JPS63138706A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63138706A
JPS63138706A JP61284406A JP28440686A JPS63138706A JP S63138706 A JPS63138706 A JP S63138706A JP 61284406 A JP61284406 A JP 61284406A JP 28440686 A JP28440686 A JP 28440686A JP S63138706 A JPS63138706 A JP S63138706A
Authority
JP
Japan
Prior art keywords
powder
lubricant
oleic acid
iron
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284406A
Other languages
Japanese (ja)
Inventor
Hideki Nakamura
英樹 中村
Tetsuto Yoneyama
米山 哲人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61284406A priority Critical patent/JPS63138706A/en
Priority to KR1019860010840A priority patent/KR910000386B1/en
Publication of JPS63138706A publication Critical patent/JPS63138706A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a permanent magnet having higher level of orientation than other permanent magnets manufactured by conventional powder metallurgy, by using at least one of olein and oleic acid compounds as a lubricant acting on rare earth-iron-boron alloy powder. CONSTITUTION:A lubricant and an organic solvent are mixed uniformly in rare earth-iron-boron alloy powder. The powder mixture is molded, sintered and aged within magnetic field, The lubricant used in the molding process performed within magnetic field is selected so as to improve principally the flowability and orientation properties of the powder, while the solvent is selected so as to cause the lubricant to disperse uniformly and to help it to act more effectively on the powder. By using an oleic acid or an oleic acid compound as such lubricant, friction among particles during the molding process of the alloy powder can be decreased remarkably and the orientation properties thereof can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は永久磁石の製造方法に関するものであシ、さら
に詳しく述べるならば、粉末冶金法による希土類−鉄−
ホウ素系永久出石の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a permanent magnet, and more specifically, it relates to a method for manufacturing a permanent magnet.
The present invention relates to a method for producing boron-based permanent stone.

〔従来の技術〕[Conventional technology]

粉末冶金法で製造された希土類−鉄−ホウ素系永久磁石
は、高性能磁石として知られている従来の希土類−鉄−
コバルトよシも高い磁石特性を有するとともに、高価な
コ/々ルト等を必須成分とせずに、安価な工業材料であ
る鉄を多量に用いることによりて、コスト低減を実現す
る九めに、従来の永久磁石を代替する新材料としての期
待が集っている。これまで、より一層の磁石特性の向上
を図シ、よシ安価な元素を使用し、あるいは加工性を向
上する等の改良の努力がなされてきた。
Rare earth iron-boron permanent magnets manufactured using powder metallurgy are different from conventional rare earth iron boron permanent magnets, which are known as high-performance magnets.
Cobalt and cobalt also have high magnetic properties, and by using a large amount of iron, an inexpensive industrial material, without using expensive cobalt or cobalt as an essential component, costs can be reduced. There are high hopes for this material as a new material that can replace permanent magnets. Until now, efforts have been made to further improve magnetic properties, such as by using cheaper elements or improving processability.

粉末冶金法による希土類−鉄−ホウ素系永久磁石はおよ
そ次のような工程によシ製造される。
Rare earth-iron-boron permanent magnets are manufactured by powder metallurgy through the following process.

アーク溶解あるいは高周波溶解等で目標組成の希土類−
鉄−ホク累系合金が溶製され、インゴットとして鋳造さ
れる。インプットは粗粉砕および微粉砕され、平均粒径
が数ミクロンの微粉末とされ、その後この微粉末を乾式
@増成型により用途に合わせた形状に成型しかつ磁性粉
末を磁場の方向に配向し、次に焼結1時効等を行なって
永久磁石とする・ ま九、乾式磁場成型の代わりに湿式磁場成型を行な゛う
ことも知られている(特開昭61−114505号)。
Rare earths of target composition by arc melting or high frequency melting, etc.
The iron-hoku alloy is melted and cast as an ingot. The input is coarsely ground and finely ground into a fine powder with an average particle size of several microns, and then this fine powder is formed into a shape suitable for the application using dry molding, and the magnetic powder is oriented in the direction of the magnetic field. Next, sintering and aging are performed to form a permanent magnet.It is also known to perform wet magnetic field forming instead of dry magnetic field forming (Japanese Patent Application Laid-Open No. 114505/1983).

この公報では、トルエン、キシレン、アルコール等の有
機溶剤によj5Ndの酸化を防止し、ま光ステアリン酸
金属を潤滑剤として微粉末に添加した状態で希土類−鉄
−ホウ素系合金粉末のWi場中成型會行ない、最大で3
6 MGOeの(B)()maxが得られている。
In this publication, the oxidation of j5Nd is prevented using an organic solvent such as toluene, xylene, or alcohol, and a rare earth-iron-boron alloy powder is prepared in a Wi-Fi process with a luminescent metal stearate added to the fine powder as a lubricant. Molding meeting, maximum 3
(B)()max of 6 MGOe has been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記し九乾式磁場中成型法により製造され九希土類−鉄
−ホウ素系永久磁石は、磁場中成型の効果によって、高
い磁石特性を発現するが、成型時に微粉末同士に生じる
摩擦のために所望方向への微粉末の配向度が低い、ま穴
微粉末同士に生じる摩擦のために成型体が発熱し、微粉
末の希土類元素成分の酸化が起るという欠点のために、
最大で45 MGO・−(BH)max−に達する希土
類−鉄−ホウ素系永久磁石の潜在的磁気特性よシも低い
磁気特性しか得られていない。
The nine rare earth-iron-boron permanent magnets produced by the above-mentioned nine-piece magnetic field molding method exhibit high magnetic properties due to the effect of magnetic field molding, but due to the friction generated between the fine powders during molding, the magnets are directed in the desired direction. Due to the disadvantages that the degree of orientation of the fine powder is low, the molded body generates heat due to friction between the fine powder, and oxidation of the rare earth element component of the fine powder occurs.
The magnetic properties obtained are lower than the potential magnetic properties of rare earth-iron-boron permanent magnets, which reach a maximum of 45 MGO·-(BH)max-.

これに対し、公知の湿式磁場成型による粉末冶金法によ
シ得られた希土類−鉄−ホウ素系永久磁石は、乾式法の
ような微粉末同士の摩擦が激減しているので、上記のよ
うな欠点がなく、優れた磁石特性が得られるというもの
の1本発明者の研究によると、使用される潤滑剤(ステ
アリン酸塩)と希土類−鉄−ホウ素系合金との組み合わ
せに問題がありて、未だ潜在的磁気特性よシ低い磁石特
性しか得られていないという欠点があることが分かった
On the other hand, rare earth-iron-boron permanent magnets obtained by the known powder metallurgy method using wet magnetic field molding have significantly reduced friction between fine powders as in the dry method. According to the research of the present inventor, there is a problem in the combination of the lubricant (stearate) and rare earth-iron-boron alloy, and it is said that there are no defects and excellent magnetic properties are obtained. It was found that the drawback was that the magnetic properties obtained were lower than the potential magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、従来の粉末冶金法で製造される永久磁石よ
りも配向度が高く、すなわち残留磁束密度が高い希土類
−鉄−ホウ素系永久磁石を提供すべく、湿式成型におけ
る潤滑剤および溶剤につき鋭意研究した結果、本発明を
完成し次。
In order to provide a rare earth-iron-boron-based permanent magnet with a higher degree of orientation, that is, a higher residual magnetic flux density than permanent magnets manufactured by conventional powder metallurgy, the present inventors have investigated the use of lubricants and solvents in wet molding. As a result of intensive research, we completed the present invention.

即ち1本発明は、希土類−鉄一ホ9素系合金の粉末に潤
滑剤および有機溶剤を均一に混合し、混合粉末を磁場中
で成型し、焼結し、時効する永久磁石の製造方法におい
て、前記潤滑剤にオレイン酸およびオレイン酸化合物の
少なくとも一種を用いることを特徴とする。
That is, 1. The present invention provides a method for producing a permanent magnet in which a lubricant and an organic solvent are uniformly mixed into powder of a rare earth-iron-pho9-based alloy, the mixed powder is molded in a magnetic field, sintered, and aged. , the lubricant is characterized in that at least one of oleic acid and oleic acid compounds is used.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明において、希土類−鉄−ホウ素系合金の粉末の絹
製方法、ならびに焼結、時効方法は何等制限がなく、ま
九公知の方法と同じである。
In the present invention, the method for producing rare earth-iron-boron alloy powder, as well as the sintering and aging methods are not limited in any way and are the same as known methods.

本発明の特徴は、磁場中成型工程で使用されるところの
、主として微粉末の流動性と配向性を高める潤滑剤、お
よび主として潤滑剤を一様に分散させるとともに微粉末
へ作用し易くする溶剤の化合物にある。潤滑剤として使
用されるオレイン酸およびオレイン酸化合物は希土類−
鉄−ホウ素系合金粉末成型時の粉末粒子同士の摩擦を顕
著に低減して、その配向性を高める。オレイン酸化合物
としては、オレイン酸メチル、オレイン酸エチルなどの
オレイン酸アルキル化合物、オレイン酸リチウム、オレ
イン酸カルシウムなどのオレイン酸塩が好ましい。オレ
イン酸およびオレイン酸化合物の添加量は極〈微量でも
効果がToシ、例えば、磁場中成型される微粉末の重量
を100として0.001ないし0.5重量−の範囲内
にあることが好ましい。その添加量が0.001重量−
未満であると潤滑改善効果が少なく、一方0.5重量%
を越えると有機物が残存して磁石に悪影響を及ぼすよう
になるため、上記範囲内の添加量が好ましい。オレイン
酸およびオレイン酸化合物のよシ好ましい添加量は、0
.002ないし0.2重量%である。溶媒としては、一
般に使用されているトルエンを用いることができるが、
オレイン酸およびオレイン酸化合物が微粉末単粒子の周
シに均一被膜を形成する有機化合物を溶剤として使用す
ることが望ましい。
The present invention is characterized by a lubricant used in the magnetic field molding process that mainly improves the fluidity and orientation of fine powder, and a solvent that mainly disperses the lubricant uniformly and makes it easier to act on the fine powder. It is found in the compound of Oleic acid and oleic acid compounds used as lubricants are rare earth-
Significantly reduces friction between powder particles during molding of iron-boron alloy powder and improves its orientation. The oleic acid compound is preferably an alkyl oleate compound such as methyl oleate or ethyl oleate, or an oleate salt such as lithium oleate or calcium oleate. The amount of oleic acid and oleic acid compound added is preferably within the range of 0.001 to 0.5 weight, where even a very small amount is effective; for example, the weight of the fine powder to be molded in a magnetic field is 100. . The amount added is 0.001 weight -
If it is less than 0.5% by weight, the lubrication improvement effect will be small;
If the amount exceeds this range, the organic matter will remain and will have a negative effect on the magnet, so it is preferable to add the amount within the above range. A more preferable addition amount of oleic acid and oleic acid compounds is 0
.. 0.002 to 0.2% by weight. As a solvent, commonly used toluene can be used, but
It is desirable to use an organic compound in which oleic acid and an oleic acid compound form a uniform film around the fine powder single particles as the solvent.

そのような化合物としては、トリクロロエタンなどのハ
ロゲン化炭化木葉、フレオン、グイフロンなどの商品名
で著名なフルオロ炭化木葉などの1い。溶剤の量が1倍
未満であると、十分に微粉末および潤滑剤が微細分散さ
れず一17’u2倍を越えると、最終特性に及ぼす効果
が一定になシ、脱溶剤の点から取扱いが面倒となる。
Examples of such compounds include halogenated carbonized tree leaves such as trichloroethane, and fluorocarbonized tree leaves, which are well-known under trade names such as freon and guifuron. If the amount of solvent is less than 1 times, the fine powder and lubricant will not be sufficiently finely dispersed, and if it exceeds 1 times the amount, the effect on the final properties will not be constant, and handling will be difficult from the point of view of solvent removal. It becomes troublesome.

上記した潤滑剤および溶剤を用いて磁性微粉末を湿式成
型する際のV&場の強度は7 kG〜20kGの範囲が
一般的に使用される。ま次、成型圧力は500〜400
0 kcI//cm”の範囲が一般的に使用される。
When wet-molding magnetic fine powder using the above-mentioned lubricant and solvent, the strength of the V& field is generally in the range of 7 kG to 20 kG. Next, the molding pressure is 500-400
A range of 0 kcI//cm'' is commonly used.

上記した潤滑剤、溶剤および磁性微粉末のスラリーを金
型に充填し、成型し、溶剤等の液体を排出した後、成型
体を金型から取り出し、自然乾燥させ、続いて焼結を行
なう。焼結は希土類元轟化を防止するため真空中あるい
は不活性ガス中で行なわれる。この際に成型体内の有機
物は飛散、燃焼され、製品中には痕跡量しか残存しない
A mold is filled with a slurry of the above-described lubricant, solvent, and magnetic fine powder, molded, and after draining the solvent and other liquids, the molded body is taken out of the mold, air-dried, and then sintered. Sintering is carried out in vacuum or in an inert gas to prevent rare earth elements from decomposing. At this time, the organic matter in the molded body is scattered and burned, leaving only a trace amount in the product.

以下、実施例によシ本発明をさらに詳しく説明する・ 〔実施例〕 実施例l Nd15Fe77BBなる組成の合金を高周波炉で溶製
し、造塊し得られたインゴットを粗粉砕した後、ジェッ
トミルを用いて平均粒径3.5μmの磁性粉末に微粉砕
した。この磁性粉末に、粉末重量に対して0.05 v
tJのオレイン酸メチルを溶解した1、1.1−)リク
ロロエタン(磁性粉末の体積に対し1.5倍のトリクロ
ロエタン)を添加し、全配合物をスターラーにて混合し
、スラリー状の磁性粉末とした。これを、10KOeの
磁場中で、1.5ton/m”の圧力で圧粉した後、自
然乾燥し、トリクロロエタンを飛散させた。その後にガ
ス雰囲気中で1100℃、2時間の焼結を行ない、続い
て、600℃、1時間の時効処理を行なった。このよう
にして調製し九永久磁石(寸法20 w X 18■X
14鴎)を試料1とする。
Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example] Example 1 An alloy having a composition of Nd15Fe77BB was melted in a high frequency furnace, and the resulting ingot was roughly pulverized, followed by a jet mill. The powder was pulverized into magnetic powder with an average particle size of 3.5 μm. To this magnetic powder, apply 0.05 v to the powder weight.
1,1.1-)lichloroethane in which tJ of methyl oleate was dissolved (trichloroethane 1.5 times the volume of the magnetic powder) was added, and the entire mixture was mixed with a stirrer to form a slurry of magnetic powder. And so. This was pressed into powder at a pressure of 1.5 ton/m" in a magnetic field of 10 KOe, and then air-dried to scatter trichloroethane. Thereafter, sintering was performed at 1100°C for 2 hours in a gas atmosphere. Subsequently, aging treatment was performed at 600°C for 1 hour.Nine permanent magnets (dimensions: 20 w x 18 x
14) is designated as sample 1.

本発明の湿式成凰法を乾式成凰法と比較するために乾式
成製した他は上記試料1と同一条件で永久磁石を調製し
九(試料2)。
In order to compare the wet forming method of the present invention with the dry forming method, a permanent magnet was prepared under the same conditions as Sample 1 except that dry forming was performed (Sample 2).

さらに、本発明の湿式成凰法を、従来の潤滑剤と溶剤を
使用した湿式成型法と比較するために、粉末重量に対し
て0.05wt%のステアリン酸カルシウムを溶解した
トルエンを添加(粉末の体積に対し体積で1.5倍のト
ルエン)した溶液を使用してスターラーにて混合した他
は試料1と同じ条件で、成形、乾燥を行ない、トルエン
を飛散し、さらに同条件で焼結1時効を行なった永久磁
石を試料3とした。
Furthermore, in order to compare the wet molding method of the present invention with the conventional wet molding method using a lubricant and solvent, toluene in which 0.05 wt% calcium stearate was dissolved based on the powder weight was added ( Molding and drying were performed under the same conditions as Sample 1, except that a solution containing 1.5 times the volume of toluene (volume to volume) was used and mixed with a stirrer, and the toluene was scattered. The aged permanent magnet was designated as Sample 3.

次表は得られた永久磁石10個の磁気特性の測定結果の
平均値を示すものである。
The following table shows the average values of the results of measuring the magnetic properties of the ten obtained permanent magnets.

以下余白 表1よシ、オレイン酸メチルを潤滑剤Nリクロロエタン
を溶媒として湿式成型して得られた永久磁石の特性は、
従来より知られている湿式成型や乾式成型によりて得ら
れる永久磁石の特性よシも、極めて優れている事がわか
る。特に、03H)親で40MGO・を越える極めて優
れた磁石特性が得られたことく注目される。
As shown in Table 1 below, the properties of a permanent magnet obtained by wet molding methyl oleate using the lubricant N-lichloroethane as a solvent are as follows:
It can be seen that the properties of permanent magnets obtained by conventional wet molding and dry molding are also extremely superior. In particular, the 03H) parent attracted attention because extremely excellent magnetic properties exceeding 40MGO were obtained.

実施例2 実施例1と同じ組成の磁石粉末と、次表に示すような有
機溶媒および潤滑剤を用い、実施例1と同様な方法によ
シ永久磁石を作製した。
Example 2 A permanent magnet was produced in the same manner as in Example 1 using magnet powder having the same composition as in Example 1, and the organic solvent and lubricant shown in the following table.

以下余白 得られた磁石の磁気特性を測定したところ、下表の結果
が得られた。
When the magnetic properties of the obtained magnet were measured, the results shown in the table below were obtained.

表    3 表1よυ、オレイン酸またはオレイン酸化合物と、フレ
オン、ハロゲン化炭化水素との組み合わせは、オレイン
酸メチルとトルエンの組み合わせよりも、磁石特性上好
ましいことがわかる。
Table 3 From Table 1, it can be seen that the combination of oleic acid or oleic acid compound, freon, or halogenated hydrocarbon is more preferable in terms of magnetic properties than the combination of methyl oleate and toluene.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によると、 40MGOe
に近い最大エネルギ積密度(BH)mawが得られる。
As explained above, according to the present invention, 40MGOe
A maximum energy density (BH) maw close to is obtained.

従来このような最大エネルギ積密度(BE)waxを得
るための方法は具体的に知られていなか−5たが、本発
明によ〕容易にλ手回能な有機化合物を使用し、しかも
通常の粉末冶金法条件によシ、優れた磁石特性を達成し
たことの工業的意義は極めて大である。
Conventionally, a method for obtaining such a maximum energy bulk density (BE) wax was not specifically known. The industrial significance of achieving excellent magnetic properties under the powder metallurgy process conditions is extremely large.

Claims (1)

【特許請求の範囲】 1、希土類−鉄−ホウ素系合金の粉末に潤滑剤および有
機溶剤を均一に混合し、混合粉末を磁場中で成型し、焼
結し、時効する永久磁石の製造方法において、前記潤滑
剤にオレイン酸およびオレイン酸化合物の少なくとも一
種を用いることを特徴とする永久磁石の製造方法。 2、前記有機溶剤にハロゲン化炭化水素およびフルオロ
炭化水素の1種以上を用いることを特徴とする特許請求
の範囲第1項記載の永久磁石の製造方法。
[Claims] 1. A method for producing a permanent magnet, which involves uniformly mixing rare earth-iron-boron alloy powder with a lubricant and an organic solvent, molding the mixed powder in a magnetic field, sintering it, and aging it. . A method for producing a permanent magnet, characterized in that the lubricant is at least one of oleic acid and an oleic acid compound. 2. The method for producing a permanent magnet according to claim 1, characterized in that the organic solvent is one or more of halogenated hydrocarbons and fluorohydrocarbons.
JP61284406A 1985-12-18 1986-12-01 Manufacture of permanent magnet Pending JPS63138706A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61284406A JPS63138706A (en) 1986-12-01 1986-12-01 Manufacture of permanent magnet
KR1019860010840A KR910000386B1 (en) 1985-12-18 1986-12-17 Semiconductor memory device with reset signal generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284406A JPS63138706A (en) 1986-12-01 1986-12-01 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS63138706A true JPS63138706A (en) 1988-06-10

Family

ID=17678155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284406A Pending JPS63138706A (en) 1985-12-18 1986-12-01 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63138706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
JP2007533858A (en) * 2004-04-21 2007-11-22 ホガナス アクチボラゲット Lubricant-containing molded product manufacturing method and lubricant-containing iron-based powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108709A (en) * 1981-12-23 1983-06-28 Tohoku Metal Ind Ltd Manufacture of rare earth permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108709A (en) * 1981-12-23 1983-06-28 Tohoku Metal Ind Ltd Manufacture of rare earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
US5527504A (en) * 1993-12-28 1996-06-18 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
CN1045680C (en) * 1993-12-28 1999-10-13 住友金属工业株式会社 Production of and material for forming rare earth, iron based sintering permanent magnet
JP2007533858A (en) * 2004-04-21 2007-11-22 ホガナス アクチボラゲット Lubricant-containing molded product manufacturing method and lubricant-containing iron-based powder

Similar Documents

Publication Publication Date Title
KR100300933B1 (en) Manufacturing method of rare earth sintered magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
US3821035A (en) Sintered cobalt-neodymium-samarium intermetallic product and permanent magnets produced therefrom
US3682716A (en) Sintered intermetallic product of cobalt,samarium and cerium mischmetal and permanent magnets produced therefrom
JPS63138706A (en) Manufacture of permanent magnet
JPS61114505A (en) Manufacture of permanent magnet
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JPH06116605A (en) Compacting assistant of rare-earth permanent magnet and its added alloy powder
JPS6214081B2 (en)
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
JP4057563B2 (en) Granule, sintered body
JP2682619B2 (en) Manufacturing method of rare earth permanent magnet
JP3170156B2 (en) Method for producing isotropic granulated powder
JPH07176413A (en) Manufacture of rare earth element magnet
JPH1064712A (en) R-fe-b rare earth sintered magnet
JPH0248611B2 (en)
JPH04285141A (en) Manufacture of ferrous sintered body
JP4057561B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4282015B2 (en) Rare earth sintered magnet manufacturing method, sintered body
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP3540389B2 (en) Method for producing sintered R-Fe-B permanent magnet
JP3012161B2 (en) Formability improver for rare earth sintered permanent magnet alloy powder
JPH07240331A (en) Manufacture of rare-earth intermetallic compound magnet
JPS60184602A (en) Method for molding alloy powder for permanent magnet