JPS63138667A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPS63138667A
JPS63138667A JP61284580A JP28458086A JPS63138667A JP S63138667 A JPS63138667 A JP S63138667A JP 61284580 A JP61284580 A JP 61284580A JP 28458086 A JP28458086 A JP 28458086A JP S63138667 A JPS63138667 A JP S63138667A
Authority
JP
Japan
Prior art keywords
cell
solid electrolyte
thin film
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284580A
Other languages
Japanese (ja)
Inventor
Shozo Kaneko
祥三 金子
Tadashi Gengo
義 玄後
Masayasu Sakai
正康 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61284580A priority Critical patent/JPS63138667A/en
Publication of JPS63138667A publication Critical patent/JPS63138667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the strength of a fuel cell and make it modular by forming a cell thin film on the inner face of a grid so that portions formed with the cell thin film and portions not formed with the cell thin film ere arranged in turn on a grid-shaped porous ceramics substrate. CONSTITUTION:In a solid electrolyte fuel cell 1, a cell thin film 3 is formed on the inner face of a grid so that portions formed with the cell thin film 3 and portion not formed with the cell thin film 3 are arranged in turn on a grid-shaped porous ceramics substrate 2. The substrate 2 becomes a structure member supporting the cell, and the substrate 2 itself has sufficient strength. Accordingly, the solid electrolyte fuel cells 1 can be easily made modular by only laminating them without causing any assembly problem.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体電解質燃料電池の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in solid electrolyte fuel cells.

[従来の技術] 固体電解質燃料電池(Solid  0xide  F
uelQell 、以下5OFGと記す)は高効率発電
システムの1つとして注目されている。この固体電解質
燃料電池は、酸化物固体内での酸素イオン導電性を利用
し、約1000℃の作動温度で燃料ガスと空気とを用い
て電極反応を起こさせて発電するものである。
[Prior art] Solid electrolyte fuel cell (Solid Oxide F
uelQell (hereinafter referred to as 5OFG) is attracting attention as one of the highly efficient power generation systems. This solid electrolyte fuel cell utilizes oxygen ion conductivity within a solid oxide to generate electricity by causing an electrode reaction using fuel gas and air at an operating temperature of approximately 1000°C.

ところで、従来、5OFCとしては第5図又は第6図に
示す構造のものが作製又は提案されている。
By the way, conventionally, as a 5OFC, one having a structure shown in FIG. 5 or FIG. 6 has been manufactured or proposed.

すなわち、第5図の5OFCは、円筒状の多孔質セラミ
ックス基体21の表面に電池81膜22を形成したもの
である。この電池1111122は燃料極(又は空気極
)、固体電解質及び空気極(又は燃料極ンを順次薄膜状
に積層したものである。この5OFGでは、基体21の
内側に燃料ガス(又は空気)を、外側に空気(又は燃料
ガス)を流して発電を行う。そして、電流は図中矢印で
示すような流路を流れる。
That is, the 5OFC shown in FIG. 5 has a cell 81 membrane 22 formed on the surface of a cylindrical porous ceramic substrate 21. This battery 1111122 has a fuel electrode (or air electrode), a solid electrolyte, and an air electrode (or fuel electrode) stacked one after another in the form of a thin film. In this 5OFG, fuel gas (or air) is placed inside the base 21, Electricity is generated by flowing air (or fuel gas) to the outside.Then, the current flows through the flow path as shown by the arrow in the figure.

また、第6図図示の5OFCはいわゆるモノリシック型
で、上述したような電池i’1ll131自体で例えば
ハニカム状ブロックを形成するものである。
Further, the 5OFC shown in FIG. 6 is of a so-called monolithic type, in which the battery i'1ll131 itself as described above forms, for example, a honeycomb-shaped block.

この5OFCでは、図中Fで示す領域に燃料ガスを、A
で示す領域に空気をそれぞれ流す。そして、電流は図中
矢印で示すような流路を流れる。
In this 5OFC, fuel gas is supplied to the area indicated by F in the figure, and
Flow air into the areas indicated by . The current then flows through the flow path as indicated by the arrow in the figure.

[発明が解決しようとする問題点] しかし、従来の5OFCにはいずれも以下のような問題
点がある。
[Problems to be Solved by the Invention] However, all conventional 5OFCs have the following problems.

まず、第5図図示の5OFCでは、単位体積当りの電池
有効面積が小さく、体積効率が低い。また、モジュール
の構成が複雑となる。また、電池HWA22の成膜が困
難であり、量産性に劣る。
First, in the 5OFC shown in FIG. 5, the effective battery area per unit volume is small and the volumetric efficiency is low. Furthermore, the configuration of the module becomes complicated. Furthermore, it is difficult to form a film for the battery HWA22, and mass productivity is poor.

一方、第6図図示あるいはこれと類似のモノリシック型
の5OFCでは、高い体積効率が期待できるものの、電
池薄11131自体で全体構造を形成するため強度及び
組立上の問題があり、実際には試作すら完成していない
On the other hand, with the monolithic type 5OFC shown in Figure 6 or similar to this, although high volumetric efficiency can be expected, since the entire structure is formed from the thin cell 11131 itself, there are problems in strength and assembly, and in reality, even prototype production is not possible. not completed.

本発明は上記問題点を解決するためになされたものであ
り、高強度で、しかも体積効率が高く、モジュール構造
が簡単で、量産性にも優れた固体電解質燃料電池を提供
することを目的とする。
The present invention was made to solve the above problems, and its purpose is to provide a solid electrolyte fuel cell that has high strength, high volumetric efficiency, simple module structure, and excellent mass productivity. do.

[問題点を解決するための手段] 本発明の固体電解質燃料電池は、格子状の多孔質セラミ
ックス基体に、電池sgiを形成した部分と電池7$1
1を形成しない部分とが交互に配列されるようにその格
子内面に電池薄膜を形成したことを特徴とするものであ
る。
[Means for Solving the Problems] The solid electrolyte fuel cell of the present invention consists of a lattice-shaped porous ceramic substrate, a portion in which a battery sgi is formed, and a battery 7$1.
The battery thin film is formed on the inner surface of the lattice so that portions where no 1 is formed are alternately arranged.

本発明の固体電解質燃料電池において、電池薄膜は基体
の格子内面に空気極(又は燃料極)、固体電解質及び燃
料極(又は空気極)を順次III状に形成することによ
り形成される。そして、電池薄膜が形成されている領域
に燃料(又は空気)を、電池wJIIが形成されていな
い領域の空気(又は燃料)を流すことにより電極反応を
起こさせて発電を行う。
In the solid electrolyte fuel cell of the present invention, the cell thin film is formed by sequentially forming an air electrode (or fuel electrode), a solid electrolyte, and a fuel electrode (or air electrode) on the inner surface of a lattice of a substrate in a III-shape. Then, by flowing fuel (or air) into the region where the cell thin film is formed and air (or fuel) into the region where the cell wJII is not formed, an electrode reaction is caused to generate electricity.

[作用] このような固体電解質燃料電池によれば、基体が電池を
支持する構造部材となるが、基体自体は十分な強度を有
しているので、組立上の問題は生じない。また、従来の
円筒状の5OFGに比べて単位体積当りの電池有効面積
を2〜5倍大きくすることができ、体積効率を高くする
ことができる。
[Function] According to such a solid electrolyte fuel cell, the base serves as a structural member that supports the cell, but since the base itself has sufficient strength, no assembly problems occur. Moreover, compared to the conventional cylindrical 5OFG, the battery effective area per unit volume can be increased by 2 to 5 times, and the volumetric efficiency can be increased.

また、このような固体電解質電池を積層するだけで容易
にモジュール化することができる。更に、電池薄膜は一
括して形成することができるので、量産性にも優れてい
る。
Further, it is possible to easily form a module by simply stacking such solid electrolyte batteries. Furthermore, since the battery thin film can be formed all at once, it is also excellent in mass productivity.

[実施例] 以下、本発明の実施例を回置を参照して説明する。[Example] Hereinafter, embodiments of the present invention will be described with reference to rotation.

第1図は本発明に係る固体電解質燃料電池の平面図であ
る。第1図において、固体電解質燃料電池1は、格子状
の多孔質セラミックス基体2に、電池薄膜3を形成した
部分と電池簿膜3を形成しない部分とが交互に配列され
るように(市松模様をなすように)、その格子内面に電
池1113を形成したものである。基体2の厚さは1〜
5 am 1格子の寸法は5〜50mであるが、材質に
より適宜設計変更できる。また、電池薄113は空気極
、固体電解質及び燃料極が順次薄膜状に形成されたもの
である。
FIG. 1 is a plan view of a solid electrolyte fuel cell according to the present invention. In FIG. 1, a solid electrolyte fuel cell 1 is constructed such that a grid-like porous ceramic substrate 2 is arranged in such a way that portions on which a cell thin film 3 is formed and portions on which a cell thin film 3 is not formed are arranged alternately (in a checkered pattern). ), and a battery 1113 is formed on the inner surface of the grid. The thickness of the base 2 is 1~
The dimensions of the 5 am 1 grid are 5 to 50 m, but the design can be changed as appropriate depending on the material. Moreover, the battery thin 113 is one in which an air electrode, a solid electrolyte, and a fuel electrode are sequentially formed into a thin film shape.

第2図は5OFCモジユールの構成図である。FIG. 2 is a block diagram of the 5OFC module.

第2図に示すように、単体の固体電解質燃料電池1は数
個〜数十個積層されて電池スタック11を構成している
。この電池スタック11の上下にはそれぞれマニホール
ド12.13が形成されており、上部のマニホールド1
2には空気人口14及び燃料出口15が、また下部のマ
ニホールド13には燃料入口16及び空気出口17がそ
れぞれ接続されている。更に、これら燃料及び空気の出
入口は図示しないエアヒータ等の発電システム周辺機器
に接続されている。
As shown in FIG. 2, several to several dozen single solid electrolyte fuel cells 1 are stacked to form a cell stack 11. Manifolds 12 and 13 are formed at the top and bottom of this battery stack 11, respectively, and the upper manifold 1
2 is connected to an air port 14 and a fuel outlet 15, and the lower manifold 13 is connected to a fuel inlet 16 and an air outlet 17, respectively. Furthermore, these fuel and air inlets and outlets are connected to power generation system peripheral equipment such as an air heater (not shown).

なお、電池スタック11における単体の燃料電池どうし
の結合部は例えば第3図に示すような構造となっている
。すなわち、基体2の格子内面には空気極4、固体電解
質5及び燃料極6が順次形成されている。そして、下部
の基体2において上端まで形成された空気極4と、上部
の基体2において下端まで形成された燃料極6とは、イ
ンクコネクタ7をはさんで接続され、電池が直列接続さ
れている。また、上下の基体2.2の結合部には、イン
タコネクタ7以外にシール材8がはさまれている。この
シール材8は空気及び燃料のもれを防止するとともに、
インタコネクタ7等の酸化を防止する作用を有する。
Incidentally, the connection portion between the single fuel cells in the cell stack 11 has a structure as shown in FIG. 3, for example. That is, an air electrode 4, a solid electrolyte 5, and a fuel electrode 6 are sequentially formed on the inner surface of the lattice of the base body 2. The air electrode 4 formed to the upper end on the lower base 2 and the fuel electrode 6 formed to the lower end on the upper base 2 are connected with an ink connector 7 in between, and the batteries are connected in series. . In addition to the interconnector 7, a sealing material 8 is sandwiched between the upper and lower base bodies 2.2. This sealing material 8 prevents air and fuel leakage, and
It has the effect of preventing oxidation of the interconnector 7 and the like.

上述した構造の5OFCモジユールは以下のように作動
する。すなわち、燃料は燃料入口16からマニホールド
13を通って各燃料電池1の電池W2B5が形成されて
いる部分を通って電池スタック11内を上昇する。一方
、空気は空気入口14からマニホールド12を通って各
燃料電池1の電池1113が形成されていない部分を通
って電池スタック11内を下降する。電池スタック11
内は600〜1200℃に保たれており、ここで電極反
応が起こって発電が行なわれる。こうして発生した電流
は電流取出し部18から取出される。そして、発電中は
単体の燃料電池当り約0.6Vの電圧なので、20個の
燃料電池を積層すれば、12v′R源として使用するこ
とができる。
The 5OFC module constructed as described above operates as follows. That is, fuel rises in the cell stack 11 from the fuel inlet 16 through the manifold 13 and through the portion where the cells W2B5 of each fuel cell 1 are formed. On the other hand, air flows from the air inlet 14 through the manifold 12, through the portion of each fuel cell 1 where the cells 1113 are not formed, and then descends within the cell stack 11. battery stack 11
The temperature inside the chamber is maintained at 600 to 1,200 degrees Celsius, where an electrode reaction occurs and electricity is generated. The current generated in this way is extracted from the current extraction section 18. During power generation, the voltage is about 0.6V per single fuel cell, so if 20 fuel cells are stacked, it can be used as a 12V'R source.

このような固体電解質燃料電池によれば、基体2が電池
を支持する構造部材となるが、基体2自体は十分な強度
を有しているので、組立上の問題を生じることなく第2
図及び第3図に示すように固体電解質燃料電池1を積層
するだけで容易にモジュール化することができる。その
うえ、温度差により各部品の伸びに差が生じても、応力
を容易に解放することができるので信頼性も高い。また
、従来の円筒状の5OFGに比べて単位体積当りの電池
有効面積を2〜5倍大きくすることができ、体積効率を
高くすることができる。また、積層数を変化させるだけ
で容易に発M電圧を調整することができる。更に、電池
部[13は一括して形成することができるので、従来の
円筒状の5OFGに比べて量産性にも優れている。しか
も、モノリシック型等に比べて電流経路が単純であると
いう効果も得られる。
According to such a solid electrolyte fuel cell, the base 2 becomes a structural member that supports the battery, but since the base 2 itself has sufficient strength, the second
As shown in the figures and FIG. 3, the solid electrolyte fuel cells 1 can be easily modularized by simply stacking them. Furthermore, even if differences in elongation of each part occur due to temperature differences, the stress can be easily released, resulting in high reliability. Moreover, compared to the conventional cylindrical 5OFG, the battery effective area per unit volume can be increased by 2 to 5 times, and the volumetric efficiency can be increased. Furthermore, the M generation voltage can be easily adjusted by simply changing the number of laminated layers. Furthermore, since the battery part [13] can be formed all at once, it is superior in mass productivity compared to the conventional cylindrical 5OFG. Moreover, the effect that the current path is simpler than that of a monolithic type or the like can also be obtained.

なお、電池部の構造は第3図に示すものに限らず、例え
ば第4図に示す構造でもよい。第4図図示の構造では、
電池部の基体2の厚みが薄くなっているので、基体2の
拡散抵抗を低減することができる。
Note that the structure of the battery section is not limited to that shown in FIG. 3, and may be, for example, the structure shown in FIG. 4. In the structure shown in Figure 4,
Since the thickness of the base 2 of the battery section is reduced, the diffusion resistance of the base 2 can be reduced.

また、第1図において、基体2の格子空間の形状は正方
形に限らず、長方形、六角形、円形、=角形その他規則
的に配列可能な任意の形状とすることができる。また、
第2図において、空気の出入口や燃料の出入口を逆にす
る等適宜設計変更ができることは勿論である。
Further, in FIG. 1, the shape of the lattice space of the base body 2 is not limited to a square, but may be a rectangle, a hexagon, a circle, a square, or any other shape that can be regularly arranged. Also,
In FIG. 2, it goes without saying that the design can be changed as appropriate, such as by reversing the air inlet/outlet and the fuel inlet/outlet.

[発明の効果] 以上詳述したように本発明によれば、高強度で、しかも
体積効率が高く、モジュール構造が簡単で、量産性にも
優れた固体電解質燃料電池を提供できるものである。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a solid electrolyte fuel cell that has high strength, high volumetric efficiency, simple module structure, and excellent mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における固体電解質燃料電池の
平面図、第2図は同固体電解質燃料電池を用いたモジュ
ールの構成図、第3図は同固体電解質燃料電池の結合部
を拡大して示す断面図、第4図は本発明の他の実施例に
おける固体電解質燃料電池の電池部の断面図、第5図は
従来の固体電解質燃料電池の斜視図、第6図は従来の他
の固体電解質燃料電池の平面図である。 1・・・固体電解質燃料電池、2・・・多孔質セラミッ
クス基体、3・・・電池薄膜、4・・・空気極、5・・
・固体電解質、6・・・燃料極、7・・・インタコネク
タ、8・・・シール材、11・・・電池スタック、12
.13・・・マニホールド、14・・・空気入口、15
・・・燃料出口、16・・・燃料入口、17・・・空気
出口、18・・・電流取出し部。 第2図 第4図 第5図 第6図
Fig. 1 is a plan view of a solid oxide fuel cell according to an embodiment of the present invention, Fig. 2 is a block diagram of a module using the same solid oxide fuel cell, and Fig. 3 is an enlarged view of the connecting part of the solid oxide fuel cell. 4 is a sectional view of a cell section of a solid oxide fuel cell according to another embodiment of the present invention, FIG. 5 is a perspective view of a conventional solid oxide fuel cell, and FIG. 6 is a sectional view of another conventional solid oxide fuel cell. FIG. 1 is a plan view of a solid electrolyte fuel cell. DESCRIPTION OF SYMBOLS 1...Solid electrolyte fuel cell, 2...Porous ceramic substrate, 3...Battery thin film, 4...Air electrode, 5...
・Solid electrolyte, 6...Fuel electrode, 7...Interconnector, 8...Sealing material, 11...Battery stack, 12
.. 13... Manifold, 14... Air inlet, 15
...Fuel outlet, 16...Fuel inlet, 17...Air outlet, 18...Current extraction part. Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 格子状の多孔質セラミックス基体に、電池薄膜を形成し
た部分と電池薄膜を形成しない部分とが交互に配列され
るようにその格子内面に電池薄膜を形成したことを特徴
とする固体電解質燃料電池。
A solid electrolyte fuel cell characterized in that a cell thin film is formed on the inner surface of a lattice-shaped porous ceramic substrate such that portions on which a cell thin film is formed and portions on which no cell thin film is formed are alternately arranged.
JP61284580A 1986-11-29 1986-11-29 Solid electrolyte type fuel cell Pending JPS63138667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284580A JPS63138667A (en) 1986-11-29 1986-11-29 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284580A JPS63138667A (en) 1986-11-29 1986-11-29 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPS63138667A true JPS63138667A (en) 1988-06-10

Family

ID=17680301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284580A Pending JPS63138667A (en) 1986-11-29 1986-11-29 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPS63138667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832549A1 (en) * 2001-11-16 2003-05-23 Commissariat Energie Atomique FUEL CELL WITH SIGNIFICANT ACTIVE SURFACE AND REDUCED VOLUME AND METHOD FOR MANUFACTURING THE SAME

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832549A1 (en) * 2001-11-16 2003-05-23 Commissariat Energie Atomique FUEL CELL WITH SIGNIFICANT ACTIVE SURFACE AND REDUCED VOLUME AND METHOD FOR MANUFACTURING THE SAME
WO2003043117A3 (en) * 2001-11-16 2004-02-19 Commissariat Energie Atomique Method for making a fuel cell with large active surface and reduced volume
JP2005510019A (en) * 2001-11-16 2005-04-14 コミツサリア タ レネルジー アトミーク Method for producing a fuel cell having a large effective surface area and a small volume
US7270686B2 (en) 2001-11-16 2007-09-18 Commissariat A L'energie Atomique Method for making a fuel cell with large active surface and reduced volume
JP4748937B2 (en) * 2001-11-16 2011-08-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing a fuel cell having a large effective surface area and a small volume

Similar Documents

Publication Publication Date Title
US6991868B2 (en) Fuel cell assembly
JP3530198B2 (en) Solid electrolyte fuel cell
US5049458A (en) Fuel cell
US5312700A (en) Solid oxide fuel cell and method for producing the same
JP2528987B2 (en) Solid oxide fuel cell
US6770395B2 (en) Internally manifolded, planar solid oxide fuel cell (SOFC) stack with an inexpensive interconnect
EP3279989B1 (en) Flat plate type fuel cell
US9608285B2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
US20090130533A1 (en) Fuel cell
JPH04237962A (en) Flat type solid electrolyte fuel cell
US9112219B2 (en) Multiple stack fuel cell system with shared plenum
KR20180036629A (en) An interconnect for an internally-manifolded solid oxide fuel cell stack, and related methods and power systems
JPH05159790A (en) Solid electrolyte fuel cell
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
JPH04298963A (en) Solid electrolyte type fuel cell and manufacture thereof
JPH09326259A (en) Solid electrolyte fuel cell
WO2006090464A1 (en) Solid polymer fuel cell and method for producing same
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2989223B2 (en) Flat solid electrolyte fuel cell power generator
JPS63166159A (en) Solid electrolyte fuel cell
JPS63138667A (en) Solid electrolyte type fuel cell
US20230006237A1 (en) Cell unit and cell stack
JP4100169B2 (en) Fuel cell
JP2528986B2 (en) Solid oxide fuel cell
JP3153901B2 (en) Disc-stacked solid electrolyte fuel cell