 ...
Winding rock

Claims (1)

【特許請求の範囲】[Claims] (1)ポリマーに膨潤剤と非溶媒を加えて溶媒に溶解し
てなる製膜原液を溶液状態で流延用支持体上に流延し、
流延された液膜の表面に温度15〜60℃、相対湿度1
0〜80%、風速0.2〜4m/secの範囲で調節し
た空気を2〜17秒間当てることによつて該液膜に溶媒
の蒸発と空気中水分の吸収の制御を行いコアセルベーシ
ョンを起こさせた後、該液膜を凝固浴に浸漬させ、相分
離及び凝固を行わしめ微孔性膜を形成し、しかる後前記
流延用支持体上より剥離することを特徴とする微孔性膜
の製造方法。
(1) A membrane-forming stock solution prepared by adding a swelling agent and a non-solvent to a polymer and dissolving it in a solvent is cast in a solution state onto a casting support,
The surface of the cast liquid film is placed at a temperature of 15 to 60°C and a relative humidity of 1.
Coacervation is performed by controlling the evaporation of the solvent and the absorption of moisture in the air to the liquid film by applying air regulated at a rate of 0 to 80% and a wind speed of 0.2 to 4 m/sec for 2 to 17 seconds. After causing the liquid film to rise, the liquid film is immersed in a coagulation bath to perform phase separation and coagulation to form a microporous film, which is then peeled off from the casting support. Membrane manufacturing method.
JP61285996A 1986-12-02 1986-12-02 Microporous membrane manufacturing method Expired - Lifetime JPH06862B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61285996A JPH06862B2 (en) 1986-12-02 1986-12-02 Microporous membrane manufacturing method
US07/127,304 US4840733A (en) 1986-12-02 1987-12-02 Fine porous membrane and process for producing the same
DE19873740871 DE3740871A1 (en) 1986-12-02 1987-12-02 FINE-POROUS MEMBRANE AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285996A JPH06862B2 (en) 1986-12-02 1986-12-02 Microporous membrane manufacturing method

Publications (2)

Publication Number Publication Date
JPS63139930A true JPS63139930A (en) 1988-06-11
JPH06862B2 JPH06862B2 (en) 1994-01-05

Family

ID=17698658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285996A Expired - Lifetime JPH06862B2 (en) 1986-12-02 1986-12-02 Microporous membrane manufacturing method

Country Status (1)

Country Link
JP (1) JPH06862B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith
JP2001009222A (en) * 1999-06-24 2001-01-16 Ube Ind Ltd Porous film for filter and filter
US6511600B1 (en) * 1999-06-03 2003-01-28 Fuji Photo Film Co., Ltd. Microfilter cartridge
WO2007119850A1 (en) * 2006-04-19 2007-10-25 Asahi Kasei Chemicals Corporation Highly durable porous pvdf film, method of producing the same and washing method and filtration method using the same
JP2007289938A (en) * 2006-03-27 2007-11-08 Fujifilm Corp Method and apparatus for manufacturing microporous membrane
JP2009006320A (en) * 1995-06-07 2009-01-15 Pall Corp Microfiltration membrane having high pore density and mixed isotropic and anisotropic structure
JP2012082396A (en) * 2010-09-13 2012-04-26 Mitsubishi Rayon Co Ltd Method of manufacturing porous film
CN111804148A (en) * 2020-06-29 2020-10-23 浙江美易膜科技有限公司 High-porosity hydrophilic microporous membrane, preparation method and application thereof
CN114307676A (en) * 2022-01-18 2022-04-12 杭州科百特过滤器材有限公司 Sulfone polymer porous liquid-stopping membrane and preparation method and application thereof
CN114618333A (en) * 2020-12-21 2022-06-14 南京工业大学 Method for efficiently and controllably preparing dual-response block copolymer mesoporous membrane and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345312A (en) * 2016-09-19 2017-01-25 江苏海纳空调净化设备有限公司 Air filtering film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635489A (en) * 1979-08-30 1981-04-08 Sharp Corp Semiconductor laser element
JPS56126408A (en) * 1980-03-10 1981-10-03 Nitto Electric Ind Co Ltd Semipermeable membrane and its production
JPS5958041A (en) * 1982-09-28 1984-04-03 Teijin Ltd Preparation of porous polysulfone membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635489A (en) * 1979-08-30 1981-04-08 Sharp Corp Semiconductor laser element
JPS56126408A (en) * 1980-03-10 1981-10-03 Nitto Electric Ind Co Ltd Semipermeable membrane and its production
JPS5958041A (en) * 1982-09-28 1984-04-03 Teijin Ltd Preparation of porous polysulfone membrane

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006320A (en) * 1995-06-07 2009-01-15 Pall Corp Microfiltration membrane having high pore density and mixed isotropic and anisotropic structure
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith
US6511600B1 (en) * 1999-06-03 2003-01-28 Fuji Photo Film Co., Ltd. Microfilter cartridge
JP2001009222A (en) * 1999-06-24 2001-01-16 Ube Ind Ltd Porous film for filter and filter
JP2007289938A (en) * 2006-03-27 2007-11-08 Fujifilm Corp Method and apparatus for manufacturing microporous membrane
JP2013075294A (en) * 2006-04-19 2013-04-25 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane, method for manufacturing the same, and washing method and filtering method using the membrane
AU2007239311B2 (en) * 2006-04-19 2010-05-20 Asahi Kasei Chemicals Corporation Highly durable porous PVDF film, method of producing the same and washing method and filtration method using the same
WO2007119850A1 (en) * 2006-04-19 2007-10-25 Asahi Kasei Chemicals Corporation Highly durable porous pvdf film, method of producing the same and washing method and filtration method using the same
JP5436854B2 (en) * 2006-04-19 2014-03-05 旭化成ケミカルズ株式会社 High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
JP2014076446A (en) * 2006-04-19 2014-05-01 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane and method of producing the same, and washing method and filtration method using the same
US8931647B2 (en) 2006-04-19 2015-01-13 Asahi Kasei Chemicals Corporation Highly durable porous PVDF film, method of producing the same and washing method and filtration method using the same
JP2012082396A (en) * 2010-09-13 2012-04-26 Mitsubishi Rayon Co Ltd Method of manufacturing porous film
CN111804148A (en) * 2020-06-29 2020-10-23 浙江美易膜科技有限公司 High-porosity hydrophilic microporous membrane, preparation method and application thereof
CN114618333A (en) * 2020-12-21 2022-06-14 南京工业大学 Method for efficiently and controllably preparing dual-response block copolymer mesoporous membrane and application
CN114618333B (en) * 2020-12-21 2023-06-20 南京工业大学 Efficient and controllable method for preparing dual-response block copolymer uniform pore membrane and application
CN114307676A (en) * 2022-01-18 2022-04-12 杭州科百特过滤器材有限公司 Sulfone polymer porous liquid-stopping membrane and preparation method and application thereof
CN114307676B (en) * 2022-01-18 2023-10-31 杭州科百特过滤器材有限公司 Sulfone polymer porous liquid-stopping film and preparation method and application thereof

Also Published As

Publication number Publication date
JPH06862B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US4933081A (en) Asymmetric micro-porous membrane containing a layer of minimum size pores below the surface thereof
US4840733A (en) Fine porous membrane and process for producing the same
GB2199786A (en) Polymeric micro-porous membranes and their production
EP3541500B1 (en) Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
JPH0122003B2 (en)
TWI576148B (en) Membrane with plurality of charges
JP2011088143A (en) Microporous multilayered film and method for forming the same
JPS63139930A (en) Production of microporous membrane
KR101096536B1 (en) Microfilter and method for preparing the same
JP2530133B2 (en) Microporous membrane
KR20010078245A (en) Hollow fiber membrane and process for producing the same
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JP2004105804A (en) Polysulfone microporous membrane and its manufacturing method
JP3681219B2 (en) Polysulfone porous separation membrane
JPH0561970B2 (en)
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JPH0929078A (en) Production of hollow yarn membrane
JPS62160109A (en) Manufacture of microporous filter membrane
JPS63141611A (en) Production of microporous membrane
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPS63139929A (en) Production of microporous membrane
JPH01139116A (en) Asymmetric microporous membrane
JPS636033A (en) Microporous membrane composed of polysulfone
JPS6393309A (en) Treatment of micro porous membrane
JPH02139020A (en) Manufacture of microporous filter membrane with anisotropy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term