JPS631383B2 - - Google Patents

Info

Publication number
JPS631383B2
JPS631383B2 JP58000456A JP45683A JPS631383B2 JP S631383 B2 JPS631383 B2 JP S631383B2 JP 58000456 A JP58000456 A JP 58000456A JP 45683 A JP45683 A JP 45683A JP S631383 B2 JPS631383 B2 JP S631383B2
Authority
JP
Japan
Prior art keywords
iron
tic
sliding material
tin
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58000456A
Other languages
Japanese (ja)
Other versions
JPS59126752A (en
Inventor
Kenichiro Futamura
Eiji Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP45683A priority Critical patent/JPS59126752A/en
Publication of JPS59126752A publication Critical patent/JPS59126752A/en
Publication of JPS631383B2 publication Critical patent/JPS631383B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 技術分野 本発明は鉄系摺動材料に関するものであり、さ
らに詳しく述べるならば斜板式コンプレツサーな
どの潤滑油使用条件下で使用される部材に用いら
れ、鉄合金又はアルミニウム合金に対して摺動せ
しめられる鉄系摺動材料、ならびにその製造方法
に関するものである。 (2) 従来技術の説明 斜板式コンプレツサーは、一般に、回転軸に一
定角度傾斜して固着された斜板と、前記回転軸に
平行に設けられたシリンダ内に嵌装されたピスト
ンと、前記斜板と前記ピストンとの間に配設さ
れ、一般にシユーと称される摺動機構とを含み、
前記斜板の回転によつて前記ピストンが往復動さ
せられ、シリンダ内に媒体が導入され圧縮される
ように構成されている。 斜板式コンプレツサーの斜板としては従来炭素
鋼又は球状黒鉛鋳鉄などの鉄合金が用いられてい
た。この斜板に対して摺動せしめられるシユーが
同系の鉄合金であると、同種の材料組み合わせの
欠点が直接に表われて、摺動条件が極めて良好に
保たれた場合を除き、容易に焼付き事故が生じる
という難点があつた。そこで、斜板式コンプレツ
サーにおいては鉄合金シユーは従来一般的でな
く、銅合金又はアルミニウム合金シユーが使用さ
れ、鉄合金斜板に対する鉄合金の摺動部材(シユ
ー)は低面圧・低速度の摺動条件が緩やかな場合
にのみ限定されていた。 斜板式コンプレツサーの軽量化及び高性能化に
伴つて斜板には従来の鉄合金に代えてアルミニウ
ム合金が使用されつつあり、これに伴つて前記斜
板と摺動せしめられるシユーの構造及び材料の研
究が活発に行なわれている。 斜板式コンプレツサーの斜板はそれ自身がシユ
ーによつて極度に摩耗されてはならないために通
常17%程度の珪素を含有するアルミニウム合金が
使用されている。かかるアルミニウム合金には珪
素が初晶Siの形で折出しており、この初晶Siの硬
さはかなり高いために、摺動の相手材としては従
来S45Cなどの構造用鋼或いは炭素工具鋼のよう
な材料を焼入れすることによつて充分な硬さを付
与し、初晶Siに対する耐摩耗性を具備されてい
た。 一般に、鉄鋼材料の摩擦特性はその硬化元素組
成により大きく影響されるので、本発明者等は合
金元素添加材料又はTiC等の硬質粒子を分散させ
た鉄系摺動材料等の検討も行なつたが、高珪素含
有アルミニウム合金に対して摺動する材料の特性
向上には上記合金元素等の添加ではかならずしも
充分でないことがわかつた。すなわち鉄鋼材料へ
の硬化元素の添加によつては、得られる硬度に限
界があるためにアルミニウム合金中の初晶Siに対
して充分な耐摩耗性が実現されない。一方、TiC
等の硬質粒子を分散するシユーはアルミニウム合
金のマトリツクスに対して凝着する傾向が強ま
り、高硬度は得られるもののシユーが斜板に対し
て焼付くという難点があることがわかつた。すな
わち、一般的に述べると高珪素含有アルミニウム
合金は、アルミニウム自体の性質として軟質であ
るために相手材を凝着させる傾向を有し、かつ同
時に極めて硬度が高い初晶Siを分散しているため
に相手材を摩耗するという相反する性質を有して
おり、このような性質に対処し耐摩耗性及び耐焼
付性を高いレベルで達成する上では従来の鉄系摺
動材料は満足できなかつた。 以上、主として斜板式コンプレツサーのシユー
を例に挙げて説明を行つたが、常法の合金元素の
添加あるいは硬質粒子の分散等の手段によつて
は、摺動特性改良には限界があるため、苛酷な摺
動条件に適する優れた性能を有する鉄系摺動材料
を提供することができないとの問題が、ロツカー
アームのパツド、スラストワツシヤ、バルブステ
ムガイド、バルブシート等についても、存在して
いる。 (3) 発明の目的 本発明は、斜板式コンプレツサーのシユー、そ
の他の潤滑油使用条件下で使用される摺動部材と
して要求される優れた耐摩耗性、及び耐焼付性を
有しており、更に機械的強度が高い鉄系摺動材料
を提供することを目的とする。 (4) 発明の構成 本発明によると、固溶体型TiC−TiN粒子を5
ないし50%含有し、残部が実質的に鉄粒子からな
る焼結合金より構成される鉄系摺動材料であつ
て、摺動材の表面より深さ1mmまでの空孔率を7
〜20体積%とし、それより内部は空孔率を更に小
さくしたことを特徴とする摺動材料が提供され
る。 以下、本発明の特徴を説明する。 本発明の一つの特徴は、固溶体型TiN−TiC粒
子を用いたことにある。TiCは鉄系焼結材料の一
成分として使用されることは公知であるが、この
ようなTiCを一成分とした鉄系焼結合金は相手材
である高珪素含有アルミニウム合金又は鉄合金と
凝着する傾向が顕著になつて、耐焼付性が劣化す
る。一方、TiN粒子は鉄粉との親和性が良くな
いために焼結体の強度が不足する。従つてTiC及
びTiNの混合物を鉄系摺動材料の成分として用
いたのでは本発明の目的が達成されない。一方本
発明者の実験によるとTiCとTiNが相互に固溶し
た固溶体型TiN−TiC粒子(以下固溶体型Ti化合
物と称する)を使用すると混合物として用いた場
合の欠点を伴わずに極めて高い硬さと高珪素アル
ミニウム合金のマトリツクス又は鉄合金に対する
非凝着性が同時に実現されることを見出した。 本発明の他の特徴は固溶体型Ti化合物を5〜
50%、好ましくは10〜45%(以下特にことわらな
い限り百分率は重量パーセントとする)を全体に
対して含有分散させたことにある。固溶体型Ti
化合物の量が5%未満であると鉄系摺動材料の対
焼付性能が極めて劣化し、一方50%をこえるとそ
の機械的強度が劣化する。ただし機械的強度が低
くともよい場合は固溶体型Ti化合物の量は80%
までとしてもよい。 本発明の他の特徴は、摺動材の表面より深さ1
mmまでの空孔率を7〜20体積%とし、それより内
部は空孔率を更に小さくすることにより7〜20体
積%の空孔が潤滑油の供給場所として作用すると
ともに、摺動材内部の空孔が少ない構造により機
械的強度が向上するところにある。 以下本発明の好ましい実施態様について説明す
る。 本発明の固溶体型Ti化合物中のTiCとTiNのモ
ル比は7:3〜3:7の範囲であることが好まし
い。このような固溶体型Ti化合物は市販のもの
であつてよい。なお固溶体型Ti化合物中のTiCモ
ル比が高いと鉄系摺動材料の強度は増加し、一方
TiNのモル比が増加すると耐焼付性が向上する
ので、用途に応じてTiC:TiNモル比を調節する
ことが必要である。 本発明の鉄系摺動材料の相手材として用いられ
るアルミニウム合金は高珪素含有量であるほど本
発明材料のすぐれた性能が発揮される。その珪素
含有量は一般に12〜25%である。又このアルミニ
ウム合金は珪素の他に目的に応じて銅、マグネシ
ウムなどの合金元素を若干含有してもよいことは
勿論である。 本発明の鉄系摺動材料の相手材として用いられ
る鉄合金は、炭素鋼、合金鋼、普通鋳鉄及び球状
黒鉛鋳鉄等を含む。この場合同種金属の摺動とな
るが、固溶体型Ti化合物が相手材との凝着傾向
を大巾に少なくしているために、同種金属摺動を
考慮して特に緩やかな摺動条件に設計する必要が
ないことが大きな利点となる。 更に、FeにTiC等を含んだ焼結材と特殊鋳鉄を
摺動させるアペツクスシール等の摺動材料はTiC
の硬さのため、特殊鋳鉄を摩耗させたり、線状キ
ズを発生させたりして焼付に至らしめる等の不具
合がある。このような鉄合金で構成した材料を相
手材として、本発明の鉄系摺動材料と摺動させる
と摺動面の荒れや摩耗を発生させることなく焼付
荷重も向上する。 更に本発明においては摺動材料の鉄マトリツク
スの機械的特性を強化するために炭素、モリブデ
ン、ニツケル、クロム、及びマンガンの少なくと
も一種を鉄に対し0.1〜10%含有することが好ま
しい。これらの元素の添加量が0.1%未満では効
果がなく、一方10%を越えるとFeマトリツクス
の靭性が低下して好ましくないため添加量を0.1
〜10%とした。これらの炭素、モリブデン等は通
常鉄粉に炭素粉或いはモリブデン粉等の粉末形態
で添加され、焼結時に鉄マトリツクス中でかなり
の程度拡散され焼結合金としての機械的特性を強
化し、更には耐焼付性能も若干向上せしめる。次
に本発明の鉄系摺動材料の製造方法について説明
する。 所定の組成に混合された原料粉末を5〜7t/cm2
の圧力で圧粉し、次に圧粉体を1100〜1300℃で15
〜60分間焼結する。 次に、焼結体を900〜1050℃に加熱し、0.1〜
1t/cm2の圧力を加えて製造する。第二次焼結は試
料内部の空孔率を少なくするために行うもので、
金型により試料表面を冷却することにより、表面
は圧下の影響を少なくし、内部のみ圧縮を行い空
孔率を変化させるものである。焼結の雰囲気は水
素などの還元雰囲気或いは窒素などの非酸化雰囲
気とすることが必要である。 原料粉末中の金属粉末の粒度は−100メツシユ
及び固溶体型Ti化合物の粒度は−350メツシユが
好ましい。尚これらの粉末の粒度は焼結によつて
もほとんど変化せず製品の粒度は原料粉末の粒度
と同視できる。 (5) 実施例 実施例 1 この実施例においては固溶体型Ti化合物を40
%含む工業的純鉄粉を原料粉末とし、5t/cm2の圧
力で圧粉を行ない、次に、一次および二次焼結を
第1表に示す条件で行なつた。なお、比較材は二
次焼結を省略した。 この焼結により得られた鉄系焼結合金を試験片
に加工し焼付時間及び衝撃値を測定した。この結
果を第1表に示す。
(1) Technical field The present invention relates to iron-based sliding materials, and more specifically, it is used for members used under lubricant conditions such as swash plate compressors, and is suitable for iron alloys or aluminum alloys. The present invention relates to an iron-based sliding material that can be slid and a method for manufacturing the same. (2) Description of the Prior Art A swash plate type compressor generally includes a swash plate fixed to a rotating shaft at a fixed angle, a piston fitted in a cylinder provided parallel to the rotating shaft, and the swash plate fixed to the rotating shaft at a fixed angle. a sliding mechanism generally referred to as a shoe, disposed between the plate and the piston;
The piston is caused to reciprocate by rotation of the swash plate, and the medium is introduced into the cylinder and compressed. Conventionally, carbon steel or an iron alloy such as spheroidal graphite cast iron has been used for the swash plate of a swash plate type compressor. If the shoe that slides against this swash plate is made of the same type of iron alloy, the drawbacks of the same type of material combination will be directly exposed, and unless the sliding conditions are maintained very well, it will easily burn out. The problem was that accidents could occur. Therefore, in swash plate type compressors, iron alloy shoes have not been common in the past, but copper alloy or aluminum alloy shoes are used. This was limited only to moderate dynamic conditions. As swash plate type compressors become lighter and have higher performance, aluminum alloys are being used instead of conventional iron alloys for swash plates, and as a result, the structure and material of the shoe that slides on the swash plate has changed. Research is being actively conducted. Since the swash plate of a swash plate type compressor must not be subject to excessive wear due to sew, an aluminum alloy containing about 17% silicon is usually used. Silicon is precipitated in such aluminum alloys in the form of primary Si, and because the hardness of this primary Si is quite high, structural steels such as S45C or carbon tool steel have traditionally been used as sliding mating materials. By quenching such a material, it was given sufficient hardness and had wear resistance against primary Si. In general, the frictional properties of steel materials are greatly affected by their hardening element composition, so the inventors also investigated iron-based sliding materials with alloying element addition materials or hard particles such as TiC dispersed therein. However, it has been found that the addition of the above-mentioned alloying elements is not always sufficient to improve the properties of materials that slide on high silicon-containing aluminum alloys. That is, by adding hardening elements to steel materials, there is a limit to the hardness that can be obtained, and therefore sufficient wear resistance cannot be achieved against the primary Si crystals in aluminum alloys. On the other hand, TiC
It has been found that a shoe in which hard particles are dispersed has a strong tendency to adhere to the aluminum alloy matrix, and although high hardness can be obtained, there is a problem that the shoe seizes against the swash plate. In other words, generally speaking, high silicon content aluminum alloys have a tendency to adhere to other materials due to the soft nature of the aluminum itself, and at the same time, because they have primary crystal Si, which is extremely hard, dispersed. It has the contradictory property of abrading the mating material, and conventional iron-based sliding materials have not been able to deal with these properties and achieve high levels of wear resistance and seizure resistance. . The explanation above has mainly been given using the example of a swash plate type compressor, but there is a limit to the improvement of sliding characteristics by conventional methods such as adding alloying elements or dispersing hard particles. The problem of not being able to provide iron-based sliding materials with excellent performance suitable for severe sliding conditions also exists for rocker arm pads, thrust washers, valve stem guides, valve seats, and the like. (3) Purpose of the invention The present invention has excellent wear resistance and seizure resistance required for sliding members used in swash plate type compressors and other conditions where lubricating oil is used. Another object of the present invention is to provide an iron-based sliding material with high mechanical strength. (4) Structure of the invention According to the present invention, solid solution type TiC-TiN particles are
An iron-based sliding material composed of a sintered alloy containing 50% to 50% iron particles and the remainder substantially consisting of iron particles, with a porosity of 7 mm from the surface of the sliding material to a depth of 1 mm.
A sliding material is provided which is characterized by having a porosity of ~20% by volume and an even smaller internal porosity. The features of the present invention will be explained below. One feature of the present invention lies in the use of solid solution type TiN-TiC particles. It is well known that TiC is used as a component of iron-based sintered materials, but such iron-based sintered alloys containing TiC as one component do not coagulate with the high-silicon-containing aluminum alloy or iron alloy. There is a noticeable tendency for the paint to stick, and the seizure resistance deteriorates. On the other hand, TiN particles do not have good affinity with iron powder, resulting in insufficient strength of the sintered body. Therefore, the object of the present invention cannot be achieved by using a mixture of TiC and TiN as a component of an iron-based sliding material. On the other hand, the inventor's experiments have shown that when using solid solution type TiN-TiC particles (hereinafter referred to as solid solution type Ti compound) in which TiC and TiN are dissolved in each other, extremely high hardness can be achieved without the disadvantages when used as a mixture. It has been found that non-adhesion to the matrix of high-silicon aluminum alloys or iron alloys can be achieved at the same time. Another feature of the present invention is that the solid solution type Ti compound is
The reason is that 50%, preferably 10 to 45% (hereinafter, percentages are expressed as weight percent unless otherwise specified) are contained and dispersed in the whole. Solid solution type Ti
If the amount of the compound is less than 5%, the anti-seizure performance of the iron-based sliding material will deteriorate significantly, while if it exceeds 50%, its mechanical strength will deteriorate. However, if low mechanical strength is acceptable, the amount of solid solution Ti compound should be 80%.
It may be up to. Another feature of the present invention is that the sliding material has a depth of 1 below the surface of the sliding material.
By setting the porosity up to 7 mm to 20% by volume, and further reducing the porosity inside, the 7 to 20% by volume pores act as lubricating oil supply locations, and inside the sliding material. The mechanical strength is improved due to the structure with fewer pores. Preferred embodiments of the present invention will be described below. The molar ratio of TiC to TiN in the solid solution type Ti compound of the present invention is preferably in the range of 7:3 to 3:7. Such a solid solution Ti compound may be commercially available. Note that when the TiC molar ratio in the solid solution Ti compound is high, the strength of the iron-based sliding material increases;
As the molar ratio of TiN increases, the seizure resistance improves, so it is necessary to adjust the TiC:TiN molar ratio depending on the application. The higher the silicon content of the aluminum alloy used as a mating material for the iron-based sliding material of the present invention, the better the performance of the material of the present invention will be exhibited. Its silicon content is generally 12-25%. In addition to silicon, this aluminum alloy may of course contain a small amount of alloying elements such as copper and magnesium depending on the purpose. Iron alloys used as a mating material for the iron-based sliding material of the present invention include carbon steel, alloy steel, ordinary cast iron, spheroidal graphite cast iron, and the like. In this case, the same type of metal will be sliding, but since the solid solution type Ti compound greatly reduces the tendency of adhesion with the mating material, the sliding conditions are designed to be particularly gentle considering the same type of metal sliding. The big advantage is that you don't have to. Furthermore, sliding materials such as apex seals that slide between special cast iron and sintered material containing TiC etc. in Fe are TiC.
Due to its hardness, there are problems such as abrasion of special cast iron, generation of linear scratches, and seizure. When a material made of such an iron alloy is used as a mating material and is slid on the iron-based sliding material of the present invention, the seizure load is improved without causing roughness or wear on the sliding surface. Further, in the present invention, it is preferable that at least one of carbon, molybdenum, nickel, chromium, and manganese is contained in an amount of 0.1 to 10% based on iron in order to strengthen the mechanical properties of the iron matrix of the sliding material. If the amount of these elements added is less than 0.1%, there is no effect, while if it exceeds 10%, the toughness of the Fe matrix decreases, which is undesirable.
~10%. These carbon, molybdenum, etc. are usually added to iron powder in powder form such as carbon powder or molybdenum powder, and are diffused to a considerable extent in the iron matrix during sintering, strengthening the mechanical properties of the sintered alloy, and further Seizure resistance performance is also slightly improved. Next, a method for manufacturing the iron-based sliding material of the present invention will be explained. 5 to 7 t/cm 2 of raw material powder mixed to a predetermined composition
The powder is compacted at a pressure of
Sinter for ~60 minutes. Next, the sintered body is heated to 900-1050℃, and
Manufactured by applying a pressure of 1 t/cm 2 . Secondary sintering is performed to reduce the porosity inside the sample.
By cooling the sample surface with a mold, the surface is less affected by the reduction, and only the inside is compressed to change the porosity. The sintering atmosphere must be a reducing atmosphere such as hydrogen or a non-oxidizing atmosphere such as nitrogen. The particle size of the metal powder in the raw material powder is preferably -100 mesh, and the particle size of the solid solution type Ti compound is preferably -350 mesh. Note that the particle size of these powders hardly changes even during sintering, and the particle size of the product can be equated with the particle size of the raw material powder. (5) Examples Example 1 In this example, 40% of the solid solution type Ti compound was used.
% industrially pure iron powder was used as the raw material powder, compaction was performed at a pressure of 5 t/cm 2 , and then primary and secondary sintering was performed under the conditions shown in Table 1. Note that secondary sintering was omitted for the comparison material. The iron-based sintered alloy obtained by this sintering was processed into test pieces, and the baking time and impact value were measured. The results are shown in Table 1.

【表】 比較材は二次の焼結を行つていないから表面と
内部の空孔率がほぼ一定である。従つて、空孔率
が3%と少ない試料は衝撃性は良いが、焼付性に
劣る。逆に、空孔率が15、20%と多い試料は焼付
性は良いが、衝撃性に劣る。これに対し、本発明
材は衝撃性、焼付性共に優れている。これは表面
の多い空孔率ですぐれた焼付性を付与し、内部の
空孔率ですぐれた衝撃性を付与しているものであ
る。従つて、本発明材は比較材にない優れた効果
を有する。 実施例 2 実施例1の表面空孔率が15%、内部空孔率が7
%のものと同一の焼結条件で、第2表に示す組成
の鉄系焼結合金について焼付荷重及び衝撃値を測
定した。ただし、表中Al系とあるのは実施例1
のアルミニウム合金を相手材試験片とした場合で
あり、Fe系とあるのはアルミニウム合金にかえ
て球状黒鉛鋳鉄を相手材試験片とした場合であ
る。 また、焼付試験条件は下記の点以外は実施例1
と同じである。 荷重:20Kg/cm2より10Kg/cm2づつ漸増。各荷重段
階は15分間断続 潤滑オイル:冷凍機油1容量に対し軽油9容量の
混合オイル 潤滑オイル:フエルト塗布約0.8c.c./分
[Table] Since the comparative material does not undergo secondary sintering, the porosity on the surface and inside is almost constant. Therefore, a sample with a low porosity of 3% has good impact resistance, but is poor in seizure resistance. On the other hand, samples with a high porosity of 15 or 20% have good seizure resistance but poor impact resistance. In contrast, the material of the present invention has excellent impact resistance and seizure resistance. This material has a high surface porosity, which gives it excellent baking properties, and an internal porosity, which gives it excellent impact resistance. Therefore, the material of the present invention has excellent effects that the comparative materials do not have. Example 2 Surface porosity of Example 1 is 15%, internal porosity is 7
The seizure load and impact value were measured for iron-based sintered alloys having the compositions shown in Table 2 under the same sintering conditions as those of %. However, in the table, “Al system” refers to Example 1.
This is when an aluminum alloy is used as the mating material test piece, and "Fe-based" is when spheroidal graphite cast iron is used as the mating material test piece instead of the aluminum alloy. In addition, the seizure test conditions were as in Example 1 except for the following points.
is the same as Load: Gradually increase from 20Kg/ cm2 by 10Kg/ cm2 . Each load stage is intermittent for 15 minutes Lubricating oil: A mixture of 1 volume of refrigeration oil and 9 volumes of diesel oil Lubricating oil: Felt application approx. 0.8 cc/min

【表】 第2表において供試材No.11、12及び13はTiC及
び/又はTiNを硬質粒子とした比較例であり、
TiCを混合粉末とした場合は相手材との凝着傾向
が強く焼付荷重が低下している。更に、TiNを
硬質粒子とした場合は鉄粉との親和性が劣化し衝
撃値が著しく低下している。また、TiC及びTiN
の両者を硬質粒子とした場合は焼付荷重は良好に
なるものの衝撃値の低下は免れない。これに対し
て本発明の供試材は焼付荷重及び衝撃値が共に良
好である。 本発明の供試材の相手材が球状黒鉛鋳鉄及びア
ルミニウム合金のそれぞれの場合を比較すると前
者の方が焼付荷重は低いが固溶体型Ti化合物の
量を多くすることによつてかなり高い焼付荷重が
得られていることが注目される。次に炭素、ニツ
ケル、モリブデン、クロム及びマンガンなどの合
金元素の作用についてみるとこれらは焼付荷重及
び衝撃値の両者を顕著に増加させている。 (6) 効果 本発明の鉄系摺動材料はTiC及び/又はTiN硬
質粒子を分散させた摺動材料と比較すると相手材
に焼付く傾向が著しく少なく、この結果焼付荷重
が著しく増大し更に衝撃値が格段に向上してい
る。従つて本発明によると、相手材の材質或いは
潤滑条件などによつて摺動条件が極めて苛酷にな
つている摺動機構に適合しうる優れた性能が実現
される。
[Table] In Table 2, test materials No. 11, 12 and 13 are comparative examples in which TiC and/or TiN are used as hard particles.
When TiC is used as a mixed powder, it has a strong tendency to adhere to the mating material and the seizure load is reduced. Furthermore, when TiN is used as hard particles, its affinity with iron powder deteriorates and the impact value decreases significantly. Also, TiC and TiN
If both of these are made of hard particles, the seizure load will be good, but the impact value will inevitably decrease. In contrast, the test material of the present invention has good seizure load and impact value. Comparing cases where the counterpart materials of the test material of the present invention are spheroidal graphite cast iron and aluminum alloy, the former has a lower seizure load, but by increasing the amount of solid solution type Ti compound, a considerably higher seizure load can be obtained. It is noteworthy that this has been achieved. Next, looking at the effects of alloying elements such as carbon, nickel, molybdenum, chromium and manganese, these significantly increase both the seizure load and the impact value. (6) Effect The iron-based sliding material of the present invention has a significantly lower tendency to seize on the mating material than sliding materials in which TiC and/or TiN hard particles are dispersed, and as a result, the seizing load increases significantly and the impact is further reduced. The value has improved significantly. Therefore, according to the present invention, excellent performance can be achieved that is suitable for sliding mechanisms in which sliding conditions have become extremely severe depending on the material of the mating member or the lubrication conditions.

Claims (1)

【特許請求の範囲】 1 固溶体型TiC−TiN粒子を5ないし50%含有
し、残部が実質的に鉄粒子からなる焼結合金より
構成される鉄系摺動材料であつて、摺動材の表面
より深さ1mmまでの空孔率を7〜20体積%とし、
それより内部は空孔率を更に小さくしたことを特
徴とする潤滑油使用条件下で用いられる鉄系摺動
材料。 2 前記TiC−TiN粒子中のTiCとTiNのモル比
が3:7ないし7:3の範囲であることを特徴と
する特許請求の範囲第1項記載の鉄系摺動材料。 3 固溶体型TiC−TiN粒子を5ないし50%含有
し、残部が実質的に、鉄地に対し0.1〜10%の炭
素、モリブデン、ニツケル、クロム及びマンガン
の少なくとも1種を含有する鉄粒子からなる焼結
合金より構成される鉄系摺動材料であつて、摺動
材の表面より深さ1mmまでの空孔率を7〜20体積
%とし、それより内部は空孔率を更に小さくした
ことを特徴とする潤滑油使用条件下で用いられる
鉄系摺動材料。 4 前記TiC−TiN粒子中のTiCとTiNのモル比
が3:7ないし7:3の範囲であることを特徴と
する特許請求の範囲第3項記載の鉄系摺動材料。 5 固溶体型TiC−TiN粒子を5ないし50%含有
し、残部が実質的に鉄粒子からなる原料粉末を5
〜7t/cm2の圧力で圧粉し、次に圧粉体を1100〜
1300℃で焼結し、次に、焼結体を900〜1050℃に
加熱し、0.1〜1t/cm2の圧力を加えることにより、
表面より深さ1mmまでの空孔率を7〜20体積%と
し、それより内部は空孔率を更に小さくしたこと
を特徴とする鉄系摺動材料の製造方法。
[Scope of Claims] 1. An iron-based sliding material composed of a sintered alloy containing 5 to 50% solid solution type TiC-TiN particles and the remainder being substantially iron particles, the sliding material comprising: The porosity from the surface to a depth of 1 mm is 7 to 20% by volume,
An iron-based sliding material that is used under lubricant conditions and is characterized by an even smaller porosity inside. 2. The iron-based sliding material according to claim 1, wherein the molar ratio of TiC to TiN in the TiC-TiN particles is in the range of 3:7 to 7:3. 3 Contains 5 to 50% solid solution type TiC-TiN particles, and the remainder essentially consists of iron particles containing 0.1 to 10% of at least one of carbon, molybdenum, nickel, chromium, and manganese based on the iron base. An iron-based sliding material composed of sintered alloy, with a porosity of 7 to 20% by volume from the surface of the sliding material to a depth of 1 mm, and an even smaller porosity inside. A steel-based sliding material used under lubricant conditions characterized by: 4. The iron-based sliding material according to claim 3, wherein the molar ratio of TiC to TiN in the TiC-TiN particles is in the range of 3:7 to 7:3. 5 Raw material powder containing 5 to 50% of solid solution type TiC-TiN particles and the remainder consisting essentially of iron particles.
The powder is compacted at a pressure of ~7t/ cm2 , and then the compact is compressed at a pressure of ~1100~
By sintering at 1300℃, then heating the sintered body to 900-1050℃ and applying a pressure of 0.1-1t/ cm2 ,
A method for manufacturing an iron-based sliding material, characterized in that the porosity from the surface to a depth of 1 mm is 7 to 20% by volume, and the porosity inside is further reduced.
JP45683A 1983-01-07 1983-01-07 Ferrous sliding material Granted JPS59126752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP45683A JPS59126752A (en) 1983-01-07 1983-01-07 Ferrous sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45683A JPS59126752A (en) 1983-01-07 1983-01-07 Ferrous sliding material

Publications (2)

Publication Number Publication Date
JPS59126752A JPS59126752A (en) 1984-07-21
JPS631383B2 true JPS631383B2 (en) 1988-01-12

Family

ID=11474292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP45683A Granted JPS59126752A (en) 1983-01-07 1983-01-07 Ferrous sliding material

Country Status (1)

Country Link
JP (1) JPS59126752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252733B2 (en) 2006-04-12 2012-08-28 Kabushiki Kaisha Toyota Jidoshokki Sliding material and sliding member using the sliding material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920007849B1 (en) * 1984-03-12 1992-09-18 제네랄 일렉트릭 캄파니 Element resistant to solid particle erosion utilizing titanium carbide
FR2599425B1 (en) * 1986-05-28 1988-08-05 Alsthom PROTECTIVE PLATE FOR TITANIUM BLADE AND METHOD OF BRAZING SUCH A PLATE.
CN102839315A (en) * 2012-06-08 2012-12-26 郑州鼎盛工程技术有限公司 Nano TiN modified TiC-based steel bond hard alloy
CN115074605B (en) * 2022-08-22 2022-11-22 中特泰来模具技术有限公司 Hot work die steel and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010809A (en) * 1973-06-04 1975-02-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010809A (en) * 1973-06-04 1975-02-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252733B2 (en) 2006-04-12 2012-08-28 Kabushiki Kaisha Toyota Jidoshokki Sliding material and sliding member using the sliding material

Also Published As

Publication number Publication date
JPS59126752A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
CN111286642B (en) Copper-based friction material suitable for carbon-ceramic brake disc and preparation method thereof
US4268309A (en) Wear-resisting sintered alloy
US4561889A (en) Wear-resistant sintered ferrous alloy and method of producing same
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
JPH0610103A (en) Vane material excellent in wear resistance and sliding property
US3983615A (en) Sliding seal member for an internal combustion engine
JPS631383B2 (en)
JP2003505595A (en) Sintered steel
US20020192105A1 (en) Aluminum alloy for sliding bearing and its production method
JPH079046B2 (en) Copper-based sintered body
US6379819B1 (en) Sliding bearing material
JPH029099B2 (en)
JPH0555589B2 (en)
US20040022663A1 (en) Production method of aluminum alloy for sliding bearing
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
EP0099067B1 (en) Wear-resistant sintered ferrous alloy and method of producing same
JPH0555592B2 (en)
JPH0835026A (en) Coppery sintered sliding material
JPH0499836A (en) Sintered copper series sliding material
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH0215624B2 (en)
JPH11140603A (en) Wear resistant sintered alloy material for part of compressor
JPS6039149A (en) Sintered fe alloy with superior wear resistance and self-lubricity and its manufacture
JPS60251248A (en) Vermicular cast iron
JPS62133044A (en) Fe sintered material impregnated with cu